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Abstract
The purpose of the study was to quantify the influence of amplitude cancellation on the accuracy
of detecting the onset of muscle activity based on an analysis of simulated surface
electromyographic (EMG) signals. EMG activity of a generic lower limb muscle was simulated
during the stance phase of human gait. Surface EMG signals were generated with and without
amplitude cancellation by summing simulated motor unit potentials either before (cancellation
EMG) or after (no-cancellation EMG) the potentials had been rectified. The two sets of EMG
signals were compared at forces of 30 and 80% of maximum voluntary contraction (MVC) and
with various low-pass filter cut-off frequencies. Onset time was determined both visually and by
an algorithm that identified when the mean amplitude of the signal within a sliding window
exceeded a specified standard deviation (SD) above the baseline mean. Onset error was greater for
the no-cancellation conditions when determined automatically and by visual inspection. However,
the differences in onset error between the two cancellation conditions appear to be clinically
insignificant. Therefore, amplitude cancellation does not appear to limit the ability to detect the
onset of muscle activity from the surface EMG.
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1. Introduction
Much effort has been devoted to determine accurate and reliable methods to detect the onset
of muscle activity from electromyographic (EMG) recordings, as the measurement can be
important for determining the pattern of muscle activation in both experimental and clinical
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research (Chang et al. 2006; Dorel et al. 2008; Babyar et al. 2007; Cordo and Nashner 1982;
Dimitrova et al. 2004; Graupe et al. 1982; Micera et al. 1998; Nieuwboer et al. 2004;
Zardoshti-Kermani et al. 1995). Numerous methods have been proposed to process and
automatically analyze EMG signals that minimize errors in detecting the onset of muscle
activity (Micera et al. 1998; Di Fabio 1987; Hodges and Bui 1996; Lee et al. 2007; Li and
Caldwell 1999; Merlo et al. 2003; Staude et al. 2001; Studenski eat al. 1991; Türker 1993;
Van Boxtel et al. 1993).

Despite recent advances in EMG onset detection algorithms (Lev Vaisman et al. 2010;
Solnik et al. 2010), it remains unclear if estimates of the onset of muscle activity from the
surface EMG are confounded by the reduction in signal amplitude due to the overlap of
opposing phases of motor unit action potentials (Day and Hulliger 2001; Keenan et al.
2005). Such amplitude cancellation results in an unavoidable loss of information in the
surface EMG signal and varies with the force of the contraction (Day and Hulliger 2001;
Keenan et al. 2005; 2006). The attenuation of EMG amplitude presumably influences the
ability to detect the onset of muscle activity. This effect may differ depending on whether
the onset of an EMG signal is determined by visual inspection or with a computer algorithm,
which defines when the signal amplitude within a specific duration is greater than a
specified value above the baseline mean.

The purpose of this study was to quantify the influence of amplitude cancellation on the
accuracy of detecting the onset of muscle activity based on an analysis of simulated surface
EMG signals. The primary hypothesis was that amplitude cancellation would impair the
ability to detect the onset of simulated EMG signals. Furthermore, we hypothesized that
amplitude cancellation would influence the parameters of the computer algorithm and low-
pass filter frequency that produced the least amount of onset error.

2. Methods
Simulated surface EMG signals were generated using an adapted version of a model of
motor unit recruitment and rate coding (Day and Hulliger 2001; Keenan et al. 2005;
Fuglevand et al. 1993). The model was modified to simulate the isometric force properties
of a generic lower limb muscle during 540 ms of the stance phase of human walking
(Ishikawa et al. 2005). Surface EMG signals with and without amplitude cancellation were
generated at different force levels and with different signal characteristics. EMG onset was
estimated visually and with different computer algorithms for both the cancellation and no-
cancellation EMG signals. The actual EMG onset time for each force level was determined
as the average over 20 trials from EMG signals simulated without amplitude cancellation
and without white Gaussian noise added to the signal. Each of the 20 trials involved a
random distribution of the motor unit territories in the muscle, which simulates the
variability that would occur across subjects, while keeping the activation pattern the same.
The error in detecting EMG onset at each force level corresponded to the difference between
the onset times identified in each condition and the actual EMG onset time.

2.1. Model parameters
The model was implemented in MATLAB® version 6b (The Mathworks, Natick MA). The
parameters of the model were similar to those described previously (Keenan et al. 2005;
Fuglevand et al. 1993), but were modified so that the properties of the simulated motor unit
pool resembled those of a generic lower limb muscle. The accuracy of the model was
determined by visually comparing the simulated force profile with the experimentally
observed force profile measured in the Achilles tendon during the stance phase of human
walking (Ishikawa et al. 2005) (Figure 1). The simulated motor unit pool comprised 350
motor units, with an exponential distribution of recruitment thresholds, twitch forces, and
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twitch contraction times (Fuglevand et al. 1993). Motor unit recruitment and discharge rates
were determined by an excitation function that acted on the entire motor unit pool. Minimal
discharge rates were set at 8 pulses per second (pps) for all motor units, whereas maximal
discharge rates decreased linearly from 35 pps for motor unit 1 to 25 pps for motor unit 350.

The simulated muscle was modeled as an anisotropic, non-homogeneous, cylindrical volume
conductor with surrounding layers of subcutaneous tissue and skin. It was modeled to have a
circular cross-sectional area with muscle fiber lengths and diameters, innervation numbers,
and motor unit territories similar to those used previously (Keenan et al. 2005). Motor unit
action potentials were generated for each active motor unit and were either summed and
then rectified (cancellation condition) or rectified and then summed (no-cancellation
condition). The surface EMG was generated based on a bipolar electrode configuration with
an inter-electrode distance of 10 mm and with circular electrodes that were 4 mm in
diameter (Keenan et al. 2005). The simulation was run 20 times for each condition so that
the variability in the model parameters could influence the variability in the surface EMG
signals.

2.2. Simulated conditions
To evaluate the influence of amplitude cancellation in combination with different signal
conditions, simulated surface EMG signals were generated with and without amplitude
cancellation at different forces and low-pass filter cut-off frequencies. Previous
investigations have shown that the amount of amplitude cancellation can be greater at larger
forces (Keenan et al. 2005). Therefore, the simulated EMG signals were generated at forces
equivalent to 30 and 80% MVC force so that it was possible to determine the influence of
different amounts of amplitude cancellation on the ability to detect the EMG onset time. The
EMG signals in both cancellation conditions were low-pass filtered with cut-off frequencies
of 100, 350, and 500 Hz, which corresponds to the low-pass filter cut-off frequencies used to
condition EMG signals for onset detection (Micera et al. 1998, Hodges and Bui 1996; Merlo
et al. 2003). White Gaussian noise was added to the EMG signals so that the signal-to-noise
ratio (SNR) for the cancellation EMG at each force level was 15 dB (Bonato et al. 1998;
Guia Rosa et al. 2008). The same level of noise was added to the EMG signals in both
cancellation conditions (cancellation and no-cancellation) to match experimental settings in
which the level of noise within a signal is due primarily to external factors (Türker et al.
1993). This meant that the no-cancellation signals had greater SNRs.

2.3. EMG onset detection
Surface EMG signals were generated at each force without amplitude cancellation and
additive white noise to identify the actual EMG onset time at each force in the simulated
surface recordings. The time at which the EMG signals first had a value greater than zero
was set as the EMG onset time. These EMG signals were generated over 20 trials at each
force, and the average EMG onset time at each force was set as the actual EMG onset time.

The EMG onset times for both cancellation conditions were estimated by visual inspection
and with computer algorithms similar to those used previously (Di Fabio 1987; Hodges and
Bui 1996). The computer algorithms utilized a sliding window with durations of 10, 25, and
50 ms that were advanced in 0.2 ms steps starting from the beginning of the signal. If the
mean value within the sliding window was greater than either 1, 2, or 3 SDs of the baseline
noise, then the middle sample within the window was taken as the EMG onset time. The
middle sample of the window was used to reduce the incidence of onset times that were
delayed from the actual onset time and to minimize the presumed influence of the slope of
the EMG trace on the estimate of onset time (Hodges and Bui 1996).
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The error in the EMG onset time as estimated with these computer algorithms was
quantified at each force level for four conditions: amplitude cancellation, low-pass filter cut-
off frequency, sliding window, and SD threshold. Positive and negative onset errors
indicated that EMG onset time was estimated to occur either after or before the actual onset
time, respectively.

To test the influence of amplitude cancellation on visually determined EMG onset times,
two individuals with experience in analyzing EMG signals determined the onset of the
simulated surface EMG signals by visual inspection. Each individual visually determined
the onset of nine EMG signals at each force level for two conditions: amplitude cancellation
and low-pass filter cut-off frequency. The two individuals visually examined the same EMG
signals at each force three times, but separated their analysis of EMG signals by at least two
days. The time resolution available to the two investigators to view the surface EMG signals
ranged between 1 s and 0.2 ms. Furthermore, a cursor that identified the time and amplitude
coordinates of the each EMG data point was used by the investigators to assist in estimating
EMG onset time.

2.4. Statistical analysis
To quantify the amount of amplitude cancellation in the EMG signals, the root-mean-square
(RMS) values were determined across all signal conditions for each force level over the first
250 ms of the EMG signals. Paired t-tests were used to compare the RMS values between
the cancellation and no-cancellation EMG signals at each force level. Repeated-measures
ANOVA (Huynh – Feldt correction) was used to compare the EMG onset errors obtained
from the estimation of EMG onset times using the computer algorithms. There were five
factors in this within-subjects comparison (amplitude cancellation, target force, low-pass
filter cut-off frequency, sliding window duration, and SD threshold). Repeated-measures
ANOVA (Huynh – Feldt correction) was also used to compare the EMG onset errors
obtained with the visual-inspection method of onset detection. There were three factors in
this within-subjects comparison (amplitude cancellation, target force, and low-pass filter
cut-off frequency) and one between-subjects factor (investigator).

Post-hoc analysis with paired-samples t-tests were used when appropriate to compare the
onset errors of signals in the cancellation and no-cancellation condition at each force, low-
pass filter frequency, sliding window, and SD threshold. Bonferroni-corrected multiple-
comparisons analysis was used to identify differences in EMG onset errors between each
force, low-pass filter frequency, sliding window, and SD threshold for the cancellation and
no-cancellation signals. Statistics were performed in SPSS versions 17.0, and a P value less
than 0.05 was considered significant for the ANOVA analysis; whereas a P values less than
0.025 or 0.017 were considered significant when post-hoc analysis consisted of two (force
level) or three comparisons (low-pass filter cut-off frequency, sliding window duration, SD
threshold), respectively. All values in text are reported as mean ± standard deviation.

3. Results
The surface EMG signals generated with amplitude cancellation had significantly lower
RMS values than those with no amplitude cancellation at all forces (P < 0.001). The
standard deviations of actual EMG onset times at 30% and 80% MVC force were 0.25 and
0.14 ms, respectively. Figure 2 shows representative examples of EMG signals generated
with and without amplitude cancellation at 30% MVC force.

3.1. Computer-based EMG onset
The EMG onset error for the signals with and without amplitude cancellation was negative
when averaged across all other EMG signal conditions and computer algorithms indicating
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that onset was estimated to occur before the actual EMG onset time. Contrary to
expectations, the average error in EMG onset time from the simulated surface EMG signals
with amplitude cancellation (−8.56 ± 12.9 ms) was significantly less (P < 0.001; Huynh-
Feldt correction) than the error in the signals without amplitude cancellation (−9.80 ± 12.7
ms) across all other signal conditions (force and low-pass filter cut-off frequencies) and
computer algorithms (sliding windows and SD thresholds). Furthermore, the pattern of onset
error differed for the EMG signals in the cancellation and no-cancellation conditions as
indicated by significant 2-way interactions between the cancellation conditions and all the
other parameters (force, low-pass filter cut-off frequencies, sliding windows, and SD
thresholds; P < 0.001 – Huynh-Feldt correction).

The onset error varied with the target contraction force (P = 0.002), and was −7.99 ± 12.9
ms at 30% and −10.4 ± 12.6 ms at 80% MVC force when averaged across the two
cancellation conditions. Post-hoc analysis indicated that EMG onset error for the no-
cancellation conditions was significantly greater than for the cancellation conditions at each
target force (P≤0.001; Figure 3A).

The influence of the low-pass filter cut-off frequency on the onset error differed between the
cancellation and no-cancellation signals (P < 0.001 – Huynh-Feldt correction). Post-hoc
analysis revealed that the onset error was greater for the no-cancellation conditions at each
low-pass filter cut-off frequency (P < 0.001). The onset errors ranged from −14.6 ± 18.7 ms
at 100 Hz to −7.01 ± 6.68 ms at 500 Hz, and from −14.3 ± 18.8 ms to −4.97 ± 6.91 ms for
the no-cancellation and cancellation conditions, respectively. The low-pass filter cut-off
frequency at which the average onset error was minimal was 500 Hz for both cancellation
conditions (Figure 3B).

The accuracy of detecting the EMG onset time varied across the SD thresholds (P < 0.001 –
Huynh-Feldt correction). Post-hoc analysis revealed that the onset error at each SD threshold
was greater for the no-cancellation conditions (P < 0.001). The onset error across all SD
thresholds ranged from −15.3 ± 18.8 ms for 1 SD through −3.63 ± 6.19 ms for 3 SD for the
cancellation conditions and from −15.5 ± 18.7 ms to −6.25 ± 6.18 ms for the no-cancellation
conditions (Figure 4A). Also, the error was least when the threshold was set at 3 SD for both
cancellation conditions.

Onset error was influenced by the duration of the sliding window (P < 0.001 – Huynh-Feldt
correction). Post-hoc analysis showed that the onset error was significantly greater for the
no-cancellation conditions compared with the cancellation conditions for sliding-window
durations of 25 and 50 ms (P < 0.001), but the onset error did not differ for the cancellation
compared with the no-cancellation conditions when a sliding window of 10 ms was used in
the computer algorithms (P = 0.033). A sliding window of 50 ms resulted in the greatest
onset error for both cancellation conditions and resulted in the greatest difference in onset
error between the cancellation (−12.9 ± 7.51 ms) and no-cancellation (−16.2 ± 3.12 ms)
conditions. The sliding window duration that resulted in the least onset error was 25 ms for
both the cancellation (-6.08 ± 5.43 ms) and no-cancellation (−6.53 ± 4.77 ms) conditions
(Figure 4B).

There were combinations of signal conditions and computer algorithms that produced onset
errors of less than 1.0 ms for the cancellation and no-cancellation conditions. These
parameters always included window durations of 10 ms and thresholds of 2 or 3 SDs above
baseline noise. The combination of parameters that minimized the onset error was identical
for both EMG cancellation conditions.
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3.2. Visual onset determination
Two investigators visually determined the onset of muscle activity from the same signals.
The average coefficient of variation for onset times across days was low for both
investigators. The greatest coefficient of variation across days was 0.30 ± 0.185%, which
was achieved by investigator 1 at 80% MVC force across the no-cancellation signals. The
average onset error across all conditions differed for the two investigators: 0.364 ± 2.11 ms
for investigator 1 and 2.15 ± 1.55 ms for investigator 2 (P < 0.001). However, the data were
averaged across investigators.

In contrast to the computer-based methods, visual inspection typically estimated the EMG
onset time to occur after the actual EMG onset time. Contrary to expectations, the onset
error was greater for the no-cancellation conditions (1.67 ± 1.88 ms) than for the
cancellation conditions (1.03 ± 0.991 ms) based on visual inspection of the EMG signals (P
< 0.001).

The onset error varied with the force of the contraction (P < 0.001) and the influence of
amplitude cancellation on the onset error differed across target forces (P < 0.001). Post-hoc
analysis indicated that onset error at each target force was greater for the no-cancellation
than the cancellation conditions (P≤0.006). The greatest amount of error occurred at 80%
MVC for both the cancellation (1.57 ± 0.880 ms) and no-cancellation conditions (2.32 ±
2.18 ms) (Figure 5A).

Low-pass filtering the EMG signals significantly altered the onset error obtained by visual
inspection (P < 0.001), and led to different patterns of onset error for the cancellation and
no-cancellation conditions (P < 0.001). For example, the least amount of error occurred in
the EMG signals when low-pass filtered with a cut-off frequency of 100 Hz for the
cancellation conditions (0.277 ± 1.10 ms) and 350 Hz for the no-cancellation conditions
(1.38 ± 0.636 ms). Post-hoc analysis indicated that the onset error was significantly less for
the cancellation compared with the no-cancellation EMG signals only at a low-pass filter
cut-off frequency of 100 Hz (P < 0.001; Figure 5B).

Similar to the results for the computer-based methods, onset errors of less than 1.0 ms for
both cancellation conditions were observed with the visual-inspection method. However, the
particular signal conditions that minimized onset error differed for the two cancellation
conditions.

4. Discussion
The results of the current study indicate that the presence of amplitude cancellation in the
surface EMG influences the ability of both computer algorithms and visual examination of
the recording to detect the onset of muscle activity. Contrary to the hypothesis, amplitude
cancellation did not limit the ability to detect the onset of muscle activity using either
computer algorithms or visual inspection.

4.1. Computer-based methods
Although we hypothesized that amplitude cancellation would increase the error in detecting
the onset of muscle activity from the surface EMG, onset error was greater for signals with
no amplitude cancellation and for stronger contractions. Furthermore, the greatest difference
in onset error between the cancellation and no-cancellation conditions occurred at the lower
force (30% MVC force), in which the amount of amplitude cancellation was less than at
80% MVC force. These finding suggest that the initial slope of signals largely influences the
ability to detect the onset of EMG signals and that the increase in observed onset error may
increase non-linearly and approach a plateau at larger initial slopes.
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Signals without amplitude cancellation had SNRs that were greater than those with
amplitude cancellation, which resulted in a large slope at the beginning of an EMG signal
(Figure 2). Although larger slopes have been associated with greater accuracy in
determining the onset of the surface EMG signal, the large slope likely increased the early
onset detection for the no-cancellation EMG signals (Merlo et al. 2003; Staude et al.1996;
2001). Although the use of the middle of the sliding window was expected to reduce the
incidence of delayed EMG onset times and result in more accurate onset time estimates
(Hodges and Bui 1996), it often resulted in early detection of EMG onset for the signals
without amplitude cancellation. Thus, the SNR and slope of signal should be considered
when determining when the onset is defined within a sliding window. For example, it seems
that the onset should be defined later in the window for signals with large SNRs and initial
slopes.

Low-pass filtering of surface EMG signals is commonly used to assist in identifying the
onset of the signal because it attenuates abrupt changes in the surface EMG and reduces the
probability of a computer algorithm incorrectly specifying the onset of the surface EMG
activity (Cordo and Nashner 1982; Hodges and Bui 1996; Morey-Klapsing et al. 2004;
Staude et al. 1996; 2001). The influence of the low-pass filter cut-off frequency, however, is
not monotonic. For example, Hodges and Bui (1996) showed that excessive smoothing
(such as a cut-off frequency of 10 Hz) or not enough smoothing (such as a cut-off frequency
of 500 Hz) both lead to large errors in detecting the onset of an EMG signal, which led
Hodges and Bui (1996) to recommend a low-pass filter with a cut-off frequency of 50 Hz. In
contrast to the results of Hodges and Bui (1996), low-pass filtering at 500 Hz led to the least
amount of error for both cancellation conditions in the current study. The contrasting results
are likely due to differences in the temporal and amplitude features of the signals between
the two studies. For example, the EMG traces shown in Hodges and Bui (1996) indicate that
the amplitude of the experimentally recorded EMG signals, in which the actual onset was
not known, returned briefly to baseline soon after the contraction began (~250 ms), whereas
the no-cancellation signals in the current study did not return to baseline until the
contraction ended (540 ms). Furthermore, onset was defined as the middle of the sliding
window in the current study and as the initial sample in Hodges and Bui (1996). This finding
seems to indicate that the choice of low-pass filter cut-off frequency depends not only on the
temporal and amplitude characteristics of the signal, but also on the specific parameters used
in the detection algorithm.

The ability of the computer algorithm to detect the onset of the surface EMG in both
cancellation conditions depended on the SD threshold used by the computer algorithm.
Although the error was statistically greater for the no-cancellation conditions for each SD
threshold used, a threshold of 3 SD led to the least amount of error in both cancellation
conditions. Furthermore, the 3-SD threshold led to the greatest difference in onset error
between the two cancellation conditions. Nonetheless, the results indicate there is no single
SD threshold that is optimal and the value depends on the other parameters of the computer
algorithm and signal conditioning.

Previous studies have reported that moderate window durations (25 ms) are preferable for
detecting the EMG onset time (Hodges and Bui 1996). The results of the current study
confirm these findings. EMG signals in both cancellation conditions required, on average, a
moderate window duration (25 ms) to minimize the error in detecting the onset of the EMG
signals. However, the onset error was still greater for the no-cancellation conditions, except
when the window duration was 10 ms. The combination of the initial slopes of the EMG
signals and the choice of defining the middle sample of the sliding window as the point of
onset detection may have also influenced these results. Because the mean value within the
sliding window likely reached the prescribed threshold in the no-cancellation signals before
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the cancellation signals, use of the last point rather than the middle sample of the window to
define EMG onset may have reduced the early onset estimates for the non-cancellation
signals.

The results from the computer-based analysis of EMG onset indicate that amplitude
cancellation resulted in statistically less error in detecting the onset of muscle activity from
the surface EMG. However, the differences in onset error between the signal conditions
were often less than 1 ms, which is of little practical or clinical consequence. Furthermore,
minimization of onset error for both the cancellation and no-cancellation conditions with the
same parameters and low-pass filter cut-off frequencies may have been the consequence of a
better match between these parameters and the temporal and amplitude characteristics of the
cancellation signals than no-cancellation signals.

4.2. Visual onset determination
Contrary to expectations, errors in detecting EMG onset by visual determination were
greater for the no-cancellation conditions than for the cancellation conditions. This was due
to the difficulty in identifying the onset of the EMG signals in the cancellation condition
because of the noise in the signal, and the two experts typically erred on the side of
assigning the onset to be earlier and thus closer to the actual EMG onset time. Nonetheless,
the results from the visual-inspection method indicate that signals generated at moderate
forces, low levels of noise, and sufficient smoothing can minimize errors in onset
determination.

Similar to the results from the computer-based detection of EMG onset time, the greatest
error occurred at the largest target force for both the cancellation and no-cancellation
conditions. This finding seems to indicate that investigators were more conservative in
assigning an onset time to a signal when the beginning slope of the signal was large.
Consistent with this interpretation, the difference in onset time between the cancellation and
no-cancellation condition was greatest for the 80% MVC force, in which the difference in
amplitude between the signals was greatest.

Onset error was greater for the no-cancellation than cancellation signals for each low-pass
filter cut-off frequency. In contrast to the results of the computer algorithm, the low-pass
filter cut-off frequency that resulted in the least amount of onset error differed between the
cancellation and no-cancellation conditions and was lower than the cut-off frequency that
minimized onset error for the computer algorithm (500 Hz). The finding indicates that the
higher frequency content in the EMG signals increases the difficulty for visually
determining the onset of muscle activity, especially for signals with amplitude cancellation.

4.3. Limitations
The current model aimed to estimate the influence of amplitude cancellation on a generic
lower limb muscle attaching to the Achilles tendon. Although attempts were made to model
the physiological characteristics of lower leg muscles, the pennation angle of the muscle
fibers was not included in the model. Previous research indicates that the orientation of the
electrodes relative to the muscle fibers can also influence the amplitude and frequency
characteristics of the EMG signal (Farina et al. 2004). Pennation angle is positively related
to the amplitude of the EMG signal (Hodges et al. 2003; Manal et al. 2008), however, an
increase in the angle between muscle fibers and the surface electrodes during a contraction
may reduce EMG amplitude and alter the frequency characteristics of the signal compared
with that detected for a parallel arrangement between electrodes and muscle fibers (Camic et
al. 2011; Vigreux et al. 1979). Furthermore, the muscle fibers and surface electrodes are not
always in parallel planes, as was the case for the current model. In some pennated muscles,
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for example the tibialis anterior, muscle fibers traverse a plane that is at an angle to the plane
of skin and subcutaneous tissue. Although Keenan et al. (2005) reported a similar pattern of
amplitude cancellation for the simulated EMG signal to that observed by Day and Hulliger
(2001) for the cat soleus muscle, the details of the influence of muscle fiber pennation angle
on amplitude cancellation have not been examined systematically. Presumably, pennation
angle will influence the combination of parameters that minimize the error in detecting the
onset of the EMG signal.

4.4. Conclusions and recommendations
Amplitude cancellation resulted in less error in detecting the onset of muscle activity in
simulated surface EMG signals when estimated with computer algorithms and by visual
inspection. Thus, it seems that amplitude cancellation may not limit the ability of computer
algorithms to detect the onset of EMG signals in signals with moderate to high forces and
with high SNRs. Furthermore, both computer algorithms and visual inspection can closely
approximate the onset of muscle activity from the surface EMG with or without the presence
of amplitude cancellation. However, the choice of algorithm and filtering technique should
be based on the amplitude and temporal characteristics of the signals.

Although the aim of the current study was to investigate the influence of amplitude
cancellation on the ability to detect EMG onset time, the results partially validate previous
work on the factors that influence the estimation of EMG onset time (Micera et al. 1998; Di
Fabio 1987; Hodges and Bui 1996; Lee et al. 2007; Li and Caldwell 1999; Merlo et al. 2003;
Staude et al. 2001; Studenski eat al. 1991; Türker 1993; Van Boxtel et al. 1993). The
findings confirm that estimates of onset times from experimental EMG signals (i.e., those
with amplitude cancellation) are influenced by the methods used to condition the signal.
Furthermore, onset error can be minimized in experimental EMG recordings by using visual
inspection to estimate onset time when the contraction force is moderate or high. Thus, the
performance of computer algorithms should be validated with estimates obtained by visual
inspection.
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Figure 1.
Experimental (gray) and simulated (black) Achilles-tendon force traces during the stance
phase of human walking. Force data are expressed as a percent of maximal force so that the
experimental and simulated force traces could be compared. The simulated force trace was
generated to achieve the maximal force that the model muscle could produce.
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Figure 2.
Representative example of simulated surface EMG signals for the cancellation (gray) and
no-cancellation (black) conditions at a target force of 30% MVC and a low-pass filter set at
500 Hz. The computer algorithm used to detect EMG onset comprised a sliding window of
50 ms and a threshold of 2 SD above baseline noise. The vertical lines indicate the average
onset times for selected signals.
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Figure 3.
Onset errors estimated with the computer algorithm for the simulated cancellation and no-
cancellation EMG signals. The errors were averaged across all other conditions for each
independent variable. A) Target forces of 30% and 80% MVC and B) Low-pass filter cut-off
frequencies of 100, 350, and 500 Hz. * P < 0.025 and P < 0.017 between the cancellation
and no-cancellation conditions for A and B, respectively.
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Figure 4.
Onset errors for the cancellation and no-cancellation EMG signals when using a computer
algorithm with A) threshold levels of 1, 2, and 3 SD above baseline noise and B) sliding
windows with widths of 10, 25, and 50 ms, averaged across all other conditions. * P < 0.017
between the cancellation and no-cancellation conditions.
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Figure 5.
Onset errors estimated from visual inspection of the simulated EMG signals in the
cancellation and no-cancellation conditions that were generated at A) forces of 30% and
80% MVC and B) low-pass filter cut-off frequencies of 100, 350, and 500 Hz, averaged
across all other conditions. * P < 0.017 between the cancellation and no-cancellation
conditions.
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