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Plant response to water deficit and subsequent re-watering is fine tuned at the whole plant level. It differs not only
between shoot and root, but also among particular leaves along a plant axis. We estimated the expression of proline
metabolism-related genes and the activity of senescence-related promoter in roots and individual leaves of tobacco
plants in the course of drought stress and recovery. Proline plays the dual role of an osmoprotectant and an antioxidant
under water deficit. High proline concentration in the youngest uppermost leaves contributed to their protection from
drought, which was associated with low degree of senescence. During recovery, elevated proline concentrations
persisted and the senescence-related promoter was switched off in all surviving leaves. Two mutually exclusive scenarios
were followed by tobacco leaves on recovery—restoration of photosynthesis and metabolism, or death, depending on
the progress of senescence.

Unlike animals, plants cannot respond to adverse environmental
conditions by running away; they have to survive on the spot.
During their lifetime, they may have to cope with a number of
biotic and abiotic stress factors, of which one of the most fre-
quent and severe is water deficit. Long-term water shortage may
threaten agricultural production over large geographic areas.
Understanding the mechanisms by which plants respond to
drought and by which they recover from it is crucially important,
particularly in the light of recent global climatic changes. Plants
respond to drought by a plethora of reactions, including fast
changes, such as stomatal closure to reduce their rate of water
loss by transpiration, as well as a substantial modulation of their
metabolism and growth.1,2 Drought-induced cessation of shoot
growth is accompanied by the inhibition of new leaf initiation
and by the accelerated senescence of older leaves. The decrease
in canopy area ensures lower transpiration and higher water
retention.3 In contrast to shoots, roots continue to grow, albeit
with some morphological modifications, in order to reach water
in deeper layers—primary roots elongate, but branching is
diminished.4-6 A balance between growth and carbon supply is
achieved through a complex regulatory network in which sugars
(e.g., glucose, sucrose and starch) and phytohormones, mainly
ABA (abscisic acid) and cytokinins (CK) perform central roles.6-9

The stomatal closure caused by water deficit not only reduces
transpiration, but lowers gas exchange generally. This result in
decreased CO2 diffusion to the chloroplasts, which downregulates
carbon assimilation. NADPH consumption by the Calvin cycle
decreases, causing an increase in NADPH:NADP+ ratio. Over
reduction of components within the electron-transport chain in

the chloroplast thylakoid membranes cannot be balanced by
availability of the electron acceptor NADP+. Instead, electrons
are captured by water resulting in the generation of ROS (reac-
tive oxygen species).10 Under conditions of reduced rates of
photosynthesis, the excess reducing power needs to be further
diminished by photoinhibition and/or by an increase in photo-
respiration.11 Under water stress, metabolic pathways which
convert excess NADPH into NADP+ are also stimulated.

An example of such a pathway is the elevation of proline
biosynthesis from glutamic acid in the chloroplasts of water-
stressed plants, which consumes NADPH, decreases the
NADPH:NADP+ ratio in chloroplasts and in turn reduces ROS
production.12 Thus, proline functions not only as an osmopro-
tectant, a molecular chaperone, a pH buffer and a source of
carbon and nitrogen during recovery, but also as important
compound decreasing ROS concentrations in both direct and
indirect ways.13

To understand proline metabolism at a whole plant level, we
measured free proline concentrations in leaves and roots of
tobacco under drought stress and during subsequent recovery.14

We also determined transcript abundances of three copies of the
PDH gene encoding proline dehydrogenase (PDH), the key
enzyme in proline degradation, and of two P5CS genes coding for
the rate-limiting proline biosynthetic enzyme, D1-pyrroline-5-
carboxylate synthetase.15 Consistent with other studies, PDH
genes were downregulated and P5CS genes upregulated under
prolonged drought stress in tobacco.16,17 However, the stress
response differed markedly between root and shoot. The P5CS A
gene, which responded to drought more intensely than the
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P5CS B gene, was upregulated to a higher level in the shoot than
in the root. Its transcript level was also much higher in the three
uppermost leaves than in middle and bottom ones. Free proline
concentrations correlated well with levels of expression of the
proline metabolism genes, being highest in the upper leaves.
Photosynthesizing tissues, mainly the youngest and the most
metabolically active leaves, also maintained the high free proline
concentrations. Our results were consistent with the suggested roles
for proline as an ROS scavenger and of proline biosynthesis as
metabolic process that diminishes an excess of reducing power in
chloroplasts of plants under drought.12,18 The antioxidant function
of proline and its biosynthesis in chloroplasts seems to be at least
as essential for drought survival as its role as an osmoprotectant.

Proline also seems to play an important role during recovery
from drought stress. While rehydration is quickly perceived by
the plant, which is reflected for example in the fast down-
regulation of expression of dehydrin encoding genes, the P5CS A
transcript level and free proline content remain high in tobacco
leaves. As dehydrins were reported to change membrane com-
position and concomitantly photosynthetic capacity, their high
content might be unfavorable under well-watered conditions.19

In contrast with dehydrins, the levels of both proline biosynthesis-
related transcripts and free proline descended, but remained
well above the basal level for at least some time after the stress
relief. Interestingly, the uppermost leaves with the highest proline
concentration also showed the highest upregulation of the
CSP41a gene, which is involved in chloroplast mRNA turnover.
This observation emphasized the importance of proline for the
restoration of chloroplast function on recovery from drought.

When water shortage is relieved, the plants need to restart
growth as quickly as possible and this requires modulation of
the normal senescence program. In order to follow senescence
under drought stress and subsequent recovery in more detail,
we employed SAG12:ZOG1 transgenic tobacco plants.6 The
expression of ZOG1 can be used as a marker of the activity of
senescence related promoter SAG12.20 This gene encodes a trans-
zeatin O-glucosyltransferase, an enzyme which converts the
physiologically highly active cytokinin trans-zeatin into its storage
form (trans-zeatin O-glucoside).21 SAG12:ZOG1 transgenic plants
exhibited elevated total CK content, but the level of bioactive
CKs was not significantly different from the corresponding
wild-type. The transgenic plants exhibited a mild delay in the
senescence of drought-stressed lower leaves and a little faster
recovery. However, their drought stress response was comparable
to that of wild type plants.6,22 We preferred the analysis of the
SAG12:ZOG1 construct to endogenous senescence-controlled
genes because ZOG1 expression was driven exclusively by the
SAG12 promoter and not modulated by additional regulatory
motifs. As the differences in the expression of proline metabolic
genes did not reach statistical significance between the studied
genotypes, we used this transformant to evaluate the expression
of stress related genes.

As demonstrated in Table 1, SAG12 promoter activity was
strongly stimulated during prolonged drought stress. Nevertheless,
the gradient between young and old leaves was maintained, only
its steepness being enhanced. After re-watering, SAG12 activity

was strongly inhibited. Promoter activity was much lower in re-
watered plants than in the corresponding well-watered controls,
which already exhibited natural senescence (Fig. 1). However, the
lower yellow drought-stressed leaves, which exhibited the highest
SAG activity, died. It seems that there is a threshold in the process
of leaf senescence, beyond which reversal to an active metabolic

Table 1. The activity of the senescence-associated promoter SAG12 during
the drought stress and subsequent recovery

Leaf number 6-d drought 1-d recovery Control

Mean SE Mean SE Mean SE

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0,001 0,001 0,005 0,005 0 0

4 0,010 0,004 0,001 0,001 0,003 0,001

5 0,036 0,004 0,001 0 0,018 0,004

6* 0,535* 0,012 0,017 0,002 0,300* 0,042

7 0,367 0,010 0,130 0,047 1,200 0,250

8 9,109 0,406 1,653 0,312

9 4,351 0,330

10 14,160 1,106

11 15,994 0,659

12 18,417 1,280

The relative ZOG transcript levels (normalized against Act9 according to
Dobrá et al. 2011) in SAG12:ZOG1 transgenic tobacco leaves along the axis,
numbered from the top.Dramatic increase in ZOG expression, which reflected
senescence-related SAG12 promoter activity, was observed in the sixth
leaf in drought-stressed and control plants (marked by asterisk). SAG12
activity remained low in all leaves during recovery. SE –, standard error.

Figure 1. The relative ZOG transcript levels in transgenic SAG12:ZOG1
tobacco leaves along the axis, numbered from the top and expressed in
logarithmic scale. Low ZOG expression and thus low activity of a
senescence-related SAG12 promoter was measured in all surviving leaves
during recovery. Three plants were analyzed under each experimental
treatment, transcript levels were measured in two independent qRT PCR
assays.
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state is no longer possible. Leaves seem to follow two mutually
exclusive scenarios on recovery—restoration of photosynthesis
and metabolism, or death. The decision between the two fates
depends on the degree of senescence in a particular leaf.

Thus, recovery after stress is a very complex process involving
rearrangements of many metabolic pathways. It is not just a
return to the state before stress initiation.12,23 The young and
middle leaves, protected during the drought stress, rapidly increase
their rate of photosynthesis.21,24 This results in enhanced carbon
assimilation enabling the re-establishment of plant growth.
However, the oldest leaves, in which senescence is most advanced,
are lost. Thus, canopy area is further reduced on drought
recovery, but surviving leaves show higher metabolic activity than
leaves of control plants which were not exposed to stress.3,8,23

Our results document that both stress response and recovery
are fine tuned at the whole plant level. Whereas the plant
rejuvenates some parts, others are sacrificed depending on the
degree of their senescence.
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