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Abstract

Allogeneic hematopoietic cell transplantation (HCT) has been employed for 40 years to ameliorate
or cure primary immune deficiency (PID) diseases, including severe combined immune deficiency
(SCID) and non-SCID PID. There is a critical need for evaluation of the North American
experience of different HCT approaches for these diseases, in order to identify best practices and
plan future investigative clinical trials. A conference of experts in HCT treatment of PID has
recommended: (1) a comprehensive cross-sectional and retrospective analysis of HCT survivors
with SCID; (2) a prospective study of SCID patients receiving HCT, with comparable baseline and
follow-up testing across participating centers; (3) a pilot study of newborn screening for SCID to
identify affected infants prior to compromise by infection; and (4) for the non-SCID diseases,
Wiskott-Aldrich syndrome and Chronic Granulomatous Disease, studies of the natural history of
disease in patients who do or do not receive HCT. To accomplish these goals, collaboration by a
consortium of institutions in North America is proposed. Participation of immunologists and HCT
physicians having interest in PID and experts in laboratory methods, clinical outcomes
assessment, databases and analysis will be required for the success of these studies.
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Introduction

The objectives of this 1.5 day workshop were to review the current North American
experience in hematopoietic cell transplantation (HCT) for primary immune deficiency
(PID) diseases, identify critical needs, and propose and prioritize future clinical studies.
Because individual PIDs are rare, no single institution is capable of determining optimal
treatment approaches. A comparative evaluation of the current treatments with regard to
risks, benefits and key outcomes is needed to serve as a basis for future research, including
prospective multi-center clinical trials. An interactive partnership of immunologists and
HCT physicians with a special interest in PID and experts in immunology laboratory
methods, clinical outcomes assessment, databases and analysis will be critical to success as
we take advantage of opportunities offered for treatment of these rare and uniquely
challenging patients.

PIDs are rare, monogenic disorders of cellular and humoral immunity. A subgroup of PIDs
with defects in lymphocytes or granulocytes can be cured by HCT, and this subgroup was
the focus of the workshop. Severe Combined Immunodeficiency (SCID), with over 14
distinct genetic variants (Table 1) and an estimated incidence of 1/50,000 to 1/100,000
births, includes a spectrum of genetic disorders of the immune system that render affected
patients incapable of mounting antigen-specific T or B cell immune responses against
exogenous pathogens.! The related “Combined Immunodeficiencies” (CID) are partially
permissive for T-cell development, because they affect later stages in T-cell development
(e.g., ZAP-70 deficiency), or are due to hypomorphic mutations. Without treatment to
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provide effective lymphocyte immunity, children afflicted with SCID rarely survive the first
year of life.

There are also several non-SCID PIDs that are correctable by HCT. Examples include
Wiskott-Aldrich Syndrome (WAS), Chronic Granulomatous Disease (CGD), Hyper IgM
Syndrome, Chediak-Higashi Disease (CHD), Familial Hemophagocytic Lymphohistocytosis
(HLH), X-linked Lymphoproliferative Disease (XLP), and others. The workshop focused on
two conditions having substantial HCT experience, WAS and CGD. In WAS,2 an X-linked
disorder with an estimated incidence of 1/250,000 live male births, a spectrum of mutations
in the Wiskott-Aldrich Syndrome Protein (W/ASP) gene gives rise to phenotypes affecting
all hematopoietic lineages. CGD,3 with one X-linked and three autosomal recessive
genotypes, has an estimated overall incidence of 1/250,000 births. Genes mutated in CGD
affect subunits of NADPH oxidase complex, which catalyzes the “respiratory burst” in all
myeloid cells. Thus, affected individuals are at risk for severe and persistent infections. X-
linked CGD may have a worse prognosis, and complete defects are more severe than partial
defects.

Allogeneic HCT as curative therapy for SCID

Allogeneic HCT can ameliorate or cure patients with life-threatening PID.# Patients with
PID were among the first to receive successful HCT 40 years ago.>6 SCID is unique in that
patients completely lacking T cell immunity do not require immunosuppressive
chemotherapy prior to allogeneic HCT to achieve engraftment, especially when HLA
matched, related donors are available (Table 2). HLA-matched related marrow grafts are the
treatment of choice for all variants of SCID, however, 75-80% of patients lack such a donor.
Transplant of HLA haplotype disparate parental marrow depleted of T-cells using soy bean
agglutinin (SBA) / sheep red blood cells (SRBC), with engraftment and reconstitution of
both T and B cell function without GVHD, was demonstrated in children with SCID in
19837 and successfully reproduced in other centers.8-11 Other approaches for processing
haplotype disparate donor hematopoietic cells, which have subsequently been developed
include depletion of lymphoid cells with monoclonal antibodies and CD34 positive selection
using either the Isolex or Miltenyi CliniMacs systems.12-14 Qutcomes of HCT for SCID
have improved over the years,15-18 and matched unrelated donors?? including umbilical cord
blood20 have been used to successfully treat patients with SCID. Chemotherapy may be
needed to ensure engraftment when alternative donors are used, raising concerns about both
short term toxicity and long term effects on growth and development in these highly
susceptible infants.2122 Also, most children with SCID present with severe infections that
raise the risk of treatment with high dose chemotherapy.

HCT treatment for SCID is not uniform, as transplant centers have developed their own
protocols based on training and experience of local HCT clinicians. Without a consensus on
the optimal approaches, the choice of donor when an HLA matched sibling is unavailable is
influenced by the center’s preferences and access to technologies for stem cell enrichment
and/or T cell depletion. Issues of pre-HCT conditioning, choice of donor when an HLA
matched sibling is not available, and clinical condition at the time of transplant all need to be
addressed in formal multi-center studies (Table 2).

Key questions in HCT for SCID

1. How are the extent and durability of T, B and NK cell lineage-specific
reconstitution and function post-HCT affected by the transplant regimen/strategy
utilized? Is full donor chimerism?3 needed? When no pre-HCT conditioning is
used, for example, in the event an HLA-matched sibling donor is available, most
recipients will have T, but not B cell reconstitution, except for patients with
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intrinsically normal B cells, as in interleukin-7 receptor (IL7R) defects. In contrast,
when myeloablative chemotherapy is used multilineage engraftment is likely, even
with an alternative donor, although this raises questions regarding early and late
toxic effects.

To minimize toxic effects, yet achieve full and durable immune reconstitution,
what are the best transplant strategies? For very young infants, can an approach be
developed that doesn’t involve conditioning, to be followed if necessary two to
three years later with a booster HCT from the same donor, possibly using
conditioning?24 Are there alternative approaches to achieving immune
reconstitution that do not involve toxic chemotherapy, e.g. lymphoid- and/or
myeloid-depleting monoclonal antibodies?

What is the overall survival and long-term clinical status of patients with SCID
treated by HCT in North America? Comparison of long term health and organ-
specific function of patients with different types of SCID who have received HCT
using different approaches is needed. Evaluation of long term outcome should
include neuropsychological maturation and function and the growth and function of
drug sensitive organs such as the lungs, teeth, liver, brain, and kidneys. In addition,
assessment of long term risks associated with specific transplant strategies for late
recurrence of immune deficiency, development of autoimmune diseases?® or
development of specific chronic infections or malignancies is essential.

How do the specific SCID genotypes affect transplant outcomes including
engraftment, sustained thymopoiesis, and the function of B cell and NK cell
populations? The genotype and phenotype of the child with SCID likely plays a
critical role in HCT outcome and should influence the particular approach.26 The
genotype of SCID and its effects on lymphoid development may affect transplant
outcome by contributing to graft resistance, limiting lineage specific chimerism,
and causing functional deficits in specific components of the immune system (e.g,
humoral immunity, and/or NK cell function).

What is the significance of the recipient’s residual T-cell immunity prior to HCT,
as observed in patients with CID, and how does this impact selection of an optimal
donor, conditioning regimen, and graft manipulation?

When the donor graft is T-cell depleted, what is the relation of the method used,
source of cells and extent of T-cell depletion on post-transplant GVHD (with or
without GVHD prophylaxis)?

If an HLA-matched related graft is unavailable, can we develop an algorithm to
identify next-best graft source and HCT regimen for patients with SCID? Such an
algorithm would need to encompass the issues discussed above.

Patients transplanted for SCID, particularly those who have received HLA-
haplotype disparate T-cell depleted grafts, constitute a unique clinical model for
examining interactions between donor and host cells that shape the immune
repertoire and contribute to tolerance. SCID children transplanted without receiving
myeloablative conditioning maintain a state of mixed chimerism in which T-cells
are of donor origin while other hematopoietic elements, including antigen-
presenting cells of myeloid lineages and in some patients also B cells are of host
type. How does this ultimately affect durable immune reconstitution and can the
large number of surviving SCID patients be studied to answer these questions?

For long term SCID survivors who received treatments other than transplantation, a
similar retrospective analysis and comprehensive evaluation of lymphoid
populations and their function is also urgently needed. Examples include the use of
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PEG-ADA enzyme replacement therapy for the treatment of ADA deficient SCID,
and the current status of gene therapy applied to ADA deficient SCID.

10. What is the role of HCT vs. gene therapy for a specific gene defect, if available?
Gene therapy may provide an alternative to allogeneic HCT that avoids
immunological complications because it is an autologous HCT. Clear-cut successes
for gene therapy of ADA-deficient SCID and X-linked SCID demonstrate proof of
efficacy, but complications from insertional oncogenesis in 25% of XSCID patients
demonstrates potential novel toxicities that need to be better understood and
reduced by further preclinical research. Unlike allogeneic HCT where a single
approach may be used for different genotypes of SCID or other PID, gene therapy
will require a dedicated program for each specific genetic etiology. Implementation
of their concept means that the replacement of genes for IL-2Ryc chain deficiency
and adenosine deaminase deficiency, for example, will require separate and distinct
gene constructs, more of a personalized medicine approach requiring specialized
research teams.

Newborn screening for SCID

Children with SCID develop infections by 3 to 4 months of life and do not survive past
infancy unless they receive immune-reconstituting treatment, such as HCT or enzyme
replacement with PEG-ADA. Those diagnosed with SCID immediately after birth, before
developing infections, have the best chance of survival and have fewer medical
complications after HCT as compared to SCID infants who are infected prior to diagnosis.
Viral infections are particularly devastating to infants with SCID. To better recognize SCID
before onset of infections, however, requires universal screening of newborns. An assay for
T cell lymphocytopenia has been developed that is based on quantitating T-cell receptor
excision circles (TRECs) in DNA extracted from dried blood spots.27-28 TRECs are present
in newly formed T cells, but essentially absent in the blood of infants with SCID, in whom T
cell maturation is impaired.

Pilot clinical trials are needed to establish feasibility of prospective, population-based
screening for diagnosis of SCID. A successful newborn screening program requires a
sensitive and specific test, but also must have mechanisms for following up abnormal
results, promptly arriving at a definitive diagnosis and providing effective treatment. The
State of Wisconsin is currently conducting one such trial, but a trial in a population with a
high incidence of SCID would be the most efficient means to demonstrate clinical utility of
SCID screening. Athabascan-speaking Navajo and Apache Indians have a DCLREIC
(Artemis) gene founder mutation that causes radiation sensitive SCID.2° Around 1/2000
Navajo births is affected with SCID, an incidence at least 20-fold higher than that of the
general population. Thus, there would be a high likelihood of finding SCID in a trial of
limited size among Navajo Indians. Outreach and referral for HCT are in place, making the
Navajo Reservation a promising setting for a clinical trial of SCID newborn screening.

Allogeneic HCT as curative therapy for non-SCID PID

Supportive measures, such as life-long prophylaxis with immunoglobulin and antimicrobials
and aggressive management of infections, have been the traditional treatment of non-SCID
P1Ds.39-32 However, premature mortality despite such treatment has led to utilization of
HCT, which can be curative. HCT for these disorders share a requirement for both T cell
immunosuppression and at least some degree of myeloablation (Table 2). Although risks of
HCT with other than HLA-matched related donors are high, recent advances in HCT
technology have improved this mode of treatment, even as the long term morbidities have
become increasingly clear. For example, most patients undergoing BMT for WAS

J Allergy Clin Immunol. Author manuscript; available in PMC 2012 May 21.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Griffith et al.

Page 6

worldwide have been pre-conditioned with a protocol designed to be myeloablative,
consisting of busulfan, cytoxan and ATG.32 Despite this, a fraction (less than 10%) reject
their first transplant, and many (20-30%) patients are long term mixed chimeras. Perhaps
differences in busulfan pharmacokinetics in children as compared to adults are a factor.34
Older patients with more co-morbidities, who have received transplants from unrelated
donors, have had poorer survival post HCT than younger, healthier patients. A recent
retrospective study in Europe revealed significant rates of late post-HCT complications in
WAS patients, including autoimmune conditions, neuropsychological impairments and late
septic deaths in patients who had received splenectomy prior to HCT3% No similar studies
have been performed in North America. For CGD, only a minority of patients, most of
whom are children with life-threatening infections, currently receive HCT.36-38

Key questions in HCT for non-SCID, represented by WAS and CGD

1. How does immune function compare for age-matched WAS patients who have or
have not received HCT?

2. How do the specific gene mutation, age, disease manifestations and prior
treatments (such as splenectomy) influence risk vs. benefit of HCT for WAS?

3. Does attaining full donor lymphoid and myeloid chimerism reduce the risk of post-
HCT autoimmune and inflammatory complications for WAS?

4. What degree of donor chimerism in the myeloid compartment is required for
clinical cure of CGD?

5. For CGD, does the burden of infectious and inflammatory manifestations relate to
the biochemical consequences of the underlying genotype?

6. Based on an individual CGD patient’s biochemical profile and clinical course, is it
possible to develop guidelines as to those patients most likely to benefit from HCT?

7. Do the recent advances in HCT regimens, such as high resolution HLA matching
for unrelated donor selection,3® and the newer reduced-intensity and non-
myeloablative conditioning regimens? offer possible advantages for patients with
PID? Future investigations in the context of clinical trials are needed.

Feasibility — survey of current North American practice base

To assess feasibility of prospective studies, and to ascertain previous experience with HCT
in SCID and non-SCID disorders, the group surveyed the number and type of PID cases
diagnosed and treated per year in the United States and Canada. Responses from 34 sites
(including Center for International Blood and Marrow Transplant Research (CIBMTR)
centers, Pediatric Blood and Marrow Transplant Consortium (PBMTC) centers, and other
known HCT centers) were obtained and analyzed. An estimate of new patients seen per year
is as follows: SCID (overall), 50-60; WAS: 20-30; CGD: 10-20; HLH: 10-20; other non-
SCID: 15-20. Nearly 750 children with SCID have been transplanted, and over 500 are
alive. Among 250 patients with WAS who received HCT, nearly 200 are alive; similarly, 46
of the 59 patients transplanted for CGD are alive. Today, there is a broad distribution of
HCT sites that treat patients with PID, well beyond the few centers where HCT methods for
PID were initially developed. Patients are evenly distributed among centers reporting 1-5,
6-10, 11-25, 26-50, and >50 patients per center, for the SCID and non-SCID groups
combined. Therefore, for studies to be comprehensive and meaningful, a broad collaboration
encompassing both large and small centers will be needed.

J Allergy Clin Immunol. Author manuscript; available in PMC 2012 May 21.
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Laboratory evaluations core

The group proposed a common set of laboratory studies be performed on all PID patients
post HCT. Table 3 represents a consensus as to minimum testing recommended and time
intervals for this testing such that all participating centers will be able to monitor their
patients. It is recognized that some centers will do additional testing and may also test more
frequently. Use of central laboratories and/or reference laboratories should be considered to
provide quality assurance for data generated. Key issues for multi-center clinical studies
include standardization of reagents and test methods to achieve comparability, costs and
logistical barriers to establishing centralized core labs, and funding for laboratory testing.

Regarding the minimum level of evaluation needed to establish a diagnosis of PID before
HCT, the above plus mutation diagnosis of specific disease genes was considered essential.
Core or reference laboratories could be utilized for molecular genetic testing, though these
tests are currently clinically indicated for genetic counseling and in some instances tailoring
the specific HCT.

Long term follow-up core, including need to validate QOL forms for PID

Databases

Adaptation of existing testing instruments and if necessary, developing new ones for
gathering information from individuals with SCID and non-SCID PIDs treated with HCT in
prospective and retrospective studies will permit assessment of the long-term benefits and
complications and quality of life. Two approaches will be key. First, enrollment of study
subjects in the CIBMTR and the US Immunodeficiency Network (USIDNET) databases (see
below) will be important. Data collection for diverse aspects at baseline and post-HCT is
provided by these databases. Existing longitudinal forms used by the CIBMTR and the
USIDNET have been newly revised to harmonize and optimize collection of data relevant to
HCT outcomes for PID patients. A comprehensive treatment history for each patient should
be obtained (Table 4). Second, age-appropriate validated instruments for determining the
quality of life for PID patients who have received HCT must be selected and administered.
Example instruments include the Pediatric Quality of Life (QOL) Inventory (both child and
parent versions available for various ages), the SF-36, and the Foundation for Accreditation
of Cellular Therapy (FACT) - BMT assessment tool.

Two databases relevant to PID clinical studies are available. First, the USIDNET, sponsored
by the NIH, is a voluntary registry of patients diagnosed with PID. Second, under the U. S.
Health Resources and Services Administration (HRSA) C. W. Bill Young Cell
Transplantation Program enacted by Congress in 2005, the CIBMTR collects and maintains
a standardized database of allogeneic transplants performed in the U.S. All U.S. transplant
centers are required to provide outcomes data to the new national Stem Cell Therapeutic
Outcomes Database. Centers in other countries are also encouraged to participate. Thus, all
allogeneic HCT performed for PID in the U.S. in future will be reported to the CIBMTR.
However, it is important that the data collection include valuable information on the
transplant procedure and pre- and post-HCT clinical and immunological status, so that
continuous monitoring of the efficacy of HCT vs. alternative forms of treatment can be
performed, and prospective clinical trials properly designed.

Harmonization of USIDNET and CIBMTR forms is both feasible and desirable. Each
database utilizes an extensive core form that includes clinical and laboratory information,
and several disease-specific forms. To maximize utility of the USIDNET and CIBMTR
databases for clinical research in PID, and coordinate activities with the European Stem Cell
Transplantation Immunodeficiency Registry (SCETIDE) registry, harmonization of forms
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and database procedures has been undertaken for SCID, WAS and CGD. The USIDNET and
CIBMTR core and disease-specific forms were compared. Because some patients may not
be entered into USIDNET and/or to CIBMTR databases, three simple forms were proposed:
a pre-HCT form, an HCT form, and a post-HCT follow-up form. These could also be used
for patients who receive alternative treatments, such as PEG-ADA or gene therapy. This
approach will be extended to other PIDs. Tools to protect the patient’s identity while
ensuring cross-reference between the USIDNET and CIBMTR databases will be required.

Summary, conclusions and recommendations

SCID

Non-SCID

The cumulative experience with transplants for SCID/CID in North America is sufficiently
robust and mature to permit a comprehensive retrospective analysis and constitute a valuable
resource which will provide a basis for developing prospective clinical trials. Similarly,
incident cases are adequate for collaborative multi-center prospective studies. To compare in
a meaningful way the extent and durability of recovery of cellular and humoral immunity
resulting from different HCT approaches, similar lineage-specific chimerism and
immunologic testing for all patients will be required. The following studies are proposed.

1.

A comprehensive cross-sectional and retrospective analysis of SCID HCT
survivors in North America to define immune reconstitution, late effects and
quality of life in long term survivors.

A prospective study of SCID patients who receive HCT, including baseline and
follow up testing, to compare patient outcomes across multiple participating
centers.

Recognizing the value of earlier diagnosis of SCID, allowing HCT to be performed
prior to onset of infectious complications, makes newborn screening a priority.
Effectiveness of newborn screening for SCID should be sought through pilot
programs; as soon as evidence-based SCID screening is available it should be
included in the public health programs of all states.

Starting with WAS and CGD as examples of non-SCID PIDs that may or may not be treated
with HCT, recommendations for study are as follows.

1.
2.

A descriptive cross sectional study of HCT outcomes for WAS in North America.

A long term retrospective follow-up study of WAS patients who have received
HCT, evaluating their clinical status, hematologic and immunologic status,
chimerism, and potential late effects of the transplantation procedure.

Identification of WAS and X-linked thrombocytopenia (XLT) patients who have
not received HCT, updating the description of their clinical, hematologic and
immunologic functional status as they have been followed over time.

For CGD, an understanding of the natural history of the disease in the current era is
needed along with a retrospective review of outcomes of HCT performed for CGD
since 2000.

A prospective longitudinal study of patients with CGD who receive an HCT
compared to age-matched patients with CGD of similar severity who were
managed medically.

Collaborative studies by a consortium of institutions in North America is the only way to
accomplish the investigations of long term survivors and newly diagnosed patients with PID
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needing HCT. Core resources for laboratory testing and databases, as described above, could
be shared across multiple clinical studies. Further, this group recommends that guidelines be
developed for diagnosis and management of PID prior to performing HCT. Guidelines for
the key issues to be addressed in determining the transplant approach for each individual
patient with immune deficiency disease are also needed.
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Abbreviations used

ADA
BMT
CD
CGD
CHD
CIBMTR
CID
DCLR
E-rosette
FACT
FOX
GVHD
HCT
HLA
HLH
HRSA
Ig

ILR
IVIG
JAK
LCK
LIG
MUD
NADPH
NIAID
NIH
NK
PBMTC
PEG-ADA
PHA
QOL
RAG
SBA

Adenosine deaminase

Bone marrow transplant

Cluster of differentiation

Chronic granulomatous disease

Chediak-Higashi disease

Center for International Blood and Marrow Transplant Research
Combined immune deficiency

DNA cross-link repair (gene)

(Sheep) erythroid rosette

Foundation for Accreditation of Cellular Therapy
Forkhead box

Graft-versus-host disease

Hematopoietic (stem) cell transplant

Human leukocyte antigen

Familial hemophagocytic lymphohistiocytosis

US Health Resources and Services Administration
Immunoglobulin

Interleukin receptor

Intravenous immunoglobulins

Janus kinase

Leukocyte-specific protein tyrosine kinase
(Deoxyribonucleic acid) ligase

Matched unrelated donor

Nicotine adenine dinucleotide phosphate

National Institute of Allergy and Infectious Diseases
National Institutes of Health

Natural killer (cell)

Pediatric Blood and Marrow Transplant Consortium
Polyethylene glycol adenosine deaminase
Phytohemagglutinin

Quality of life

Recombinase activating gene

Soy bean agglutinin
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SCETIDE European Stem Cell Transplantation Immunodeficiency Registry

SCI

D Severe combined immune deficiency

SRBC Sheep red blood cell(s)
TCR T-cell receptor
TREC T-cell receptor excision circles

uUslI

DNET United States Immunodeficiency Network

WAS Wiskott-Aldrich syndrome

WASP Wiskott-Aldrich syndrome protein
XLP X-linked lymphoproliferative disease
XLT X-linked thrombocytopenia

XSCID X-linked SCID

ZAP Zeta-chain-associated protein kinase
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Table 2

related with T cell
depletiona

Graft Patient subset Transplant Features and Current Challenges
HLA-matched: SCID No pre-HCT conditioning is needed to achieve T cell reconstitution. B cell reconstitution occurs in
genotypic related 25-30% of cases
depending in part on genotype; other factors are probably also important but not well defined.
Non-SCID Immunosuppression and myeloablation are generally required, similar to HCT for non-PID, non-
malignant
indications. Full donor chimerism may be needed for some disorders to fully correct disease
manifestations.
Reduced toxicity regimens with mixed chimerism may be effective for some non-SCID PID. Further
study is
required.
Haplocompatible SCID: B+NK- Without pre-HCT chemotherapy, donor T-cell engraftment is easily achieved, but donor B cells are

unlikely to

engraft and post-HCT B cell function may remain abnormal. Myeloablative chemotherapy increases
the likelihood

of both T and B cell reconstitution, but entails risks of short and long term sequelae especially in
young infants and

those presenting with severe infections. A haplocompatible related (parental) donor is readily
available.

SCID: B+/- NK+

Without pre-HCT immunosuppression, graft rejection may be increased unless maternal engraftment
is present and

the mother is used as the donor. With immunosuppression, T but not B cell immunity is likely to be
restored.

Myeloablation may yield more durable donor T-cell engraftment and an improved rate of donor B
cell engraftment,

but entails risks of short and long term sequelae especially in young infants and those presenting
with severe

infections.
Non-SCID Immunosuppression and myeloablative chemotherapy are required. Higher transplant related
mortality with the use
of haplocompatible donors and increasing availability of unrelated donor sources makes this option
less desirable.
Closely matched SCID Most HCT from unrelated donors use myeloablative conditioning regimens, which entail risks of
unrelated donor increased
(MUD) transplant related mortality and late effects. It remains to be determined if fully allele matched
unrelated donor HCT
can be successful without any conditioning. However, GVHD is a greater risk than with matched
related donors and
the search process can take weeks to months.
Non-SCID High resolution allele matched unrelated donors appear to compare favorably to matched related
donors, including
rate of engraftment and extent and durability of immune reconstitution. High dose chemotherapy is
required and
acute and chronic GVHD likely. Clinical trials to assess survival as well as other outcomes are
needed.
Unrelated cord SCID To date data are limited. High cell dose can usually be achieved and cells are readily available once
blood (CB) a unit isx
identified. High dose chemotherapy conditioning is usually given. Further studies are needed to
define optimal
conditioning regimens.
Non-SCID High dose chemotherapy is required. Risk of graft failure/rejection is 10-15%. Booster or second

transplants from
the same donor are not possible. Clinical trials to assess survival as well as other outcomes are
needed.

aT-cell depletion of the graft may be accomplished by selection of the soy bean agglutinin (SBA) negative, sheep erythroid (E) - rosette negative

fraction,7 or by use of the Isolex or Miltenyi CD34+ cell selection devices with or without negative depletion of CD3+ cells. 12-14 19 date, there
has been no formal comparison between the different processing regimens, which result in different cell populations being infused and may have

different outcomes.
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Baseline and Post-Transplant Laboratory Monitoring

Time interval of evaluation: baseline; post-transplant at 3 months + 2 weeks; 6 months + 4 weeks; 12 months + 4 weeks; years 2-5 post-
transplant every 12 months + 6 months; beyond five years post-transplantation every 3 years + 1 year after the first five years.

Recommended Studies

Quantitative
immunoglobulins

1gG, IgA, IgM with notation as to whether the patient is currently on IVIG and if so the
dose and date of last administration

Isoagglutinins

Anti-A and anti-B titers (include patient and donor blood type)

proliferation

Immunization Provide vaccine used, pre and post (include time following immunization) titers,
information regarding use of IVIG and if on IVIG replacement therapy,
provide timing of the pre and post titers relative to IVIG administration

Lymphocyte Mitogen

PHA: provide percent of normal response = the patient raw data cpm (or dpm) of
stimulated cells divided by the lowest cpm (or dpm) of the control (normal)
response established for the performing lab

Other mitogens including CD3 can be reported but are not essential

Antigen (if performed)

Tetanus: provide percent of normal response = the patient raw data cpm (or dpm) of
stimulated cells divided by the lowest cpm (or dpm) of the control (normal)
response established for the performing lab and date of last tetanus
immunization

Candida: provide percent of normal response = the patient raw data cpm (or dpm) of

stimulated cells divided by the lowest cpm (or dpm) of the control (normal) response

established for the performing lab

Flow cytometry

Testing for T cell and B cell surface antigens to be performed as follows;
recommended to be performed centrally

Surface antigens: The following should be evaluated at each interval and both percent
and absolute number should be reported: CD3, CD4, CD8, CD19 (or CD20),
CD3-/CD16/56

Naive T cells: CD4/CD45RA/CD45R0 and CD8/CD45RA/CD45RO as three color
studies reporting CD4+/CD45RA+ and CD8+/CD45RA+ (additional markers

CD62L and CCRY7)

for naive cells are not required but could be evaluated including CD27, CD31,

B cell subset: CD19/CD27/anti-IgD as a three color tube (report CD19+/CD27+/IgD+
and CD19+/CD27+/1gD-)

Thymopoiesis

TREC analysis: Guthrie card blood spot method will be performed centrally.

Chimerism T cell, B cell and myeloid chimerism should be performed at 12 months and the method
used should also be reported.
Genotyping All patients not previously genotyped should have a genetic diagnosis established.

Disease-specific assay

The following examples are provided

For SCID or CID:

Expression of disease-specific proteins in different lineages
and at various developmental stages (eg, gamma chain in naive vs.
memory B cells in patients with mixed chimerism)

Expression of MHC Il molecules in different lineages (for Bare
Lymphocyte Syndrome)

For WAS: WAS protein levels

For CGD: NADPH oxidase activity
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Table 4

PIDD HCT clinical studies assessments

Clinical Studies Variables

Genetic and phenotypic
immune defect

Genetic variant and phenotype of SCID and other CID, WAS, CGD, or other
PID

Patient demographics and
treatment history

Age; age and time to diagnosis; age at HCT
Clinical status at diagnosis and at HCT
Infections prior to HCT

Major organ dysfunction prior to HCT
Intravenous IgG (1VIG) therapy
Anti-microbial therapy

Immuno-modulator therapy

Transfusions

Surgical procedures

Autoimmune conditions

I1f SCID or CID, other therapy received:
PEG ADA for ADA deficient SCID

Gene therapy for ADA deficient or X-linked SCID
Fetal liver / thymus transplants

HCT regimen

Donor type
HLA-matched; 1-2 allele disparate; haplotype disparate
Sibling
Related or unrelated adult
Unrelated cord blood
Transplant modification
Unmodified marrow
T-cell depleted — limited / extensive
Pre-transplant conditioning
Post-transplant prophylaxis against GVHD
Prophylaxis and treatments of infection (including isolation)
Decade in which treatment was instituted

Outcome-clinical

Clinical evidence of hematopoietic and immune reconstitution

Acute and chronic GVHD

Autoimmune disorders and inflammatory complications

Neoplastic diseases

Status including health, growth and development, QOL, the integument,
cardiovascular, respiratory, gastrointestinal, endocrine and metabolic,
musculoskeletal, dentition, and psychosocial development, neurobehavioral
development including neurodevelopment and neurocognition
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