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Baculoviruses are one of the most
studied insect viruses both in basic

virology research and in biotechnology
applications. Incorporating an internal
ribosome entry site (IRES) into the
baculovirus genome generates bi-cistronic
baculoviruses expression vectors that
produce two genes of interest. The bi-
cistronic baculoviruses also facilitate
recombinant virus isolation and titer
determination when the green fluorescent
protein was co-expressed. Furthermore,
when the secretion proteins were co-
expressed with the cytosolic green fluo-
rescent protein, the cell lysis and cytosolic
protein released into the culture medium
could be monitored by the green fluo-
rescence, thus facilitating purification of
the secreted proteins.

Insect cells have been used extensively for
the production of recombinant proteins.
The relatively low expense of maintenance
and ease of scaling up are the primary
advantages of using insect cells over their
mammalian counterparts. Insect cells can
also perform more co-translational and
post-translational processes performed by
other eukaryotic cells than by commonly
used yeast and bacterial expression sys-
tems.1-3 Since its discovery in 1983, the
insect cell-based baculovirus expression
system (BEVS) has been used routinely
in industrial laboratories to produce a
multitude of diverse types of recombinant
proteins for research, medicinal agricultural4

and veterinary applications.5 The baculo-
virus is an enveloped, double-stranded
DNA virus belonging to the Baculoviridae

and has been reported to infect over 600
insect species. Among the numerous
baculovirus species, Autographa californica
multiple nucleopolyhedrovirus (AcMNPV)
is the most widely used prototype for
basic virology studies and biotechnology
applications. The genome of AcMNPV
(≈130 kb) is packed into a rod-shaped
nucleocapsid, typically 40–50 nm in
diameter and 200–400 nm in length.

Baculovirus as a Vector for
Recombinant Protein Production

Recombinant AcMNPV-infected insect
cells produce more than one thousand
recombinant proteins, such as Sf21 or Sf9
derived from Spodoptera frugiperda, or
High Five cells derived from Trichoplusia
ni. Additionally, recombinant AcMNPV
can also infect insect larvae, using the
infected larvae as a bioreactor to produce
recombinant proteins economically.6 The
BEVS approach is based on replacing
either the baculovirus’ polyhedrin7 or p10
genes8 with the gene of interest. Both are
highly expressed (30% ~50% of the total
protein) during the very late stages of
infection, and they are non-essential for
viral infection and replication in insect
cells.9 In the recombinant AcMNPV-
infected host cells, the desired genes under
the control of polyhedrin or p10 promo-
ters are often expressed in abundance,
amounting to approximately 1~500 mg of
protein per liter of insect cell culture.
Clearly, the most important benefit of
using BEVS is the high level production of
recombinant proteins during the late phase
of viral infection.
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Baculovirus as a Vector
for Gene Delivery

Although the host range of AcMNPV is
the broadest among the baculoviruses,
the infection of AcMNPV is nonetheless
restricted to insects. However, in the late
1970s and mid-1980s reports showed
that mammalian cells internalized baculo-
virus10-12 and that the virus mediated a
very low-level expression of a bacterial
gene under the control of polyhedrin or
Rous sarcoma virus (RSV) promoters in
mammalian cells.13 Two breakthrough
papers successfully demonstrated that
recombinant AcMNPV can “infect” or
transduce mammalian cells. In 1995,
Hofmann et al. reported that a recom-
binant AcMNPV is able to mediate the
LacZ gene or luc expression in hepato-
cytes, provided that the gene expression is
driven by the cytomegalovirus (CMV)
promoter.14 Subsquently in 1996, Boyce
and Bucher depicted efficient baculovirus-
mediated expression of the lacZ gene
under the control of the RSV promoter
in the hepatoma cell line HepG2 and
primary rat hepatocytes.15 Although these
two pioneering studies suggest that recom-
binant baculoviruses can only efficiently
transduce liver-derived cells, they imply
that the recombinant baculoviruses can
act as a delivery vehicle for liver-specific
genes.15 However, Shoji et al.16 demon-
strated that recombinant baculovirus can
mediate gene expression in non-hepatic
cells, such as HeLa and COS-7 cells, by a
chimeric CAG promoter consisting of
CMV immediate-early enhancer, chicken
β-actin promoter, and rabbit β-globin
polyadenylation signal. Since then study,
the list of cell lines and primary cells
efficiently transduced by baculovirus
has significantly expanded16,17 and now
includes fish cells.18 Owing to the low
cytotoxicity and non-replicative nature of
baculovirus in mammalian cells, baculo-
virus vectors have been employed for in
vivo gene delivery.17 Recently, recom-
binant baculoviruses were employed in
mediating recombinant protein pro-
duction in mammalian cells.19 Thus,
baculoviruses can work as vectors for
recombinant protein production, both in
insect and mammalian cells, or as vehicles
for gene delivery. These versatile and

useful characteristics make the baculo-
viruses one of most studied insect viruses.

Bi-Cistronic Baculovirus
Expression Vector

In previous studies we demonstrated that
it is possible to incorporate an internal
ribosome entry site (IRES) into the
genome of AcMNPV to mediate bi- or
tri-cistronic gene expression in insect cells
simultaneously.20-22 We identified two
IRESes: the RhPV IRES derived from
Rhopalosiphum padi virus20 and PnV539

IRES cloned from Perina nuda picorna-
like virus,21 both of which can mediate
cap-independent translation in BEVS.
These IRESes can be used in the develop-
ment of bi-cistronic baculovirus expression
vectors for the production of heterologous
multi-protein complexes. The IRES based
bi-cistronic expression vectors have several
advantages over the two-promoter-based
bi-cistronic vectors. The two-promoter-
based bi-cistronic baculovirus transfer
vector, like the pFastBacDUAL (a product
of Invitrogen), contains the polh and p10
promoters as well as two poly(A) tail
signals for simultaneous expression of two
genes. Therefore, the size of the two-
promoter-based bi-cistronic vector is larger
than the IRES-dependent bi-cistronic
vector. In addition the greater the amount
of the viral late strong promoters integ-
rated into the viral genome, the higher is
the transcriptional competition.23

Generating recombinant baculoviruses,
requires a homologous recombination
reaction. However, homologous recombi-
nation between the baculovirus transfer
vector and viral DNA is a rare event in
insect cells (typically only about 0.1%
~1%) and always leads to a background
of the wild type virus.24 Homologous
recombination requires multiple virus
isolation steps to avoid eventual outgrowth
of the wild-type virus. Thus, the use of
the baculovirus expression vector system
is hampered by the slow, tedious pro-
cedures for recombinant virus isolation.25

To date, several methods have been
developed to resolve this problem. One
approach utilizes linearized, essential gene-
deleted viral DNA, which cannot initiate
viral infection unless rescued by the homo-
logous recombination between the transfer

vector that contains the deleted gene and
the gene of interest.26 Another approach
is the detection of recombinant virus
utilizing a reporter gene, β-galactosidase,
incorporated into the transfer vector
leading to the formation of blue plaques
only by recombinant viruses.27 In addition
to these in vivo homologous recombina-
tion methods, other systems such as direct
cloning into the viral genome,28,29 recom-
bination in yeast,30 and transposition in
Escherichia coli have also been developed.31

Although all of these approaches may
resolve the problems of isolation and
purification of the recombinant virus, it
is still not easy to determine the titer of
the isolated recombinant viruses in experi-
ments, involving recombinant protein
production, virus amplification, or gene
transduction into mammalian cells. Thus,
we employed the RhPV IRES along
with the green fluorescent protein EGFP,
simultaneously resolving the two major
aforementioned bottlenecks in the use
of BEVS: virus isolation and titer deter-
mination. In recent studies, we showed
that the recombinant viruses harboring
target genes in the IFNc32, hemaggluti-
nin,33 neuroligin 1 gene (NL1)34 and the
cDNA for the 26S subgenome of the
Chikungunya virus (CHIKV 26S RNA)35

can be easily identified under a fluorescent
microscope when cloned into the trans-
fer vector (Fig. 1A). All these studies
demonstrated that the IRES-EGFP com-
ponent in the baculovirus transfer vector
simplifies recombinant baculoviruses isola-
tion. Because the homologous recombina-
tion between the transfer vector and viral
DNA is a rare event in insect cells, there is
no guarantee that the recombinant virus
can be successfully generated for each co-
transfection experiment. We found that
when fluorescent plaques did not form,
the virus progeny were not generated
even though there were cells emitting
the green fluorescence after the co-
transfection experiment. Thus, monitoring
virus plaque formation after the co-
transfection may be critical for the gen-
eration of recombinant viruses. Another
practical operation during the preparation
of recombinant viruses is to determine
the virus titers for the following experi-
ments: recombinant proteins production
and preparation of gene delivery vectors.
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Because the green emission of the EGFP
protein as translated by the RhPV 5'UTR
IRES is easily identified under a fluore-
scent microscope, the titer of the first
cistronic gene of interest containing the
virus can be determined by the simple
end-point dilution method.

Co-Expression
of Green Fluorescent Protein

to Monitor the Cell Lysis

As we tried to generate the recombinant
rat NL1 protein,34 we fused the NL1 gene
with signal sequence derived from human

Azurocidin gene (AzSP).36 The resulting
NL1 protein was secreted into the culture
medium. The recombinant virus con-
taining the NL1 gene was named
vAcAzSNL1-Rhir-E.34 We found that the
optimum harvest time for the NL1 protein
before the lysis of infected cells can be
determined through the release of cyto-
solic EGFP. This finding indicated that
the RhPV-IRES-EGFP module in the bi-
BEVS expression vector—the cytosolic
EGFP—can be used to monitor the cell
lysis after recombinant virus infection and
to signal the release of other intracellular
proteins that may interfere with the

purification of the NL1 protein. The
EGFP (as analyzed by Western blot) was
initially found in the culture medium
at 96–120 hours post-infection (hpi), and
a dramatically increased expression at
144 hpi was observed. These results
indicated cell lysis caused by the virus
and leaking of the intracellular proteins
including cytosolic EGFP into the culture
medium beginning 96 hpi. With these
results, the culture medium therefore was
harvested at 72 hpi avoiding interferences
from other intracellular proteins in
the succeeding purification. Immobilized
metal affinity chromatography (IMAC)
was used to purify the recombinant NL1
proteins from the culture medium of
High Five cells infected by the recombi-
nant virus. The final purification products
were identified using Coomassie brilliant
blue-staining on SDS-PAGE, revealing a
single band corresponding to the recom-
binant NL1 protein approximately at
80 kDa with 96% purity (Fig. 1B, lane
label 72), determined through quantita-
tive densitometry. We also tried to purify
the recombinant NL1 proteins from the
vAcAzSNL1-Rhir-E-infected High Five
cells harvested at 96 hpi by IMAC. The
Coomassie brilliant blue-staining on
SDS-PAGE revealed 3 or 4 visible protein
bands in addition to the NL1 protein,
with only 76% purity as determined by
quantitative densitometry (Fig. 1B, the
two lanes label 96). These results demon-
strated the use of EGFP and bi-BEVS in
the straightforward expression of target
protein(s) and offset the laborious and
tedious multiple chromatographic purifi-
cation steps. This reflects that the
monitoring of EGFP is useful in tracing
the lysis of the infected cells and avoiding
the interference of other cytosolic proteins
during purification. Also, the polyhedrin
promoter is a very late promoter, and the
expression of EGFP begins at about 1 dpi,
suggesting that a copy of egfp gene, present
in the host genome or controlled by an
earlier promoter, can make the EGFP a
more reliable indicator of cell lysis during
recombinant viruses infection.

Baculoviruses are promising not only as
genetic engineering tools for recombinant
protein production but also as an alter-
native for gene delivery. The incorporation
of IRES into the baculovirus’ genome to

Figure 1. Bi-cistronic baculovirus expression vectors and purification of NL1 proteins from different
harvest time. (A) The bi-cistronic baculovirus expression vector, pBac-MCS-Rhir-EGFP. The genes
of interest [IFNc, hemagglutinin, neuroligin 1 genes (NL1) and the cDNA for the 26S subgenome
of the Chikungunya virus (CHIKV 26S RNA)] were cloned into the transfer vector. The recombinant
virus containing the NL1 gene is named vAcAzSNL1-Rhir-E. pH, the polyhedron promoter;
MCS, multiple cloning sites; Rhir, RhPV 5’UTR IRES; EGFP, enhance green fluorescent protein.
(B) The Coomassie brilliant blue-staining on SDS-PAGE revealed 3 or 4 visible protein bands
(indicated by the arrow), either loading 5 or 10 ug proteins, other than the NL1 protein purify from
the vAcAzSNL1-Rhir-E-infected High Five cells harvested at 96 hpi by IMAC. The non-specific bands
indicating the presence of contaminants in the medium resulted from cell lysis. In contrast, the NL1
protein purified from the vAcAzSNL1-Rhir-E-infected High Five cells harvested at 72 hpi by IMAC do
not contain the contamination proteins even when the 10 ug proteins are loaded into the gel.
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generate the polycistronic baculoviruses
expression vectors will also facilitate the
production of hetero-oligomeric proteins
and monitor the successful virus infection
after the fluorescent reporter gene is co-
expressed with the gene of interest.
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