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Abstract

Objectives—To evaluate the association of genetic variation with late-onset Alzheimer disease
(AD) in African Americans, including genes implicated in recent genome-wide association studies
of whites.

Design—We analyzed a genome-wide set of 2.5 million imputed markers to evaluate the genetic
basis of AD in an African American population.

Subjects—Five hundred thirteen well-characterized African American AD cases and 496
cognitively normal African American control subjects.
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Setting—Data were collected from multiple sites as part of the Multi-Institutional Research on
Alzheimer Genetic Epidemiology (MIRAGE) Study and the Henry Ford Health System as part of
the Genetic and Environmental Risk Factors for Alzheimer Disease Among African Americans
(GenerAAtions) Study.

Results—Several significant single-nucleotide polymorphisms (SNPs) were observed in the
region of the apolipoprotein E gene (APOE). After adjusting for the confounding effects of APOE
genotype, one of these SNPs, rs6859 in PVRLZ, remained significantly associated with AD (P=.
0087). Association was also observed with SNPs in CLU, PICALM, BIN1, EPHA1, MS4A,
ABCA7, and CD33, although the effect direction for some SNPs and the most significant SNPs
differed from findings in data sets consisting of whites. Finally, using the African American
genome-wide association study data set as a discovery sample, we obtained suggestive evidence of
association with SNPs for several novel candidate genes.

Conclusions—Some genes contribute to AD pathogenesis in both white and African American
cohorts, although it is unclear whether the causal variants are the same. A larger African American
sample will be needed to confirm novel gene associations, which may be population specific.

Alzheimer disease (AD) IS the most common form of dementia. Environmental and host
risk factors for common late-onset AD (LOAD) include low educational level, diabetes
mellitus, hypertension, and head trauma. Genetic factors also influence LOAD risk,
evidenced by heritability estimates as high as 75%? and analyses showing transmission of a
major gene for the disease in families.2 Until recently, the apolipoprotein E gene (APOE
[OMIM +107741]) was the only one generally recognized to influence LOAD risk.2 In
whites, homozygosity for the £4 variant is associated with an increased risk by as much as
15 times that of the most common APOE genotype (e3/e3).4

Genome-wide association studies (GWASSs) have reported genome-wide significant single-
nucleotide polymorphisms (SNPs) across a 70-kilobase (kb) region that includes APOE and
several neighboring genes,® namely, poliovirus receptor-related 2 (PVRL2[OMIM
*600798]), translocase of outer mitochondrial membrane 40 yeast homologue ( TOMMA40
[OMIM *608061]), and apolipoprotein C-1 (APOC1 [OMIM *107710]). Both the TOMM40
and APOCI genes have been considered possible risk factors for AD independent of APOE.
Several lines of inquiry have implicated 7TOMMA40 as having an effect on AD risk, including
evidence of a role of mitochondria in AD pathogeneisis,® association of an intronic
TOMMA40 repeat polymorphism with age at the onset of AD symptoms among subjects
lacking the e4 allele,” and association of a haplotype spanning TOMMA40 with expression of
APOEZS However, other studies did not find an effect of TOMM40 after adjusting for
APOE?10 A polymorphism immediately upstream of the APOCI gene has also been
proposed as a possible risk locus for AD.11:12 This polymorphism is in strong linkage
disequilibrium (LD) with the APOE risk locus, but this pattern varies substantially by
population.13 Studies in mice and humans indicate that APOCI expression has an effect on
memory.14-16 Other studies reported that APOCI modifies the risk of AD independent of or
through interaction with APOE17.18

The GWASs conducted by several large consortia have identified robust evidence of an
association with genes outside the APOE region, including clusterin (CLU[OMIM
*185430]),19-21 phosphatidylinositol-binding clathrin assembly protein (P/CALM[OMIM
*603025]),20:21 complement component (3b/4b) receptor 1 (CRZ [OMIM *120620]),1°
bridging integrator 1 (B/NZ [OMIM *601248]),2° CD2-associated protein (CD2AP [OMIM
*604241]),22 ephrin type-A receptor 1 (EPHAL [OMIM *179610]),2922 the membrane-
spanning 4A (MS4A) gene cluster,?2:23 myeloid-associated antigen CD33 (CD33[OMIM
*159590]),22 and ATP-binding cassette, subfamily A (ABCI), member 7 (ABCA7[OMIM
*605414]).23 Findings with CLU, PICALM, CR1, and ABCA?7 have been replicated.22-24
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Because there are population differences in LD and allele frequencies, most association
studies have focused on a single population to decrease genetic background noise and reduce
the likelihood of false-positive findings due to confounding. Thus, confirmation in other
populations is required to determine the generalizability of the contribution of each gene to
AD risk and the possibility of population-specific causative variants. Although the effect of
APOE has been investigated extensively in multiple populations,*25:26 few African
American cohorts have been included in GWASs for AD.

In the present study, we genotyped more than 1000 African American cases and controls for
more than 600 000 SNPs covering the entire genome. Genotypes for 2.5 million SNPs
imputed from HapMap reference panels were used to investigate the contribution of genes
previously implicated in whites to AD risk and to identify novel AD risk variants in this
population. We also analyzed a comparable set of SNPs in 5 white AD GWAS data sets
containing more than 9700 subjects to replicate novel findings and for comparison with
previously obtained results.

Subjects were ascertained from 2 genetic studies of AD focused on African Americans. One
subject group includes participants of the Multi-Institutional Research on Alzheimer Genetic
Epidemiology (MIRAGE) Study, which contains primarily discordant sibling pairs.
Enrollment, data collection, and diagnostic procedures in the MIRAGE Study are explained
in detail elsewhere.2” A second group of primarily unrelated individuals includes
participants of the Genetic and Environmental Risk Factors for Alzheimer Disease Among
African Americans (GenerAAtions) Study, who were identified through the electronic
claims database of the Henry Ford Health System. Community-dwelling African Americans
65 years or older who had at least 1 encounter with the Henry Ford Health System in the 3
years before their recruitment and who had an available proxy informant were eligible for
this study. Cases met criteria of the National Institute of Neurological and Communicative
Diseases and Stroke—Alzheimer’s Disease and Related Disorders Association for possible or
probable AD, determined in a consensus conference that included a behavioral neurologist
(R.S.), psychiatrist, neuropsychologist, and a behavioral neurology nurse practitioner.

For comparison, we also examined 5 white AD GWAS data sets containing 3568 cases and
6205 controls, namely, the MIRAGE Study white families, and 4 data sets obtained from a
public database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap), including the Alzheimer
Disease Neuroimaging Initiative (ADNI),28:29 3 Canadian study on genetics of Alzheimer
disease associations (GenADA),%0 the National Institute on Aging—Late-Onset Alzheimer’s
Disease Family Study (NIA-LOAD),3! and the Framingham Heart Study.32-34 The numbers
of cases and controls in each data set are shown in Table 1.

Genotyping methods, procedures for data cleaning and imputation, and statistical methods
are described in detail in the supplementary material
(http://www.bumc.bu.edu/genetics/results/aa_alzheimer). Briefly, the APOE genotyping
method varied by study. Imputation of autosomal SNP genotypes was performed using the
Markov Chain Haplotyping (MaCH) software3® based on the HapMap 2 and 3 reference
SNP panels (http://hapmap.ncbi.nim.nih.gov/). Imputed SNPs were tested for association
with AD in the family-based data sets using generalized estimating equations (GEE)36:37 to
account for nonindependence of family members. Analysis of the case-control data sets was
performed using logistic regression models. All tests of association were adjusted for sex
and age at examination. Two models were evaluated for each SNP, one with and the other
without a term for APOE genotype coded as the number of APOE e4 alleles. Unless
otherwise noted, all results are from the e4-unadjusted model. An additional analysis of
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SNPs in the APOE region included an adjustment for APOE genotype classified into one of
the following 4 categories: e2/e2 and £2/e3; £3/e3; e2/e4 and £3/e4; and e4/e4. The SNP
association results obtained from individual data sets were combined by meta-analysis using
the inverse variance method implemented in the software package METAL.38 Nominal
(uncorrected for multiple testing) ~ values are reported throughout. In the genome-wide
analysis, a Pvalue of 5x1078 was used as the threshold for significance, and a threshold of
P<107° was considered suggestive evidence of association.

APOE REGION

The frequency distributions of APOE genotypes for African American and white cohorts are
shown in Table 2. In the African American cohort, the e4 allele is very significantly
associated with AD (P=9.69x10723). Analysis of individual genotypes showed evidence of a
significant protective effect of €2 (e2/e2 and €2/e3 genotypes) compared with the £3/e3
genotype and an exponential increase in risk associated with the dose of 4 (Table 3). The
odds ratio (OR) estimates and APOE allele frequencies, showing a higher rate of e4 alleles
in African American controls compared with white controls, are in agreement with a
previous study of the APOE association in the MIRAGE Study African American cohort.26

Analyses of the APOE region in the African American data sets revealed a highly significant
association with 3 markers within 25 kb of APOE, including PVRL2 SNP rs6859
(P=5.39x107") and TOMMA4 SNPs rs157582 (P=3.26x1075) and rs10119 (P=5.95x107")
(Table 4 lists top SNPs in the region; see eTable 1 in the supplementary material for all
nominally significant SNPs). Only rs6859 remained significant after adjustment for APOE
genotype (P=.0087). Figure 1 shows the unadjusted and APOE genotype—adjusted results for
all SNPs in the region immediately flanking APOE. Figure 2 shows the estimated LD in the
region for the African American and MIRAGE Study white data sets. In the white cohorts,
e4 was strongly associated with AD (P=6.80x107147). In addition, without adjustment for
the e4 allele, 19% of SNPs in this region were very significantly associated with AD (P<
1075). The top-ranked SNPs in this group are rs4420638 in APOCI (P=1.07x107144),

rs6857 in PVRL2 (P = 1.49 x 107108) and rs2075650 in TOMMA40(P=1.70x10794). After
adjustment for APOE genotype, only 7 SNPs remained significant at A<.05, including
rs6857 (P=4.98x1077), rs4420638 (P=1.54x10""), and rs2075650 in TOMMA40
(P=1.25x1075),

PREVIOUSLY IMPLICATED REGIONS

Results for African Americans in the regions of AD associations from the white GWAS are
summarized in Table 5. There was no evidence of association in African Americans with 2
of these 3 CLU SNPs, including rs11136000, which was consistently significant across
multiple studies in white samples. A nominally significant association (P=.034) was
observed with rs2279590 that had been previously reported in whites. However, the minor
allele (T) was associated with increased AD risk in this African American sample (OR,
1.41), whereas the T allele is protective in the white sample (OR, 0.87). Two additional
nominally significant SNPs were observed in CLU, the most significant of which was
rs9331926 (P=.020); complete results including all nominally significant SNPs in previously
implicated regions are summarized in eTable 2 in the supplementary material.

Harold et al?! found genome-wide significant evidence of association with rs3851179,
located 88 kb upstream from P/ICALM. This SNP was not associated with AD in our
African American sample (P=.16), although the estimated OR (0.85) is nearly identical to
the OR reported in the white sample (0.87). However, we observed nominally significant
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association with 8 of 287 other SNPs tested in the region, including rs12795381 (~P=.0086)
and rs17148827 (P=.0089), which is monomorphic in whites. The rs12795381 finding is
consistent with modest evidence of association with multiple SNPs in the P/ICALM coding
region.20 We also evaluated the interaction of P/CALM SNPs with APOE as reported in a
large white sample.2 Stratified analysis revealed evidence of association with rs12795381
in subjects with the APOE e4 allele (P=.04) but not in those without it (P=.61). However,
we were unable to perform a formal test of interaction owing to the relatively small sample
size and low minor allele frequency.

None of the 88 tested CRZ SNPs (including the 2 reported as significant by Lambert et al1®)
and none of the 112 tested CD2AP SNPs (including rs9349407, which was reported as
significant by Naj et al?2) were associated with AD in African Americans. The most
promising result among these SNPs was obtained with rs12734030 in CR1 (P=.09).

Seshadri et al20 proposed B/N as a candidate gene for AD on the basis of a genome-wide
significant Pvalue observed for rs744373 located approximately 30 kb from the B/IN1
coding region. Although this result was not replicated in our African American sample (P>.
99), several adjacent SNPs were nominally significant, including rs11685593 (~P=.0098).
Association was also observed with multiple SNPs within the B/NI coding region, the most
significant of which was rs11691237 (~=.0098). The most significant association in the
region was observed with rs7585314 (P=.0030), which is 68 kb from rs744373 in CYP27C1.

Located approximately 6 kb from EPHAI, rs11767557 is the only genome-wide significant
result in this region reported by Naj et al?2 and was not associated with AD in African
Americans (P=.59). However, rs11762262, which is approximately 1260 bp closer to
EPHAI than rs11767557, was nominally significant (P=.034). We observed multiple
nominally significant SNPs spread throughout the £PHAI region in the African American
sample. The strongest evidence for association in this region was obtained with rs4595035
(P=.0094), which is 32 kb upstream from rs11767557.

Naj et al?2 also observed genome-wide significant association with many SNPs in the A/S4A
cluster. We evaluated association with all SNPs across this cluster, which spans about 500
kb. The most significant finding in the MS4A region was observed with rs10792258 (FP-=.
010). This SNP is 394 bp distal from rs1582763 and 253 bp proximal to rs1562990, both of
which were strongly associated with AD (P=5.92x10711 and P=2.47x1079, respectively) in
the meta-analysis of large white data sets by Naj et al.22 A similar level of significance was
observed with rs3802957 (P=.011) in the 3" untranslated region of MS4A1, 203 kb from
rs10792258.

We did not see association (P=.38) with an SNP in ABCA~7 (rs3752246), which approached
genome-wide significance in the study by Naj et al.22 We did, however, observe nominally
significant association with rs3764650 (P=.019), which was reported as genome-wide
significant in the study by Hollingworth et al.23 The effect of this SNP on risk of AD in our
study (OR, 1.27) was very similar to that observed previously (OR, 1.23). Several other
nominally significant SNPs were observed in the region, of which the most significant,
synonymous coding SNP rs376647 (P=.0087), is located 11 kb from rs3752246.

We also did not observe an association with CD33 SNP rs3865444 (P=.73), which was
found to have genome-wide significance in the GWAS by Naj et al.22 The most significant
result in the CD33region in the African American sample was obtained with rs10419982
(P=.0005), 69 kb away from rs3865444. This SNP almost survives correction for the 200
SNPs examined in the region. However, given the great distance of this SNP from CD33,
there is not adequate evidence to consider this result a replication.
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NOVEL GENE DISCOVERY

Genotypes were evaluated for 2 505 093 imputed SNPs that passed minor allele frequency
criteria and imputation quality thresholds. A Manhattan plot of the results of the genome
screen is presented in Figure 3. No SNP achieved a genome-wide level of significance.
Eleven SNPs achieved suggestive levels of association (A<107°) (Table 6). The direction of
effect for these SNPs was consistent across the African American cohorts. Four of these
SNPs (rs11889338, rs2221154, rs956225, and rs10850408) are more than 50 kb from the
nearest characterized gene. Strong evidence of association was obtained with rs340849
(P=7.52x1075), located 34 kb from PROX1, and with rs3888908 (P=9.52x1076), located 19
kb upstream from P4HAS3. The most significant finding was obtained for rs10850408
(P=9.25x1077), a chromosome 12 SNP more than 250 kb from the nearest gene. The SNPs
in ZC3H3, TMTC1, and ENOX1 showed suggestive evidence of an association in analyses
adjusting for APOEe4 (see eTable 3 in the supplementary material for all SNPs with
P<1079). None of these findings were replicated in the white meta-analysis (details are
provided in the eAppendix in the supplementary material).

COMMENT

This is, to our knowledge, the first comprehensive genetic association study of AD in
African Americans. This study is timely and important for several reasons. African
Americans are about twice as likely as non-Hispanic whites to have AD.3 Although
differences in AD etiology across populations have been widely studied, they are still poorly
understood. The occurrence of multiple demented individuals in African American families
is significantly higher than in white families, although the genetic risk of AD is similar in
these 2 populations.2’ The increased familial risk in African Americans is likely a result of
higher rates of risk factors, such as poor education, diabetes mellitus, and smoking.3°
However, comparisons of risk in African American and white cohorts are complicated by
differences in assessment of cognitive decline across studies and by population differences
in willingness to participate in medical research.40-42

We obtained incontrovertible evidence of an association with the APOE &4 allele, thus
confirming findings from several smaller genetic studies of African Americans.*26 In non-
Hispanic whites, homozygosity for e4 is associated with a 13- to 15-fold increased odds of
developing AD compared with those with the most common genotype, £3/e3.4 We showed
previously in a set of 308 African American AD cases and 409 ethnically matched controls
that persons with the e3/e4 and e4/e4 genotypes had 2.6- and 10.5-fold increased odds of
AD, respectively, compared with persons with the e3/e3 genotype.26 These risks decreased
substantially after 68 years of age. The risk of AD was lower among individuals with the 2/
e3 genotype. We observed similar risks in the present study. Approximately one-third of the
African American sample in this study overlaps with the sample in our earlier report.

Our present study and previous studies in white populations identified highly significant
evidence of an association with genes adjacent to APOE, most notably 7OMMA40 and
APOCI (reviewed by Ertekin-Taner®). Arguably, the distinction of such findings from
confounding with APOE is intractable because of the tight LD spanning the genes in this
region.%10 However, we identified highly significant evidence of an association with several
SNPs in the APOE region in African Americans and whites after adjustment for APOE
genotype. This finding is consistent with an AD risk locus distinct from APOE. The
observation that different SNPs in this region are significant in African Americans and
whites after adjustment for APOE may reflect differences in LD structure in this region
(Figure 2). The residual association in these other genes may also represent unmeasured
effects of variants in regulatory regions of APOE.*3-4> Additional studies in larger African
American samples are needed to determine which of these explanations is more likely.
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Among the African Americans in the present study, a subset of 180 cases and 200 controls
from the MIRAGE Study and 221 cases and 186 controls from the GenerAAtions Study was
included in another recent study?# that evaluated the association of AD with PICALM,
CLU, and CR1 SNPs highlighted in the original studies reports.1%:21 The authors did not find
evidence of an association with any of the SNPs examined in the African American data
sets. We did not replicate the genome-wide significant associations with these loci in a
larger set of African American cases and controls, even at a nominal significance level.
However, we observed an association in African Americans with other previously
unreported variants in each of these regions and in the most recently reported regions of
genome-wide significant association,22:23 except CR1 and CD2AP. Only one previously
reported genome-wide significant association (rs3764650 in ABCA7) was confirmed in our
African American sample.23 Discordance in the association patterns between whites and
African Americans could be related to population differences in allele frequencies or LD
patterns. This explanation is consistent with our findings of association in the African
Americans between SNPs, which have very low frequency in whites (eg, rs17148827 in
PICALM), and one of the previously reported AD-associated CLU SNPs (rs2279590), but
with an opposite pattern of effect. Alternatively, the AD risk variants in these genes may
differ across populations (ie, allelic heterogeneity), as we observed previously in SORL 1.4
However, lack of replication might also be a result of small sample size when compared
with recent consortium-based GWASs.1%-23 In most instances, the confidence intervals for
the effect estimates in African Americans included the point estimates in whites.

Analysis of the entire autosomal genome revealed evidence suggestive of an association
with several novel candidate genes that may play a role in AD pathogenesis. PROX1
(OMIM *601546) is a prospero-related transcription factor that plays a critical role in the
development of various organs, including the mammalian lymphatic and central nervous
systems.#”48 This transcription factor has recently been shown to play a key role in adult
neurogenesis, suggesting it may be involved in memory development.*® The contactin-
associated protein-like 2 gene (CNTNAP2[OMIM *604569]) is involved in brain
development and has been implicated in susceptibility to autism and language
disorders.>%-53 In 2009, Harold et al?! reported a SNP in the contactin gene, CNTN5
(OMIM *607219), to have a GWAS Pvalue of 2x107°, Subsequently, the same SNP was
shown to be associated with a variety of magnetic resonance imaging measures in the
Alzheimer Disease Neuroimaging Initiative cohort.>* Serine/threonine kinase 24 (STK24
[OMIM *604984]) is expressed in the brain.?>:°6 An isoform of STK24 has been shown to
be a regulator of axon growth and axon regeneration after injury.>”8 However, we did not
observe association in these regions in a meta-analysis of a replication sample of 5 white AD
data sets containing 3568 cases and 6205 controls. A study of a larger independent sample
of African American and possibly white samples will be needed to determine whether these
associations are spurious or reflect population-specific variants or variable LD patterns
among populations.

This study represents an important step in elucidating the genetic basis of AD in African
Americans. Our results suggest that African Americans share some but not all AD genetic
risk factors with whites. Further research would not only lead to a more accurate
understanding of the genetic risk factors that could be incorporated in diagnostic and
predictive testing protocols specific for African Americans but may also yield new gene
discovery and clues for subsequent interventions useful to all populations at risk for AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Association and linkage disequilibrium in the apolipoprotein E (APOE) region. A and B,
Unadjusted findings in African Americans and whites, respectively; C and D, APOE-
genotype adjusted findings in African Americans and whites, respectively. APOCI indicates
apolipoprotein C-1; Mb, megabase; PVRLZ, poliovirus receptor-related 2; and TOMMA40,
translocase of outer mitochondrial membrane 40 yeast homologue.
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Figure 2.

Linkage disequilibrium in the apolipoprotein E (APOE) region. A, African American cohort
data sets. B, White cohort data sets. Other gene names are described in the legend to Figure
1.
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Figure 3.

Manhattan plot of genome-wide association study results for the meta-analysis of the
African American cohorts. The dotted line indicates suggestive evidence of association

(P<1079).
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Table 3
Odds of Alzheimer Disease for APOE Genotypes Relative to e3/e3

Genotypes OR (95% CI) P Value

e2/e2 or e2/e3  0.43(0.26-0.71) .0094
e2/ed or e3/e4  2.08 (1.58-2.74) 1.96 x 1077

edled 8.23 (4.78-14.15)  2.62 x 10714

Abbreviations: APOE, apolipoprotein E; OR, odds ratio.
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