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Somatic embryogenesis (SE) in Cichorium involves dedifferentiation and redifferentiation of single cells and can be
induced by specific in vitro culture conditions. We have tested the effect of various treatments on the incidence of SE
(ISE) of an interspecific embryogenic hybrid (C. endivia x C. intybus) and of different commercial chicories (C. endivia and
C. intybus) that are typically recalcitrant to SE in standard culture conditions. We found that the ISE of the hybrid is
significantly increased by pretreatment of tissues by submersion in solutions of glycerol, abscisic acid, spermine,
putrescine or of combinations of these compounds. Interestingly, the most efficient of these pretreatments also had an
unexpectedly high effect on the ISE of the C. intybus cultivars. The ISE of the hybrid and of the commercial chicories were
increased when explants were co-cultured with highly embryogenic chicory explants or when they were cultured in
conditioned medium. These observations established that unidentified SE-promoting factors are released in the culture
medium. HPLC analyses of secreted Arabino-Galactan Proteins (AGPs), which are known to stimulate SE, did not allow
identifying a fraction containing differentially abundant AGP candidates. However, pointing to their role in promoting SE,
we found that the hybrid had a drastically higher ISE when amino sugars and L-Proline, the putative precursors of
secreted AGPs, were both added to the medium.

Introduction

Besides sexual reproduction, plants can propagate clonally owing
to the unique ability of their cells to dedifferentiate and re-
differentiate into different cell types. Among the different
morphogenetic pathways, the totipotent cells related to stem
cell-like cells in plants, can generate fully functional bipolar
embryos following a complex process referred to as somatic
embryogenesis (SE).1 In vitro cultures were also convenient to
study the acquisition of pluripotency that could occur in a few
differentiated-somatic cells; pluripotent cells belong to another
class of stem cell-like cells only able to give rise to organ or callus
(organogenesis or callogenesis patterns).1 So far, the mechanisms
and the regulations underlying the acquisition of totipotency and
the subsequent differentiation into somatic embryos are largely
unknown. SE can be triggered by axenic in vitro culture of plant
tissues using appropriate conditions gathering both culture
medium and abiotic stresses.1 Indeed, the incidence of SE (ISE)

varies depending on the conditions, like (1) the pre-treatment of
the donor pants, (2) the exogenous addition of promoting factors
or (3) the use of conditioned medium.

Unlike in many other plant species, SE in Cichorium is direct
and arises from single cells.2 Previous experiments using the
embryogenic interspecific hybrid (Cichorium endivia x C. intybus)
designed as ‘hybrid 474’ showed that the content of endogenous
polyamines (PAs), which are involved in development, senescence
and stress responses was increased during the development of
somatic embryos.3-6 Also, the exogenous addition of spermine
(spm) and putrescine (put) had a positive effect on improving
the yield of somatic embryos in chicory but also in other SE
models.5-7 In various models of SE, the exogenous supply of
abscisic acid (ABA), a well-known stress hormone of plants, also
led to increase the ISE.8-12 Also, the report of an extracellular
matrix connecting cell wall-plasmalemma-cytoskeleton led to
the hypothesis that the cell wall could be sensitive to osmotic
stresses.13-16 Supporting this possibility, several groups reported
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that treatments with plasmolysing agents led to increase the ISE of
gymnosperms and Eleutherococcus.17,18

Numerous studies have reported that soluble molecules are
released in the medium during the acquisition of totipotency.
These enriched medium, called conditioned medium (CM),
contain factors able to promote the SE of primary explants.19-23

In SE models involving cell suspensions, the co-culture of
embryogenic and non-embryogenic lines led to increase SE
competencies.24,25 However, the effect of co-culturing tissue
explants with different ISE has not yet been investigated.

In several SE models, the soluble ArabinoGalactan Proteins
(AGPs) were proposed to carry the SE-promoting activity.26,28

However, the exact nature of the AGPs responsible for promoting
SE has not yet been determined.

We report here the effect (1) of pretreatment of plantlets by
immersion before induction of SE, (2) of addition of compounds
to the culture media, (3) of conditioned medium and (4) of co-
culture of different cultivars on the incidence of SE of the
embryogenic chicory hybrid ‘474’ and of commercial chicories
which are typically recalcitrant to standard SE conditions. The
signaling roles of soluble molecules, including AGPs secreted/
released in the culture media is assayed and discussed.

Results

Effect of pretreatments on the incidence of SE. Pretreatment of
the embryogenic hybrid ‘474’. Unlike pretreatment with water
which had no effect on the ISE of the ‘474’ hybrid, pretreatments
with 330mM glycerol, which serves as osmoticum and carbon
source, with 50 mMABA, or with the polyamines putrescine (put)
or spermine (spm) significantly increased the number of somatic
embryos (Fig. 1). Pretreatment with spm, which was the most
efficient of the individual pretreatments tested, had a synergistic
effect, leading to differentiation of three times more SE, when
used in combination with water and 330mM glycerol. In
contrast, pretreatments with 100mM ABA or 0.5mM spermidine
(spd) had a slightly negative effect on the ISE. These experiments
show that the ISE of the embryogenic hybrid ‘474’ can be
potentiated by pretreatments of leaves before SE induction.

Pretreatment of commercial cultivars. The results we obtained
with the embryogenic hybrid ‘474’ prompted us to assay the effect
of these combined pretreatments on 15 commercial chicories
considered “low embryogenic” or “recalcitrant to SE” in our
standard conditions. Whatever the pretreatments used, C. endivia
var crispa and var latifolia were as recalcitrant to SE as without
pretreatment (Table 1). In contrast, C. intybus cultivars and wild
chicories exhibited a significant increase of their ISE when the
different combined pretreatments were used. As in the case of
leaves of the embryogenic hybrid, pretreatment with 330mM
glycerol, 0.5mM spm and 50 mM ABA had a synergistic effect on
the ISE of roots but not on that of leaves. These experiments
showed that combined pretreatments with different molecules
that mimic different abiotic stresses lead to promote the ISE of
certain but not all Cichorium species in a tissue specific manner.

Effect of co-culturing the embryogenic hybrid and a recalci-
trant chicory. Co-culture of different organs of the embryogenic

hybrid. One possible explanation for the naturally high ISE of the
embryogenic hybrid is that it releases SE-promoting molecules in
the culture medium. We tested this hypothesis by using co-
culture experiments and we anticipated that the embryogenic
hybrid ‘474’ would promote the ISE of the commercial C. intybus
cv Pévèle. These co-culture experiments were done in Magenta
boxes in which each of the two compartments is used for culture
of one genotype and is physically separated from the other
compartment by a 25 mm polypropylene membrane. Different
conditions were tested using either leaf or root explants of the
embryogenic hybrid and of the recalcitrant cv Pévèle alone
(Fig. 2). Whatever the compartment considered, no significant
difference in the ISE of the hybrid was recorded when the same
organ was used in both compartments of the box (Fig. 2, conditions
A, B). Interestingly, the ISE of leaf explants was slightly enhanced
when co-cultured with root explants (Fig. 2, condition C).

Co-culture of embryogenic and commercial cultivar explants. Co-
cultures of root or leaf explants of C. intybus cv Pévèle did not alter
the ISE of the hybrid ‘474’ (Fig. 2, conditions D, E, F). However
conversely, the ISE of the recalcitrant cv Pévèle was strongly
enhanced by co-culture with explants of the embryogenic hybrid,
especially when leaf explants of both chicories were co-cultured
(Fig. 2, conditionD). The ISE of cv Pévèle root explants was also
stimulated by co-culture with embryogenic hybrid root explants
(Fig. 2, condition G). The co-culture of leaf and root explants of
the cv Pévèle did not increase the ISE of leaf explants, but few SE
developed on 18% of the root explants (Fig. 2, condition H).
Thus, these experiments show that certain SE-promoting
molecules are released in the culture medium and have stronger
effects on root than on leaf explants. Also, our data suggest that
the SE-promoting molecules act in an organ-specific manner.

Effect of conditioned medium on the incidence of SE. To
further strengthen our conclusions that SE-promoting molecules
are released in the culture media, we used conditioned medium
(CM) obtained after 0, 2, or 4 d of culture of root explants of the
embryogenic hybrid. Naïve root explants of the embryogenic
hybrid (Fig. 3a) or of the cv Pévèle (Fig. 3b) were then cultured in
these CM for 12 or 20 d.

The effect of CM on the embryogenic hybrid led to greatly
increase the ISE and the D4-CM already led to double the
number of somatic embryos produced. In the same way, the D4-
CM promoted the ISE of recalcitrant cv Pévèle root explants.
Together our results show that condition media contain SE-
promoting molecules that likely accumulate progressively during
induction of SE.

Involvement of AGPs in SE. HPLC analyses of soluble AGPs
profiles. Earlier works in different SE models have suggested that
soluble ArabinoGalactan Proteins (AGPs) might be responsible
for the SE-promoting activity.27,28 To identify a soluble AGP
fraction responsible for promoting SE in our system we analyzed
100 mg of the soluble AGPs of leaf and root explants of both the
embryogenic hybrid and the recalcitrant cv Pévèle by liquid
chromatography.

Besides three minor peaks (2–3 and 7) that are absent in cv
Pévèle, the AGP profiles obtained for roots of the hybrid (Fig. 4a)
and cv Pévèle (Fig. 4c) did not exhibit major differences.
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Similarly, besides the peak 4 which was slightly greater in cv
Pévèle, there were also no critical differences between the AGP
profiles obtained for leaf explants of the two genotypes
(Fig. 4b, 4d). Thus, despite a difference in the quantity of
AGPs released in the medium, the same AGP fractions were
detected in the same explants of the two chicories.

Quantitation of AGPs released in the culture medium. We have
previously shown that AGPs are released in the culture medium

of embryogenic and non-embryogenic chicories but no major
difference in the soluble AGP profiles was detected.33,38 We
have also shown earlier that complexation of soluble AGPs
with b-D Glc Yariv reagent inhibits mitosis while cell reac-
tivation still occurs.33,38 To test whether the difference in
the ISE of the embryogenic hybrid and of the cv Pévèle
was correlated with differences in the quantity of released
AGPs, we determined the mean quantity of soluble AGPs

Figure 1. Effects of pretreatment of leaves of the embryogenic hybrid of Cichorium, with 0.5mM polyamines (putrescine, spermidine, or spermine), of
330mM glycerol,or of several concentrations of (± ) cis, trans abscisic acid (ABA), on the number of somatic embryos (mean± SEM for n = 9 independent
experiments). Conditions in abscissa (1 to 10) correspond to the pretreatment described just below in the column from the associated table. * indicates
the values that are significantly different from that obtained without pretreatment (p, 0.05; Student-Fischer law).
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released in the culture media for ten independent experiments.
The culture media of the recalcitrant cv Pévèle accumulated
6–7 fold less soluble AGPs (1.77 ± 0.83 mgmL21 for root
explants and 0.80 ± 0.05 mgmL21 for leaf explants) than the
embryogenic hybrid (10.69 ± 0.85 mgmL21 for root explants and
5.70 ± 0.05 mg mL21 for leaf explants). These quantitations of
soluble AGPs released in the medium correlate with the different
degrees of ISE of the two genotypes and suggest that the quantity
of AGPs released in the media are, at least in part, responsible for
the development of SE .

Exogenous addition of amino sugars and L-Proline. To
provide additional evidences that the quantity of AGPs released in
the media are responsible for increased ISE, we supplemented the
culture media with AGP precursors: a mix of different sugars and
L-Proline (Pro).

Compared with the control, the addition of amino sugars or of
Pro alone did not lead to increase the ISE of the embryogenic
hybrid (Fig. 5). As we anticipated however, the addition of
both amino sugars and Pro led to increase the ISE by 4–5 fold
depending on the concentrations used. Thus, these results
clearly show that addition of both AGP precursors to the culture
media increase the ISE of the embryogenic hybrid. These
results also suggest that a supposed direct increase in the
quantity of AGPs produced by addition of its precursors increases
the ISE.

Discussion

The different physiological assays described here show that the
ISE of the embryogenic chicory ‘474’ can be promoted and that
of usually recalcitrant commercial chicories can be unraveled.
The term “recalcitrant” was recently proposed to define “a plant
species or a developmental phase of a plant [in which] tissue-
culture procedures fail to result in SE or organogenesis.”30

The identification of unconventional SE induction methods is
hypothesized to be able to overcome such recalcitrance in
commercial chicories of the endivia and intybus species. The
results presented here suggest that SE-promoting molecules are
released in the culture medium and that these molecules,
supposedly soluble AGPs, can be collected to promote SE of
primary chicory explants.

Pretreatments of donor plants. Plasmolysis is known to induce
mechanical abiotic stresses. We have shown here that immersion
of chicory leaves in a 330mM glycerol solution lead to enhance
the ISE. As it was demonstrated in the SE models Citrus and
chicory, glycerol acts both as an osmotic agent and as a carbon
source.6,31,32 Addition of other osmotica, such as mannitol or
sucrose, was also shown to promote SE (Colocasia esculenta,
Cucumis melo, Cucumis sativus, Eleutherococcus sentocosus, Pinus
taeda, Saccharum officinarum, or androgenesis (wheat).22,33-38 The
high osmolarity in the culture medium can also be a consequence

Table 1: Effect of different pretreatements on the incidence of SE of 15 commercial chicories.

Cichorium genotypes Names Commercial origin
(France)

Pretreated
organs

Pretreatments

a a+b a+b+c a+b+c+d

1. C. intybus var sativum
cv Magdebourg
= roasted chicory

Cassel
Orchies
Pévèle

Desprez
Desprez
Desprez

mm21 root
mm22 leaf
mm21 root
mm22 leaf
mm21 root
mm22 leaf

0.00 (0)
0.03 (10)
0.04 (15)
0.00 (0)
0.02 (10)
0.00 (0)

0.14 (40)
0.01 (2)
0.10 (10)
0.00 (0)
0.04 (15)
0.00 (0)

0.60 (80)
0.12 (35)
0.06 (20)
0.00 (0)
0.08 (40)
0.04 (8)

0.46 (100)
0.08 (10)
0.22 (75)
0.02 (5)
0.19 (65)
0.01 (2)

C. endivia var crispa Elodie Caillard mm21 root 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

C. endivia var latifolia
= Scarole salad

Géante maraîchère
Grosse bouclée 2
Margot
Samoa
Soléra
Traviata

Caillard
Vilmorin
Brumaux
Caillard
Caillard
Vilmorin

mm22 leaf 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Sauvage améliorée Caillard mm21 root
mm22 leaf

0.00 (0)
0.00 (0)

0.00 (0)
0.00 (0)

0.10 (40)
0.00 (0)

0.10 (40)
0.00 (0)

Wild Chicories Cornet d’Anjou
Crésola rouge
Pain de sucre
Rouge de Vérone

Caillard
Caillard
Caillard
Abondance

mm21 root
mm22 leaf
mm21 root
mm22 leaf
mm21 root
mm22 leaf
mm21 root
mm22 leaf

0.00 (0)
0.00 (0)
0.08 (30)
0.00 (0)
0.10 (35)
0.10 (2)
0.02 (10)
0.00 (0)

-
0.10 (35)
0.00 (0)
0.30 (65)
0.10 (9)
0.56 (80)
0.00 (0)

0.20 (65)
0.00 (0)
0.40 (60)
0.10 (10)
0.15 (50)
0.02 (4)

-
0.59 (95)
0.00 (0)
0.30 (75)
0.01 (3)
0.39 (70)
0.10 (20)

The number of embryos was scored per mm of root and per mm2 of leaf. Plantlets grown in vitro were submerged in the indicated solutions for 4 d before
transfer to the culture medium. Water (a), 330mM glycerol (b), 0.5mM spermine (c) and 50 mM ABA (d) were used as indicated. The results obtained with
leaves and roots are from independent experiments (n = 10 for leaves and n=5 for roots). The percentage of explants exhibiting somatic embryos after 12 d
(roots) or 20 d (leaf) of culture is indicated in brackets.
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Figure 2. Effects of co-culturing different explants from different chicories on the incidence of SE. Co-cultures involving only the embryonic hybrid (A-C),
only the recalcitrant C. intybus cv Pévèle (H), or both plants (D-G). Root explants (shown in black for the embryogenic hybrid and in white for cv Pévèle)
and/or leaves (shown with black hatchings for embryogenic hybrid and with small dots for cv Pévèle) were cultured for 12 d in Magenta boxes where the
upper compartment (I) and the lower compartment (II) are physically isolated by a polypropylene membrane. A khi?2 test was applied with Yates
correction (a = 0.05). Co-culture of cv Pévèle leaves and hybrid roots (condition D) show significative differences and is indicated by *. Mean number of
somatic embryo ± standard error of the mean (or SD?) is given for mm2 leaf or for mm linear root.
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of hydrolysis of the carbon source that might lead to enhance
glucose and fructose levels, for example; what should be also
considered during the course of SE induction.31,39

ABA is a plant growth regulator often associated with
totipotency and its endogenous concentration should be low to
promote SE in Daucus carota,Medicago or Nicotiana14,40-42 while it
should be high to promote SE in other models (Cucumis melo,
Daucus carota, Pennistum purpureum).34,43,44 Exogenous addition
of ABA led to improve the ISE in monocots (Cocos nucifera,
Cynodon hybrid Musa sp.)9,11,13 and in dicots (Daucus carota,
Hevea).8,10,12 Our experiment in chicory established that 50 mM
ABA promoted the ISE whereas 100 mM had a slightly negative
effect. Thus, our results are in agreement with results already
described in the literature.

The addition of spermine strongly promoted SE in chicories,
especially when it was used in combination with 330mM glycerol
and 50 mM ABA. During SE in Cichorium hybrid, an increase of
free PA content, especially put, was reported by Couillerot et al.4

Moreover, totipotency was strongly reduced when put and related
PAs synthesis was inhibited by addition of a-difluoromethylargi-
nine (DFMA), a specific and irreversible inhibitor of the PA
biosynthesis. On the other hand, the exogenous addition of put to
DFMA treated cultures restored the spd and spm contents and
therefore totipotency.5 A correlation was suggested between the
ISE of the Cichorium embryogenic hybrid and the PA content

as it was later established in C. intybus cv Lucknow pluripotency
(i.e. organogenesis pattern).45 During SE induction, totipotent
cells reached a fully reactivated status and were prepared to re-
entry the cell cycle.1,46 A re-initiation of cell division in sugar beet
cell suspension was obtained by adding PA and it was suggested
that PA controlled gene expression, especially cell division.47

Recent works have shown that the competence for totipotency
of our chicory embryogenic interspecific hybrid was inherited
from the C. intybus parent.47 Our results indicate that none of the
C. endivia tested exhibited totipotency whatever the pretreatments
applied. In contrast, some cultivars from C. intybus developed a
low number of SE. In consequence, overcoming recalcitrance
was not completely possible in our standard SE protocol for all
chicories. Other conditions have already been successfully
identified for the chicory embryogenic hybrid.1 For conifers,
Bonga et al.30 have suggested possible causes of recalcitrance.
Among them, an effect of the cytoplasm in maintaining the
nucleus of somatic cells in a state non- reprogrammed for SE,
inhibition by cell-to-cell contact, or the non-activation of
embryogenic genetic mechanism are attractive possibilities to be
investigated. Moreover, the presence of molecular determinants
could also be linked with totipotency competence that could be
revealed in some models. For example, AGPs could also play a
critical role in hybrid fir (presence of specific Gal4-AGP epitopes)
and banana (MAC204-AGP epitopes) SE48,49

Effect of co-culture. Organ-dependent molecules released in
the medium promoted preferentially SE in the same organs of the
embryogenic hybrid and the recalcitrant cv Pévèle. Despite the
putative accumulation of inhibitory factors in CM, co-cultures
were successful in the recalcitrant cv Pévèle (Fig. 2). When root
explants of cv Pévèle were cultivated in 4D-CM obtained from
embryogenic hybrid-root led to unravel their totipotency (Fig. 3).

High cell density could inhibit SE as it was reported in carrot
probably due to nutrient consumption.50,51 Standard conditions
for chicory SE induction consist to use 20mL medium for nearly
6 cm2 leaves or for one complete root system.31,52 In our co-
culture experiments, the volume available for each chicory was
lower. As a consequence, the nutrients available for each chicory
might become a limiting factor. However, Umehara et al.53 have
established that the inhibitory effect of CM was due to the
accumulation of inhibitory factors. This inhibition, characterized
by the suppression of rapid cell division, is reversible and does not
affect the embryogenic potential.54 Nevertheless, Osuga et al.55

were able to improve the ISE at a high cell density when the
medium was partially renewed, and in our SE standard condi-
tions, explants were transferred onto a new medium after 4D
of culture.31

Co-culture is sometimes performed to overcome a deficiency
of embryo development and could show a positive effect when it
is a nurse culture.56 The authors developed a method where
isolated wheat zygotes were co-cultured with nurse-microspores.
This method allowed them to develop and produce fertile plants.
Co-culture was also achieved by Meijer et al.57 in a heterologous
system similar to the one we use for chicory. The authors co-
cultured Arabidopsis cell suspension in which somatic embryos
were arrested at the globular stage, and carrot embryogenic

Figure 3. Effects of conditioned medium on the incidence of SE. The
number of somatic embryos per mm of root (mean± SEM) was scored
after lugol staining for the embryogenic hybrid (a) or for the recalcitrant
C. intybus cv Pévèle (b) after 12 d (white bars) or 20 d (gray bars) of
culture. The media were conditioned by culturing roots of the hybrid for
0, 2, and 4 d in standard conditions. Scoring of embryos was done on two
independent experiments each involving ten root explants.
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cultures. Unexpected inhibition of carrot SE was noticed by
the release of the Arabidopsis soluble auxin 2,4-D. In the chicory
co-culture system, a slight inhibition of SE was also observed
in the embryogenic hybrid but it could not be related to such
a 2,4-D. As for CM, unknown inhibitory factors could be

released and accumulated in the medium,
as the culture was processing.

Exogenous addition of amino sugars
and L-Proline. AGPs, which belong to
the Hydroxyproline Rich GlycoProtein
family58 can exhibit glucosamine and
N-acetylglucosamine residues that makes
them sensitive to EP3 endochitinase.59

For these reasons, some molecules
(amino sugars, included glucosamine and
N-acetylglucosamine, and L-proline) pre-
sent in the AGPs core and glycosylated
fractions, were added in the culture
medium of the embryogenic hybrid. The
addition of a combination of amino sugars
and Pro led to greatly enhance the ISE of
our chicory while amino sugars or Pro
alone had no effect. Beside the putative
direct effect on increasing AGPs synthesis,
Pro accumulation might also act as a stress
molecule during abiotic stress.60,61 In our
culture conditions, no glycerol was added
as osmoticum to promote SE and the mix
of amino sugars cannot induce osmotic
stress. The positive interaction between
Pro and the mix of amino sugars remains
unclear but efficient. The accumulation of
Pro in stressed plants reported by others
might indicate an adaptation to osmotic
stresses.62,63

Conditioned medium and AGP involvement in totipotency
acquisition. As we also report in our system here, promotive-
mitogenic factors are released in conditioned medium.64 For
example, phytosulfokine a,21,22 cell wall remodeling enzymes,65-68

and parietal fragments such as AGPs,31-37,69 or oligogalacturonide
pectic fragments have been reported.68

The use of CM obtained from wild type carrot cell suspension
favored embryo development in the thermosensitive mutant ts11
that normally produced somatic embryo arrested at the globular
stage.71 The plating efficiency of protoplasts is significantly
increased onto an agarose obtained with CM-dilution (Lolium,
Chrysanthemum).64,72 Our results established a promoting effect
of 4D-CM obtained from culture of root explants of the
embryogenic hybrid. This promoting effect of was clearly
observed on root explants from both chicories (Fig. 3).

Inhibitory fractions of AGPs could be probably present in older
CM as shown by Toonen et al.73 We noticed a slight decrease
of the embryogenic potential in the hybrid with the use of
4D-medium or older conditioned medium (data not shown), but
4D-CM significantly improved SE in cv Pévèle. Beside released
AGPs, other inhibitory factors such as 4-hydroxybenzyl,74-76

vanillyl benzyl ether75 might also accumulate in the medium at
later time point. Promoting phytosulfokin a might compete with
such inhibitory factors.76 The determination of the optimal age of
CM will therefore a pre-requisite since older CM might have
stronger inhibitory effects.

Figure 4. HPLC profiles of extracellular AGPs isolated after 12 d of culture of roots (a) and leaf (b) of
the embryogenic hybrid, or of root (c) and leaf (d) of the recalcitrant cv Pévèle. Eight fractions (T0,
T1, T2, T3, T4, T5, T6, T7) were collected from 0 to 45min of elution.

Figure 5. Effects of L-Proline (white bar), of amino sugars (gray bar), or of a
combination of L-Proline and amino sugars (black bar) concentrations on
the incidence of SE of our embryogenic chicory hybrid. The number of
somatic embryos permm2 of leaf was scored after 12d of culture. Results of
Student-Neuman Keuls range test are shown where means followed by
different letters are significantly different at the 5% probability level.

www.landesbioscience.com Plant Signaling & Behavior 7



The embryogenic hybrid released more AGPs in the medium
than the recalcitrant chicory C. intybus cv Pévèle. The relatively
high amount of AGPs observed in root culture medium might be
due to the disorganization of root tissue or to the absence of
cuticle. Although our data indicate a role of the quantity of
soluble AGP released, comparisons of several embryogenic and
non-embryogenic genotypes taken from non-commercial popu-
lation of C. intybus have indicated that slight or even no significant
differences were found in the quantity of AGPs released in the
medium (AS Blervacq, I Habarugira and M Demilly, unpublished
results).77 Thus, the capacity to release AGPs in the medium alone
might not be the sole criteria determining the SE capacity of a
given genotype.

It is assumed that the sets of AGPs were organ-dependent
(see review).58 First experiments were therefore performed on
extracellular AGPs pattern recovered in the culture medium
of both embryogenic hybrid and recalcitrant cv Pévèle. Similar
chromatographic profiles were obtained whatever the organs
cultured and the chicories considered. As a consequence, no
significant peak could be related to the competence for
totipotency. Numerous columns and solvent conditions were
applied to improve separation of eight fractions; each one
contained at least 2 to 4 subfractions (D. Windels, unpublished
results). This could be explained by AGPs differing in their
protein core and/or in their degree of glycosylation (maturation)
or of their degradation. Moreover, stressed environment could
modify AGPs gene-expression.29,78,79

Finally, the set of released AGP could also reflect the regulation
of gene expression that resulted from different stresses due to
in vitro culture (collecting, fragments, liquid culture, orbital
shaking…), but also resulted from the competence of each
genotype to commit into SE. Legrand et al. established that one
AGP gene was upregulated in the high embryogenic chicory
(C. intybus, Kospool Hungarian cultivar) compared with the low
embryogenic one.77 In these genotypes, Lucau-Danila et al. also
showed that at least eight genes, including the previously
identified AGP gene (DT212818), were differentially expressed
in both genotypes.29 They were probably involved in cell fate
determination in chicory (i.e. acquisition of totipotency).

Conclusions

Our results established that pretreatments of tissues before culture
with combinations of polyamines and ABA, as well as the use of
conditioned medium could reveal or release SE recalcitrance in
some Cichorium varieties. Soluble SE-promoting factors, com-
prising soluble AGPs and their putative precursors, also stimulated
SE in both recalcitrant and embryogenic chicories.

Material and Methods

Growth of plant material. Plantlets of the embryogenic hybrid
(Cichorium endivia L., var latifolia x Cichorium intybus L., var
sativum) clone ‘474’ were grown in vitro as previously described
in Bellettre et al.52 Seeds of Cichorium intybus L., var sativum
(cultivars Cassel, Orchies and Pévèle) and of Cichorium intybus L.,

var Witloof (cultivar Flash) were respectively obtained from
Florimond Desprez (Cappelle en Pévèle, France) and from the
Institut National de la Recherche Agronomique (INRA, France),
surface-sterilized in 0.1%HgCl2 for 10min, washed several times
in water and germinated on solid Heller mineral medium.80

Standard culture conditions for induction of SE. Leaves of
two-month old plantlets were cultured in 20mL SE medium
supplemented with 330mM glycerol, which acts as osmoticum
and carbon source, for 4 d.31 Explants were then prepared and
cultured into 20mL SE medium for 7–8 d.52,81 Explants were
cultured in the dark at 35°C under orbital rotation (160 rpm). For
each plantlet, 6 leaf fragments (representing 6 cm2 each) or � cm
long fragments of the entire root system were used. The number
of somatic embryos per cm2 of leaves and per cm of roots was
scored after 8 and 12 d, respectively, for the hybrid and after 20 d
for commercial chicories.

Exogenous supply of amino sugars and L-proline. Leaf frag-
ments were cultured in SE culture medium deprived of glycerol
for x days. L-Proline (Pro) (Sigma), a mixture of amino sugars
(galactosamine, glucosamine, N-acetyl galactosamine, N-acetyl
glucosamine provided by Sigma), and a combination of both in
equal concentrations (ranging from 0.01 to 4mgmL21) were added
to the SE medium. The number of somatic embryos per cm of roots
was scored after 12 d, Statistical significance was assayed using a
Student-Neuman Keuls test. Means followed but different letters are
significantly different at the 5% probability level.

Pretreatments of plantlets before induction. During pretreat-
ments, 4 leaves-old plantlets were submerged in aseptic solutions
containing either (a) water only, (b) 330mM glycerol (Prolabo),
(c) 0.5mM polyamine (putrescine, spermidine or spermine pur-
chased from Sigma), (d) 10, 50 or 100 mM(± ) cis, trans abscisic
acid (ABA) (Sigma). Leaves were collected after 2 d for induction
of SE.

Conditioned medium. Conditioned media (CM), consisting of
filtered, glycerol-free SE culture media in which roots of the
embryogenic “474” hybrid had been cultured for 0, 2, or 4 d, was
used as induction medium. The number of somatic embryos per
cm of roots was scored after 12 and 20 d.

Co-culture conditions. To detect the effect of one genotype on
the ISE of another genotype, co-cultures were performed in GA-7
polycarbonate Magenta boxes (Sigma). Root or leaf explants were
separated with a 25mm polypropylene membrane (Sigma). To avoid
mechanical stresses, 100mL of medium was used. First test was
done with the embryogenic hybrid as a reference. In vitro raised
plantlets of the hybrid or of the commercial genotypes were used. In
these cases, three complete root systems or ten leaf fragments were
collected. Co-cultures were done either (1) only leaves, (2) only with
roots, or, (3) with both types of explants. For the hybrid genotype,
the ISE was estimated after 8 d of co-culture in the case of leaves
and after 12 d in the case of roots. For the Pévèle cultivar, the ISE
was estimated after 20 d in the case of both types of explants.

Estimation of somatic embryogenesis levels. Cultured explants
were fixed in a FAE solution (formaldehyde/acetic acid/ethanol,
3.6/6.5/90, v/v/v) and stained with Lugol (2% I2, 6%KI, w/v).
The number of typical brown-colored embryos larger than
100 mm was recorded under light microscope as described in
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Bellettre et al.31 The mean number of SE was calculated from the
count of nine repetitions (10microscope fields per fragments).
Data were analyzed according to Student-Fischer law.

Quantification of AGPs secreted in the culture medium.
Extracellular AGPs released after 12 d of culture for roots, and 8 d
of culture for leaves were quantified according to Kreuger and
Van Holst.82 In brief, the culture medium was lyophilized and
the residues were dissolved in minimal sterile water volumes.
AGPs were then precipitated with b 1,3-D Glc Yariv reagent
which we prepared according to the protocol of Yariv et al.83 After
centrifugation, AGPs were released from the complex with
Na2SO4 and desalted with PD10 columns (Amersham). AGPs
were stored in water at –20°C.

The concentrations of total AGP fractions were determined on
(1%,w/v; 0.15MNaCl) agarose gel by comparing the signals
obtained to a standard curve (0, 0.05, 0.1, 0.15 and 0.20mgmL21)
of Arabic gum.84

HPLC analyses. One hundredmg of AGPs per sample were
separated onto a monoQH5 / 5 anion exchange column (Pharmacia
Biotech), eluted with a discontinuous gradient (0 to 100% solvent
B: 1MNaCl, 20mMTRIS-HCl; solventA: water, 20mM TRIS-
HCl; flow rate = 0.7mL.min21) and collected by fraction from the
column (from 0–45min). The chromatography was monitored by
absorption at 215 nm.
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