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Abstract

Significance: Epigenetics involves alterations in gene expression without changing the nucleotide sequence.
Because some epigenetic changes can be reversed chemically, epigenetics has tremendous implications for
disease intervention and treatment. Recent Advances: After epigenetic components in cancer were characterized,
genes and pathways are being characterized in other diseases such as diabetes, obesity, and neurological dis-
orders. Observational, experimental, and clinical studies in different diseases have shown that nutrients influ-
ence epigenetic regulation. Nutrients such as folic acid that supply methyl groups have been shown to have a
protective effect in colon cancer. Critical Issues: Identifying steps during epigenetic regulation and developing
intervention and treatment agents are the critical issues in the field. Future Directions: Following completion and
validation of key observational studies in nutritional epigenetics, strategies can be developed for cancer control
and treatment. Antioxid. Redox Signal. 17, 355–364.

Introduction: Why Nutritional Factors Are Important for
Cancer Prevention, and Possible Mechanisms of Action

Cancer is both a genetic and an epigenetic disease

(21, 80). Epigenetics involves altered gene expression
without any change of gene sequences (2). Several regulatory
proteins involved in epigenetics include DNA methyl-
transferases, methyl-CpG binding proteins, histone modifying
enzymes (histone acetyl transferase and histone deacetylase),
Polycomb group (PcG) proteins, and chromatin remodeling
factors and their multimolecular complexes (20). A number of
diseases including cancer are regulated epigenetically (9, 10,
39, 56, 61, 70).

Both genetic and epigenetic events are susceptible to en-
vironmental and lifestyle factors such as diet, radiation, ex-
posure to toxins and pollutants, pharmacological intervention
agents, and infectious agents (32, 76, 79) (Fig. 1). Unlike be-
havior or stress, diet is one of the more easily studied and
therefore better understood environmental factors in epige-
netic change. Alterations in genetic and epigenetic factors can
affect the phenotype of cells and organisms.

Dietary components play a major role in both cancer pre-
vention and development (12, 66, 67). Well-characterized
bioactive food components include tea polyphenol-catechins
(green tea), curcumin (turmeric), genistein (soybean), resver-
atrol (grapes), sulforaphane (SFN, cruciferous vegetables),
and other bioactive components such as apigenin (parsley),
baicalein (Indian trumpet), cyanidins (grapes), isothiocyanate

(cruciferous vegetables), rosmarinic acid (rosemary), and si-
lymarin (milk thistle) (Fig. 2) (55). Intake of certain bioactive
food components can modulate cancer risk and tumor de-
velopment (36). The quantity of food components, frequency
of intake, and duration of intake by individuals also play a
significant role in cancer development (54).

Altered diet may have transgenerational effects. Heijmans
et al. (28, 29) studied pregnant mothers during the Dutch
Hunger Winter of 1944 to 1945 (a severe wartime famine at the
end of World War II that affected the western part of the
Netherlands). The investigators followed the methylation pro-
files of the mothers’ offspring six decades later and compared
them with the profiles of their unexposed, same-sex siblings.
The results indicated hypomethylation of insulin-like growth
factor 2 (IGF2) and hypermethylation of interleukin-10 (IL-10),
LEP, ABCA1, and MEGF. The researchers also observed an as-
sociation between methylation and gestational time of exposure
in 60 individuals at 15 loci (28, 29, 71, 72). Blood samples were
used in these studies to analyze methylation profiles. All of
these studies indicated the significance of nutritional factors in
the development of diseases including cancer.

Several food components can alter tumor cell behavior and
cancer risk by influencing key pathways and steps in carci-
nogenesis, including hormonal regulation, cell signaling, cell
cycle control, apoptosis, differentiation, carcinogen metabo-
lism, and/or inflammation (34, 54, 64). Polyphenols (e.g.,
genistein, which is present in soybeans; and resveratrol,
which is present in grapes and peanuts) are known to repress
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the expression of androgen receptor (AR) (44); reduced levels
of AR lower the level of prostate-specific antigen and modu-
late proliferating cell nuclear antigen, p21, and p27 (30, 59).
Indole-3-carbinol (which is abundant in cruciferous vegeta-
bles) can inhibit cellular proliferation in human breast cancer
cells (73). Xenobiotic compounds, including tobacco-specific
carcinogens known to induce lung tumors, can occur fol-
lowing dietary exposure to isothiocyanates from cruciferous
vegetables by activating detoxifying phase II enzymes (86).
Flaxseed or fish oil (which are rich in n-3 fatty acids) can
suppress proinflammatory cytokines, including tumor ne-
crosis factor-a and IL-1-b, which have been linked to increased
colon cancer risk (4, 84). These examples demonstrate that
some nutritional components show their maximum activity in
specific organs, and their targets can be specific as well. Not all
tissues respond equally to bioactive food components, as
discussed below. Genistein shows specificity for the receptor
type; it competes more strongly with estrogen to bind to es-
trogen receptor-beta (ER-b) than to estrogen receptor-alpha
(ER-a) (52, 88). ER-b is expressed extensively in the prostate
but to a much lower degree in the colon. Similarly, the effec-
tiveness of genistein against ER-b-mediated processes may be

greater in the prostate than in the colon. Zinc deficiency has
been reported to be more of a factor in the development of
cancer at some organ sites, such as the esophagus, than at
others (27, 83). Further mechanistic studies should consider
tissue specificity as a parameter in the overall bioefficacy of a
specific food component.

Epigenetics and Cancer

During the last decade, advancements were made in un-
derstanding the epigenetic regulation of cancer development
and identifying modifiable and host factors that contribute to
disease development (21, 41, 77, 78, 89). The following section
describes major players in epigenetic regulation and key
components of the epigenetic machinery.

Components of the epigenetic machinery

The components of the epigenetic machinery are DNA
methylation, histone modifications, noncoding RNAs, se-
lected nonhistone proteins, and imprinting (38, 89). The most
studied component is methylation. A brief description of each
epigenetic component follows.

FIG. 1. Factors contributing to carcino-
genesis. Both genetic and epigenetic reg-
ulation of gene expression contributes in
cancer development. Factors mentioned
here may work independently or in
combination. Some factors affect DNA,
whereas others affect proteins and nucleic
acids simultaneously. (To see this illus-
tration in color the reader is referred to
the web version of this article at www
.liebertonline.com/ars).

FIG. 2. Natural food com-
ponents with epigenome-
altering properties. (To see
this illustration in color the
reader is referred to the web
version of this article at www
.liebertonline.com/ars).
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DNA methylation. DNA methylation involves chemical
modifications to the cytosine base in DNA (also called 5-
methylcytosine), predominantly in the context of a cytosine-
guanine (CpG) dinucleotide (5, 40, 41). Other forms have been
identified recently, such as 5¢-hydroxymethylcytosine, al-
though the biological significance of this mark has yet to be
determined. Approximately 60% of human genes contain a
high density of CpG dinucleotides, known as CpG islands.
The current dogma describes DNA methylation at the pro-
moter of a gene as a sign of silenced gene expression. It has
become apparent over more than a decade that promoter
DNA hypermethylation is one of the most common somatic
aberrations in cancer development. Animal models that pro-
duce characteristics of liver cancer by altering dietary com-
ponents without using any mutagen or radiation exposure are
well established for studying epigenetic influences on liver
cancer (49, 62, 63). Dietary selenium also has been shown to
affect methylation levels in animal models of cancer (14, 15).
DNA was hypomethylated in the liver and colon of animals
fed a selenium-deficient diet. These studies demonstrated that
the quantity of food components and timing of feeding are
both equally important.

Histone modifications. Mammalian DNA is packaged
into chromosomes by wrapping the DNA around nucleo-
somes made up of an octamer of histone proteins. Each of the
different histone types has N-terminal protein tails that ex-
tend outside of the nucleosome and can be modified by sev-
eral large families of enzymes (81). Different histone
modifications (e.g., acetylation, biotinylation, methylation,
phosphorylation, and sumoylation) mark either active (eu-
chromatin) or inactive (heterochromatin) chromatin and de-
fine the chromosomal structure and gene expression state of
the genes within that chromosomal domain. For example,
H3K4me3 has been associated with active transcription,
whereas H3K9me3 has been associated with gene repression.
The dimeric H3 and H4 form a tetramer, whereas H2A and

H2B remain as a dimer. It has been observed that specific
histone modifications, namely global loss of acetylation of
K16 and trimethylation of K20 of histone H4, are hallmarks of
human cancers (22). In addition, the level of histone modifi-
cations has been associated with tumor size. More specifically,
low levels of H4R3me2, H3K9ac, and H4K16ac were associ-
ated with large tumor size and vascular invasion (H4K16ac)
(19). Reduced levels of histone modifications such as lysine
acetylation (H3K9ac, H3K18ac, and H4K12ac), lysine meth-
ylation (H3K4me2 and H4K20me3), and arginine methylation
(H4R3me2) were associated with tumors with a poor prog-
nosis, for example, basal-like tumors and HER-2-positive tu-
mors. Different histone modifications and their functions are
shown in Figure 3.

miRNA profiling. Epigenetic regulation by RNA-based
mechanisms can occur at both the posttranscriptional level
and at the level of chromatin. These mechanisms are mediated
by small noncoding RNAs, which can induce DNA methyl-
ation or histone modifications that result in silenced or en-
hanced gene expression. Posttranscriptional regulation of
gene expression by miRNAs also serves as an important ele-
ment of the epigenome (8, 25). The involvement of miRNAs in
cancer is seen in their essential role of tumor cell differentia-
tion and tumor development. For example, miR-21 was
shown to be upregulated in glioblastoma (GBM), impacting
the expression of downstream targets such as p53, TGF-b,
TIMP3, and PTEN. Another miRNA upregulated in GBM is
miR-26a, which is involved in GBM development and pro-
liferation. Downregulated miRs include miR-124, a cell cycle
regulator and neuronal differentiator; miR-128, a glioma-
proliferation inhibitor; and miR-451, an invasion inhibitor.
High-throughput technologies are used to follow miRNA
profiling in clinical samples.

Chromatin structure. Chromatin, which is composed of
nucleosomes, is the key component of epigenome. Nucleosomes

FIG. 3. Histone modifica-
tions and their functions. (To
see this illustration in color
the reader is referred to the
web version of this article at
www.liebertonline.com/ars).
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are comprised of histone proteins arranged as octamers associ-
ated with 146 bp of DNA via its negatively charged phosphate
backbone. The compressed and relaxed state of chromatin affects
gene expression.

Imprinting. Paternal and maternal alleles are regulated
differently by imprinting. The most studied gene is IGF2 (13,
31). This gene is expressed from the paternal allele and is
located within a cluster of imprinted genes on chromosome
11p15. Hypomethylation at a differentially methylated region
of IGF2, differentially methylated region 0, is associated with
IGF2 loss of imprinting in Wilm’s tumor. The maternal allele
also is unmethylated in this tumor. As a result, biallelic ex-
pression is observed (85).

PcG proteins. The chromatin-associated PcG proteins are
needed for accurate axial body patterning during embryonic
development (33, 47). PcG proteins silence genes by epigenetic
mechanisms (26, 60). The Hox gene has been studied exten-
sively. PcG proteins maintain the silent state of developmen-
tally important genes. The role of miRNAs in targeting PcG
proteins to chromatin also has been proposed (69). Few PcG
proteins are expressed abnormally in different tumors (47).

Repetitive regions, such as LINE and Alu, are hy-
permethylated in the normal state and hypomethylated during
growth and development. This process prevents chromosomal
instability, translocation, and gene disruption caused by the
activation of transposons (2, 20).

Models in nutritional epigenetics:
folic acid deficiency and cancer

Folate, a cofactor, acts as a carrier of the methyl group and
is involved in the generation of S-adenosyl methionine (SAM).
In turn, SAM becomes the primary donor of methyl groups
for the hypermethylation of genes. Furthermore, dietary fac-
tors (e.g., vitamin B6, vitamin B12, and Zn) that feed into the
folate cycle have an effect on methyl group availability (66,
67). In animal models, choline or methionine restriction dur-
ing pregnancy results in hypomethylation of genes involved
in brain development (37, 87). Models have been used to
follow disease development as a result of over- or undernu-
trition in utero. For example, vascular disease was developed
in rats for two generations when mothers were undernour-
ished (1).

Interaction of bioactive food components
with epigenetic components

Dietary polyphenols from green tea, turmeric, soybeans,
broccoli, and other natural resources have multiple cell-
regulatory activities within cancer cells (32). Some dietary
polyphenols may exert their chemopreventive effects in part by
modulating various components of the epigenetic machinery in
humans. The major compound in green tea is catechins, which
include ( - )-epicatechin (EC), ( - )-epicatechin-3-gallate (ECG),
( - )-epigallocatechin (EGC), and ( - )-epigallocatechin-3-gallate
(EGCG). EGCG has been identified as the most effective con-
stituent among all tea bioactive food components. EGCG in-
duces apoptosis and cell cycle arrest in many cancer cells.
Another mechanism by which EGCG acts is the inhibition of
DNA Methyl Transferase 1 (DNMT1), leading to demethyla-
tion and reactivation of methylation-silenced genes. Treatment

of human esophageal cells with EGCG has been shown to re-
duce DNMT1 activity via hypomethylation and re-expression
of genes such as p16, retinoic acid receptor b (RARb), O6-me-
thylguanine methyltransferase (MGMT), and human mutL
homologue 1 (hMLH1). In addition, it has been reported that
consumption of polyphenols could lead to a decrease in
available SAM and an increase in S-adenosyl-L-homocysteine
and homocysteine levels, which may affect methylation pat-
terns (14, 55). Few dietary components have been characterized
in terms of their involvement via epigenetic regulation and are
shown in Figure 4.

Dietary polyphenols and modulation/intervention of epi-
genetic changes associated with cancer. Tea is the second
most consumed beverage worldwide, and tea polyphenols
can regulate gene expression by epigenetic mechanisms. The
most common compounds in tea are catechins, including ( - )-
(EC), ( - )-ECG, ( - )-EGC, and ( - )-EGCG. Among these cat-
echins, EGCG accounts for one-half of the polyphenols in
green tea (55) that have DNMT1-inhibitory properties. This
results in the demethylation of silenced genes and prevention
of cancer.

Sirtuins and epigenetic changes. Sirtuins are a group of
proteins found in humans that have deacetylase properties
(23). In addition, sirtuins are a family of nicotinamide adenine
dinucleotide (NAD + )–dependent deacetylases, and they
have monoribosyltransferase activity. Sirtuins affect aging,
transcription, apoptosis, energy efficiency, and alertness dur-
ing caloric restriction and stress resistance (43, 65). Seven types
of sirtuins have been reported to date (SIRT-1 through SIR-7),
and they are localized either in the nucleus or mitochondria.
Resveratrol, a potential activator of SIRT-1, is present in plants
and has anticancer, antiinflammatory, blood sugar–lowering,
and other beneficial cardiovascular effects (3, 75).

One-carbon metabolism. Folate is a water-soluble B vita-
min and, in its synthetic form, is called folic acid (74). A number
of fortified foods contain folic acid. Its cancer prevention prop-
erties have been observed in different cancers, especially colo-
rectal cancer, if a balanced amount of folic acid is consumed (6,
17, 18). Folates, present in high concentrations in green leafy
vegetables, maintain DNA stability through their ability to do-
nate one-carbon units for cellular metabolism. Mammals cannot
synthesize folate de novo; therefore, they get it either from natural
foods (green leafy vegetables), supplemented foods, or from
microbial breakdown during digestion (35). The methionine
cycle starts from 5-methyltetrahydrofolate, which remethylates
homocysteine to methionine. In the next step, methionine is
metabolized to SAM, which controls transcription and protein
expression due to its ability to methylate cytosine in DNA. Folate
deficiency may contribute to carcinogenesis by altering the
processes just described. Mitochondrial DNA stability and mi-
tochondrial functions also are affected by dietary folate status
(7, 11, 82).

Early exposure and cancer risk (maternal nutrition
and placental development)

Genetic susceptibility, environmental factors, age, and mi-
croenvironment all play a significant role in the development
of cancer. Fewer studies have been conducted on the effects of
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these factors on the risk of cancer for pregnant women and
fetuses. When mother is exposed to adverse conditions, the
fetal nutrition may cause alterations in structure, physiology,
and metabolism that predispose individuals to metabolic,
endocrine, and cardiovascular diseases as adults. Because of
the ethical issues involved, most of these studies have been
observational studies only.

Selected dietary components consumed during early
pregnancy may influence postnatal risk of cancer develop-
ment, although all dietary components are not harmful (32,
35). In those cases where adverse effects on fetal development
were observed, a proposed mechanism includes methylation
of genes due to dietary food components in the mother’s diet
(14) (Fig. 5). Both hypermethylation and hypomethylation of
selected genes were observed. Genes that were overexpressed
included Klf6, Klf9, Nid2, Ntn4, Per1, and Txnip, and genes that
were repressed included Bcar3, Cldn12, Csf1, Jag1, Lgals3,
Lypd3, Nme1, Ptges2, Ptgs1, and Smarcb1. In animal models,
deficiencies of macronutrients during placental growth have
been shown to affect fetal growth (58, 68). Most of the genes
that contribute to reduced fetal growth are regulated by im-
printing, and the maternal allele is affected in these cases.
Functionally, the nutrient transport from mother to fetus via
the placenta is affected dramatically by the hypomethylation
of genes in the embryonic trophectoderm. Note that under-
nutrition due to a limited food supply, severe nausea and
vomiting, early or closely spaced pregnancies, multiple

pregnancies, and placental dysfunction is quite common in
some populations (48).

Examples of nutritional epigenetics and cancer
(nutritional intervention and epigenetic mechanisms)

Most of the clinical samples used for assessing the risk of and
diagnosing cancer are from either blood or tissues, making it
convenient to identify peripheral blood-based biomarkers for
disease risk and prognosis. Researchers should make use of the
many peripheral blood resource collections from around the
world that have sample sizes that are appropriate for these
types of investigation (46). Several studies have provided evi-
dence for epigenetic traits in blood as potential cancer risk
markers (45). As a first step to understanding the normal pattern
of DNA methylation, a comprehensive map was constructed on
a single Asian individual, at single base pair resolution using the
latest high-throughput sequencing-based approaches (47). Be-
cause this was done for the first time on a human genome se-
quence, it can serve as a first reference. However, the mapping
of many more individuals will be needed to provide a com-
prehensive map of normal epigenetic variation with which to
compare cancer-specific epigenetic traits.

Epigenetic inhibitors from natural products

Several natural nutrient products have interesting biologi-
cal properties and structural diversity; such products often are

FIG. 4. Dietary components and their interaction with epigenetic regulation. The top part of the figure shows different
components that have been reported to interact with epigenetic components. At the bottom part of the figure, major
epigenetic components are shown. (To see this illustration in color the reader is referred to the web version of this article at
www.liebertonline.com/ars).
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leading drug candidates for the treatment of cancer and other
diseases. Epigenetic inhibitors (and activators of different
steps) and their natural sources are described here. Parsley’s
apigenin is a DNMT inhibitor; ginger’s allyl mercaptan is an
Histone De-Acetylase (HDAC) inhibitor; turmeric’s curcumin
is a DNMT, HAT, and HDAC inhibitor; green tea’s EGCG is a
Histone Acetyl Transferase (HAT) and DNMT inhibitor; the
soybean’s genistein is a DNMT and HDAC inhibitor and an
HDAC activator; lycopene, from tomatoes, is a demethylase;
resveratrol, from grapes, is a DNMT inhibitor and an SIRT-1
activator; milk thistle’s silymarin is an SIRI1 activator; and
sulforaphane from cruciferous vegetables is an HDAC and
DNMT1 inhibitor (14). Zeste homolog 2 gene, EZH2, is over-
expressed in different cancers including breast cancer, and PcG
protein levels can influence EZH2 activity. Recently, Dimri et al.
(16) demonstrated that dietary omega-3 polyunsaturated fatty
acids can regulate EZH2 expression in breast cancer by re-
ducing the levels of PcG proteins by posttranslational modifi-
cations. Note that histone modifications triggered by Polycomb
repressor complex signaling play an important role during
embryonic stem cell differentiation; alterations in normal pat-
terns may contribute to different diseases.

Policies for determining nutrition supplement levels
and implementing potential cancer prevention
and therapy techniques

In nutritional epigenetics, the duration of exposure to bio-
active food components should demonstrate a physiologically
relevant change in a molecular target involved with cancer
prevention. Investigators routinely use high-throughput
screening technologies such as microarray analyses to exam-
ine the global effects of bioactive food components on gene
expression patterns. These studies include the impact of
super-nutritional exposures and their effects on growth or
apoptosis. It is important to note, however, that blood levels
of bioactive food components do not accurately reflect tissue
concentrations, and research designs should employ concen-
trations that coincide with levels that reach the target tissue
through dietary means without producing negative conse-
quences. In other words, it is critical that proposed studies

employ dietary rather than pharmacological concentrations of
bioactive components.

A number of articles have been written about DNMT and
HDAC inhibitors and their implications for cancer preven-
tion and therapy (50, 53, 57). A few natural edible plant
products have been shown to be capable of inhibiting
DNMTs or HDACs (24, 51). When these nutrients are sup-
plemented in the human diet, they may activate oncogenes.
Due to the lack of specificity of these inhibitors, care should
be taken in planning such trials (42). Regulatory agencies
such as the U.S. Food and Drug Administration evaluate
such data and provide policies and guidelines for the use of
dietary products.

Challenges and potential solutions in nutrient
measurement technologies

Current dietary assessment methods and systems depend
largely on time- and resource-intensive self-reporting and
recall methods. When diet is assessed via self-reporting, the
cognitive challenges involved in recalling and reporting
quantities, types, and preparation of foods eaten often com-
promise assessment accuracy. Dietary assessment methods
that do not rely solely on self-reporting and recall could en-
hance the accuracy and efficiency of dietary intake data col-
lection and contribute to an improved understanding of the
diet–disease relationship. Technologic and analytic advances
during the past decade have led to the development of more
objective methods for assessing dietary intake. Leading ex-
amples include sophisticated dietary image or short video
capture devices that maybe housed on a mobile phone plat-
form and paired with speech recognition, text interface, and/
or geospatial location. With the advent of electronic medical
records and focus on the epidemic of obesity and related co-
morbidities, clinicians, researchers, and practitioners in-
creasingly are interested in using objective measures to
monitor patient/participant behavior as a tool for chronic
disease prevention and management and health research.

The development of an easily deployable architecture for
image-based dietary data transfer, storage, analysis, and re-
porting will support the potential to increase our

FIG. 5. Cancer risk due to maternal
diet. (To see this illustration in color the
reader is referred to the web version of
this article at www.liebertonline.com/
ars).
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understanding of the relationship between diet and cancer
risk. Software systems capable of managing and analyzing the
rich media collected by mobile sensors currently are limited,
however. The complexity of data management and analysis
needed to provide image-based measures of dietary intake
presents a significant barrier to the integration of these mea-
sures into clinical practice and trials, epidemiological re-
search, and behavioral monitoring applications. To overcome
current barriers and facilitate the integration of image-based
dietary measures into applications including electronic med-
ical records and other health information systems, research
should be conducted with a focus on developing an easily
deployable architecture for data collection, transfer, storage,
analysis, and reporting of dietary intake. Specific topics for
further research may include development of (i) a mobile
application to facilitate and control the collection and transfer
of dietary images or video and any associated information
such as annotations, probes, or geospatial location; (ii) a
standardized dietary-rich media database architecture and
procedures to import and store data transferred from the
mobile application; (iii) transparent and modifiable analytic
tools that can incorporate existing and evolving methods to
generate individual- and group-level dietary intake measures
from dietary images and associated data; and (iv) reporting
systems to communicate outputs to patients/subjects, elec-
tronic medical records, health surveillance systems, and/or
researchers.

Data processing applications and analytic tools maybe
derived from established methods for dietary imaging analysis
and common practices. Automated food item identification,
quantity estimation, and consumed volume reconstruction can
be achieved based on pre- and postmeal videos, digital images,
and photos. Links should be created to established nutrient
databases, such as the U.S. Department of Agriculture’s
(USDA) Food and Nutrient Database for Dietary Studies, US-
DA’s MyPyramid Equivalents Database, Global Positioning
System, and the Gladson Nutrition Database. Furthermore,
data linkages should be established and validated within the
Dietary Intake Summary Database. This will facilitate the
identification of individual-level data characteristics on a per
meal, daily, and/or weekly basis.

The Current Landscape and Perspectives,
and Where Do We Go from Here?

Cancer has been associated with inherited genetic se-
quences but also results from epigenetic changes. Topics for
future research in this area include validation of current pu-
tative diet-related surrogate endpoints, development of novel
endpoints, and incorporation and integration of information
from epigenomics and genomics.

Epigenetic alterations in tumor suppressor genes and in
genes that are involved in controlling cell proliferation, DNA
repair and metastasis, and hormone-receptor expression have
been shown to play a role in tumor causation and progression.
Dietary components also contribute to these processes. This
information has implications for cancer epidemiology. The
prevalence of epigenetic alterations may provide a basis for
understanding the unequal cancer burden in early onset dis-
ease, disease aggressiveness, and the poor outcomes observed
in various racial and ethnic populations. Identifying these
differences in epigenetic processes in various diverse popu-

lations may enable the development of epigenetic biomarkers
of cancer risk and the design of more effective therapeutic
interventions. Epigenetic research has the potential to en-
hance our understanding of the determinants of the cancer
burden among diverse populations and, ultimately, for re-
ducing cancer health disparities.

Research in nutritional epigenetics may help to answer
questions such as how bioactive food components regulate
epigenetic events in different diseases; how bioactive food
components alter epigenetic patterns and restore gene func-
tion; how these components circumvent and compensate for
pathways that are altered during disease development; how
gene-specific epigenetic inhibitors can be developed; how
temporality in the epigenetic profile caused by bioactive food
components can be measured; and how epigenomic and ge-
nomic data can be integrated to develop personalized medi-
cine approaches.

Other challenges include the large number of input vari-
ables, relatively few intermediate markers and measure-
ments, limited outcome measurements, lack of in silico
models, and the dynamic nature of nutrients. Single-pathway
approaches should be expanded to a genome-wide approach
to measure epigenetic changes (45). Another aspect that at-
tracts attention is variation in food processing and prepara-
tion techniques, which also contributes to differences in the
bioactivities of food components.

Dietary recommendations at the population level will
continue to be made, but customized dietary recommenda-
tions at the individual level are the expectation for the future.
Combined efforts including changes in lifestyle (exercise),
controlled and selective nutrition, and epigenetic drugs could
bring about the reversal of diseases or at least slow down
disease processes and enhance survival. Our current knowl-
edge of the human epigenome and genome with respect to
dietary components may make this possible.
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