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Abstract
A central goal of biology is understanding and describing the molecular basis of plasticity: the sets of genes that are
combinatorially selected by exogenous and endogenous environmental changes, and the relations among the genes.
The most viable current approach to this problem consists of determining whether sets of genes are connected by
some common theme, e.g. genes from the same pathway are overrepresented among those whose differential ex-
pression in response to a perturbation is most pronounced.There are many approaches to this problem, and the re-
sults they produce show a fair amount of dispersion, but they all fall within a common framework consisting of a
few basic components. We critically review these components, suggest best practices for carrying out each step,
and propose a voting method for meeting the challenge of assessing different methods on a large number of experi-
mental data sets in the absence of a gold standard.

Keywords: gene set enrichment analysis; pathway enrichment analysis; expression analysis; GSEA; PWEA; performance
evaluation; controlled mutual coverage; CMC

INTRODUCTION
Understanding of complex polygenetic phenotypes—

stage of differentiation, disease state, responsiveness

to exogenous perturbations and so on—requires a

combination of high performance experimental and

analytical methods for identifying related sets of genes

(e.g. genes in pathways or functional classifications)

associated with phenotypic changes. Identification

generally means the discovery of gene sets that

were not previously known to be related, as well

as the determination of which sets among a known

collection (e.g. [1]). The former, more difficult prob-

lem is also known as the pathway reconstruction or

pathway annotation problem and discussed

elsewhere [2–5]; here we focus on the latter, includ-

ing the topological structure of the sets.

Early methods for associating gene sets with

phenotype changes first identify individual, poten-

tially relevant genes by making a binary decision

based on a quantity that measures the extent of dif-

ferential expression between the phenotypes (e.g.

performing a t-test and requiring P-value <0.01),

and then use a Fisher’s exact test to determine

whether a significant number of these genes belong

to a prespecified gene set [6, 7]. An alternative ap-

proach begins by ranking all genes according to dif-

ferential expression, and then determines if a

prespecified gene set is significantly overrepresented
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toward the top or bottom of the ranked list. Such a

procedure was first introduced by Subramanian et al.
[8] and their particular method was named Gene Set

Enrichments Analysis (GSEA). Here we use GSEA

broadly to describe all methods for associating gene

sets with phenotype changes. We abbreviate prespe-

cified gene sets among a known collection as gene

sets or simply sets. We use the terms enrichment and

overrepresentation as they are in normal parlance.

They do not distinguish method, but frames of ref-

erence: the members of a set are said to be over-

represented in a group of genes being examined,

and the group is enriched in members of the set.

The GSEA method by Subramanian et al. [8] con-

sists of the following specific steps: (i) rank all genes

by the magnitudes of their differential expression and

select a window in the ranked list, i.e. a contiguous

run of some number of genes starting at any rank,

(ii) define an enrichment score based on a weighted

Kolmogorov Smirnov (WKS) test that measures the

difference between the number of genes in a pre-

specified gene set that are observed in the window,

and the number of occurrences if the genes in the set

were uniformly distributed in the list, (iii) simulate a

background distribution of the enrichment score by

shuffling samples and estimate the statistical signifi-

cance of the gene set, (iv) repeat steps i–iii for all

prespecified gene sets (hypotheses) and for various win-

dow sizes, (v) correct for multiple hypotheses testing.

The strategy for performing GSEA has numerous

variants, depending on the method for estimating

significance (WKS test, mean test, median test,

Wilcoxon rank sum test, etc.); background distribu-

tion, which is related to the method for estimating

significance, but not always dictated by it; choice of

the shuffling method when the background distribu-

tion is simulated; the method for multiple hypothesis

correction; and the choice of weights to account for

auxiliary information such as topology of gene sets

[8, 9]. Several excellent reviews compared these vari-

ants [10–14]. In particular, Ackermann and Strimmer

[13] established a general modular framework for

performing GSEA. They critically assessed a subset

of gene set enrichment procedures using 10 simu-

lated data sets and 2 experimental data sets. In add-

ition, they assessed three so-called global procedures,

which do not compute a gene-level enrichment score;

rather, they test gene sets as the unit. Ackermann and

Strimmer concluded that the choice of gene-level

statistics was inconsequential, while the performance

of gene set-level statistics was more variable. All of

the gene set-level statistics rejected the only simu-

lated negative control data set, and based on the per-

centage of the other nine simulated data sets being

detected, Ackermann and Strimmer concluded that

the mean test was more sensitive than the median

test and Wilcoxon rank sum test, while GSEA was

the least sensitive. Furthermore, they concluded that

global procedures yielded worse results than the best

of the six gene set-level statistics they tested. Their

results on the two experimental data sets were in-

consistent with each other and inconsistent with the

results based on simulated data. They reported that

the results varied greatly depending upon the choice

of the null hypothesis, and one global procedure

called Hotelling’s T2 test was most sensitive for

one data set using one type of background distribu-

tion, while tests based on conditional FDR and en-

richment score, but not the mean test, were more

most sensitive in other combinations of experimental

data set and null hypothesis. Although the test on

experimental data sets is far more biologically rele-

vant than on simulated data sets, the results of the

former are harder to interpret due to the lack of a

gold standard, i.e. which gene sets are true positives

and which are true negatives.

Indeed, the lack of a gold standard has greatly ham-

pered the effort of assessing gene set enrichment

methods using experimental data sets. Biological

systems are so complex that simulated data sets

simply cannot substitute for experimental data sets.

Furthermore, it can be argued that the ability of re-

jecting false positive predictions is even more im-

portant than detecting lowly ranked true positives,

because it is costly to validate a large number of

predictions. Therefore, in this article, we focus on

experimental data sets. First we review the core com-

ponents of gene set enrichment methods in the as-

pects that are important to experimental data sets.

Then we use 132 experimental data sets to critically

assess six gene set-level statistics and one global test,

which received favorable ratings in previous reviews

[10, 13]. To tackle the lack of a gold standard, we

introduce the concept of mutual coverage (MC),

which reflects the extent to which the gene sets pre-

dicted by a particular method are reproduced by

other methods. Our results suggest that: (i) the

Wilcoxon rank sum test and the WKS test as imple-

mented in GSEA provide the most effective gene

set-level statistics for obtaining high MC, (ii) simu-

lated background distributions are more accurate than

analytic backgrounds, (iii) the mean and median tests
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achieve the highest sensitivity but poor MC, and

(iv) incorporating topology of gene sets in the ana-

lysis increases the sensitivity for all six procedures

without reducing MC.

COMPONENTSOF GSEA
In this section, we review the five core components

of GSEA methods as illustrated in Figure 1, focusing

on the aspects that are particularly important for ex-

perimental data sets.

Data preprocessing
There are two important but frequently overlooked

data preprocessing steps. Normalization allows ex-

pression values obtained from different experiments

to be directly comparable [15, 16]. The expression

values of a small, but different set of genes may be

missing in different microarray experiments due to

technical issues. Imputation of missing data is thus

important for maximal data coverage when the re-

sults of multiple experiments are compared.

A number of methods are available for normaliza-

tion [16, 17], yet this critical step is frequently

omitted [15]. The most common normalization

algorithms—RMA [16] and MAS 5.0 [18]—are de-

signed for expression levels generated with micro-

arrays that follow a lognormal distribution. Thus it

is important to log transform the raw intensity values

from microarrays. Failure to do so would bias toward

high expression values, reducing statistical power

because of increase in variance [16]. Log transform

is also applied to RNA-seq data. Expression

level determined by RNA-seq is usually quantified

in Reads Per Kilobase exon Model per million

mapped reads (RPKM; density of reads that map

to a gene normalized for the length of its mature

transcript and for the sequencing depth of the ex-

periment [19]), which after log transform correlates

well with normalized intensity measured with

microarray, also after log transform [19].

Missing data can be imputed using methods based

on K nearest neighbors, singular value decompos-

ition, or least square regression models. Least square

regression algorithms were reported to produce lower

estimation error than other methods [20, 21]. In this

article we use a popular least square regression algo-

rithm, LSimpute_gene [22], to impute missing values

in all 132 experimental data sets.

Single gene statistics
The first step in GSEA is to compute a gene-level

statistic of differential expression, e.g. a t statistic, a

signal to noise ratio (mean to standard deviation

ratio), a fold change or a Wilcoxon rank sum statistic.

Because phenotype change can affect different genes

in opposite directions, i.e. increase the expression

levels of some genes while decrease the levels of

others, and we want to be able to identify the

gene sets that contain both types of genes, it is de-

sirable to eliminate the direction of differential

expression by taking the absolute or square of the

Figure 1: Key components of performing gene set enrichment analysis.
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statistic [13, 23]. However, data transformations that

eliminate direction—such as absolute values—lead to

asymmetrical distributions, and can nullify some ana-

lytical estimates of significance based on analytical

background distributions such as the w2 test [24,

25] (see ‘Estimating significance’ and ‘The validity

of analytical background distributions’ sections).

The many-to-many correspondence between

genes and probe sets on a microarray creates ambi-

guity in determining expression levels of genes [26,

27]. A common practice is to calculate the mean or

median expression levels of the probe sets that cor-

respond to the same gene; however, doing so usually

increases the number of false negatives [28]. An al-

ternative is to perform meta analysis [28], using for

example, the method proposed by Fisher [29] or by

Stouffer [30, 31]. Rather than merging the expres-

sion values directly, these methods merge probe set-

level statistics. A similar problem exists in RNA-seq,

where some sequencing reads are mapped to mul-

tiple genomic locations. Such multi-mappers origin-

ate from paralogs, segmentally duplicated regions

and low sequence complexity [32]. Ignoring multi-

mappers reduces sensitivity and undercounts some

genes [19]. Strategies for assigning multi-mappers

are discussed in [19, 32, 33].

Gene set-level statistics
The purpose of a gene set-level statistic is to decide

whether a gene set is distinct in some statistically

significant way. A gene set statistic can be defined in

terms of properties of the genes in the set, e.g. the

mean, median, variance, etc. of a gene-level statistic

(see Table 1 for more details). When a property (and

its corresponding statistic) is chosen, the null hypoth-

esis must, of course, also be specified. There are two

null hypotheses as defined by Tian et al. [34]. In one

case (Q1) the background distribution is obtained by

shuffling genes; in the other (Q2), the background

distribution is obtained by shuffling phenotypes, i.e.

samples (see ‘Estimating significance’ section). The

rationale for using Q1 is that a significant gene set

should be distinguishable from an equal size set com-

posed of randomly chosen genes. On the other hand,

Q2 focuses on a gene set and tests whether its asso-

ciation with the phenotype change is distinguishable

from randomly shuffled phenotype changes. Q2 is

generally favored because it preserves the relationship

of the genes in the set [11, 12, 34] and directly ad-

dresses the question of finding gene sets whose ex-

pression changes correlates with phenotype changes. Ta
bl
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Gene set-level statistics generally ignore clinical

covariates—factors such as age, sex and weight—

which can also cause differential expression, con-

founding the impact of phenotype changes [35].

The effect of covariates can be estimated using, for

example, a linear regression model [35]. If a t statistic

is used in the gene level, it can be generalized using a

linear regression model for covariate correction, after

accounting for the increased number of variables to

avoid over fitting [35].

Most gene set-level statistics also ignore relation-

ships among genes within the set. For example, if the

gene set is a pathway, its topological information is

ignored. Including topological information is im-

portant for accounting for the effect of genetic buf-

fering [36], which deduces that if a gene fails to

propagate its influence to a pathway neighbor, its

biological role is buffered. Conversely, a gene that

regulates many of its downstream genes may play a

pivotal role in the expression changes of the pathway

associated with phenotype changes. Methods for

including topological information by weighted

gene set-level statistics are discussed in [9, 37, 38].

Estimating significance
We use significance in the standard way: the prob-

ability that the null hypothesis, evaluated on the

background (or null) distribution, is correct. The

background distribution can sometimes be written

analytically, as in the case of a Gaussian distribution,

and it can always be simulated by shuffling experi-

mental data. As noted in the above section, simulated

background is dictated by the choice of the null hy-

pothesis (Q1 or Q2), which often leads to different

conclusions [34].

Most frequently the gene set-level statistic, e.g. the

mean of the t-statistic values of genes in the set, is

assumed to follow a normal distribution when ex-

pression change has no association with phenotype

change [34]. In such case the significance (P-value) of

a gene set can be computed analytically [25]. Such an

assumption is in question when the expression levels

of genes in a set are dependent on one another,

which is common for genes in a pathway [34]. In

‘The validity of analytical background distributions’

section we will discuss analytical backgrounds and

empirical corrections [25] to make them more useful.

To be concrete in illustrating how significance is

estimated using a simulated background distribution,

suppose we are interested in estimating the probabil-

ity that the enrichment score obtained for a particular

gene set is a chance occurrence of phenotype

changes. The procedure would be to shuffle the

phenotype labels, calculate the differential expression

of each gene, rank all genes and compute an enrich-

ment score for the same gene set. The entire process

is repeated multiple times to obtain a distribution of

enrichment scores, and the P-value of the actual en-

richment score is simply the fraction of shuffles that

produce enrichment scores at least as great as

observed. Although simulating the background dis-

tribution obviates the need of an analytical back-

ground, it can be computational demanding—at

least N shuffles need to be performed to achieve a

P-value resolution of 1/N [39].

Correction for multiple testing
P-value is the appropriate measure of statistical sig-

nificance when only one gene set is tested. When a

large number of gene sets are tested, there can be

many false positives among the gene sets that receive

seemingly highly significant P-values; this is called

the multiple hypothesis testing problems. The sim-

plest procedure is to choose a P-value which, when

multiplied by the number of hypotheses, i.e. the total

number of tested gene sets, gives a sufficiently low

corrected P-value, e.g. <0.05. This Bonferroni cor-

rection [40] is, however, very conservative and

sometimes results in an unacceptably large number

of false negatives. An alternative is to control the

expected fraction of false positives among the pre-

dictions, or the false discover rate (FDR), using the

method by Benjamini and Hochberg [41]. The ori-

ginal Benjamini–Hochberg procedure assumes a uni-

form distribution for the P-values [41]. In some cases

when there are relatively many ‘non-null’ tests, i.e.

when low P-values are prevalent, an FDR variant,

positive FDR (pFDR) can be applied [42, 43]. The

corrected P-value is called Q-value, defined as the

‘minimum FDR at which a test is called significant’

[42, 44]. The relationship between Q-value and

FDR is analogous to that between P-value and

type I error [42]. The final significant gene sets are

the ones whose Q-values are smaller than an FDR

threshold.

THEVALIDITYOFANALYTICAL
BACKGROUNDDISTRIBUTIONS
Although appropriate usage of a standard analytical

background distribution facilitates rapid computation

of P-values with high precision, the critical question
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is how well the analytical background represents the

actual background. One way to test the validity of an

analytic background is to examine the distribution of

P-values under the null hypothesis, which should

be uniform [45, 46]. To address this question, we

generated 500 null data sets by shuffling the sample

tags of an arbitrarily chosen human data set from the

Gene Expression Omnibus (GEO; a public database

of high throughput gene expression data), GDS2835

[47]. We constructed the histograms of the null

P-value distributions using five gene set-level metrics

summarized in Table 1, with analytical and simulated

backgrounds.

The results indicate that P-values are uniformly dis-

tributed when background distributions are generated

by shuffling, irrespective of metric (Figure 2A),

whereas the distributions obtained using analyt-

ical background distributions are highly nonuniform,

and metric dependent (Figure 2B). The null P-value

distribution of the w2 test as shown in Figure 2B

deviates greatly from a uniform distribution, because

taking the absolute value of the gene-level statistic

causes the background to no longer follow the w2

distribution. Taking the absolute value does not vio-

late the analytical background distributions of the

mean, median and Wilcoxon rank sum tests; none-

theless, their null P-value distributions deviate from

the uniform distribution. The biased null P-value

distribution further violates the assumption of the

FDR procedure (‘Correction for multiple testing’

section). Thus we conclude that it is more accurate

to use simulated backgrounds than analytical

backgrounds.

COMPARISONOF GENE SET-LEVEL
STATISTICS
The problem of comparing different methods for

gene set enrichment analysis is made difficult by

the lack of a gold standard. One can mine the litera-

ture to obtain evidence on whether a gene set is

associated with the phenotype change, but this can

only be done on a small scale. An alternative is to

quantify the number of overlapping predictions

(gene sets called significant) by several methods

[9, 48]. Because each method can capture a piece of

the evidence (from the location of mean, shape of

distribution, etc.) of biological perturbation, gene

sets predicted by multiple methods should be more

reliable than gene sets predicted by only one

method. In this article we propose a formal way to

use the MC of multiple methods for evaluating gene

set-level statistics.

Mutual coverage
We state the concept of MC by multiple methods in

precise terms:

Observation 1: given several orthogonal predictors

(e.g. gene set-level statistics), a gene set deemed

significant by more predictors is less likely to be

false than a gene set deemed significant by fewer

predictors. The term orthogonal here means that

different gene set-level statistics do not use corre-

lated properties to make the prediction. Since ‘mu-

tually supported gene sets’ identified by multiple

predictors show statistical significance from multiple

distinct properties, they might better reflect the

underlying biology of phenotype changes.

Figure 2: P-value distribution of null by (A) simulated
background and (B) analytical background. It is clear
that analytical backgrounds give biased P-value distribu-
tions. WKS (i.e. GSEA) is not shown in (B), because
WKS does not follow an analytical background.
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Observation 2: if a particular predictor reports a

high fraction of ‘mutually supported gene sets’,

we assume it has high positive predictive value, es-

pecially if the number of predictors is exhaustive.

We define MC of a predictor as the ratio of the

number of votes from other predictors agreeing

with its predictions divided by the maximum

number of votes possible (see ‘Methods’ section

for details).

Controlled mutual coverage for
correlated predictors
The condition that predictors be orthogonal is

almost never met. Figure 3 illustrates the Pearson

correlation coefficient between the gene set-level

statistics in Table 1. For example, mean and

median are strongly correlated. If a predictor has

many ‘echoes’, its MC can be overestimated. One

way to correct for correlations among predictors

is to down weight the votes from the echoes. An

intuitive approach is to weight each vote according

to the probability that two gene set-level statistics

agree with each other by chance. In other words,

if predictor A has a probability p of voting for

all predictions of predictor B by chance, votes

from A will be weighted by a function of p; in this

article, we simply take it as the inverse of p.

Therefore correlated predictors having higher p
receive lower weights. To compute p, we gene-

rated 500 randomly phenotype-shuffled data sets

from the aforementioned experimental data set

(GEO GDS2835) and computed the expected fre-

quency that two gene set-level statistics predict

the same gene set as significant (see ‘Methods’

section for more details). After weighting and nor-

malization, a controlled MC score (CMC; see

‘Methods’ section) is calculated and the effects of

echoes are controlled.

We generated 132 null data sets by randomly

shuffling the phenotype tags of an experimental

data set (GEO GDS2835), and computed the

CMC scores of the 5 original gene set-level statistics

and Hotelling’s T2 test in one group, and the CMC

scores of the 5 topology impact factor (TIF) [9]

weighted gene set-level statistics in another group.

All 1l statistics show similarly low CMC scores (the

first row of Table 2, labeled as ‘Null data set’), indi-

cating that the contributions from correlated predict-

ors have been substantially diminished. We did not

compute CMC for a TIF weighted gene set-level

statistic with its original statistic in one group, be-

cause they are highly correlated (Figure 3).

Test on 132 experimental data sets
We collected and processed 132 human data sets

from GEO, in accordance with the procedure in

the ‘Components of GSEA’ section (see ‘Methods’

section for details). The CMC scores of the 6 statis-

tics in Table 1 and 5 TIF weighted statistics are listed

in Table 2. The Wilcoxon rank sum test and WKS

test show significantly higher CMC in both original

(CMC¼ 0.4 and 0.35, respectively) and TIF

weighted forms (CMC¼ 0.39 and 0.35, respectively)

compared with their CMC for the null data sets

(0.07). To test whether the CMC score is still

biased by dependency, we iteratively removed one

statistic at a time and the resulting CMC scores are

also listed in Table 2. The results indicate that the

Wilcoxon rank sum test and WKS test still perform

better than the other statistics, and the order of per-

formance of all predictors does not change (Table 2).

We conclude that predictions based on the

Wilcoxon rank sum test or WKS test are more

likely to be covered by other gene set statistics that

use mean, median, w2 and Hotelling’s T2 test, and

may imply higher biological inference power. In

addition, the TIF weighted WKS test (PWEA [9])

reports 15% more positive prediction and still retains

the higher level of CMC (see ‘Supplementary

Materials’), suggesting that it is more sensitive than

the original WKS test. Note that TIF weighting was

not applied to Hotelling’s T2 tests since this method

performs principal component analysis which can

not be applied to the topological information and

moreover, one of the purposes of Hotelling’s T2

Figure 3: The Pearson correlation coefficient be-
tween all 10 gene-set statistics.The ‘W’- prefix indicates
aTIF weighted statistic.
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test is to reduce the influence of correlation structure

inside a gene set, thus weighting gene based on the

correlation of neighbor genes is against its design.

DISCUSSIONSAND CONCLUSIONS
We reviewed approaches to gene set enrichment

analysis and attempted to clarify a number of con-

cepts that are important for application to experi-

mental data sets, such as preprocessing of raw data,

imputation of missing data, the choice of null

hypothesis, and methods for generating null distribu-

tions. Our analysis of null P-value distributions

indicates that analytical background distributions

are less accurate than simulated background distribu-

tions. As shown previously [13], the choice of gene

set-level statistics is the most important component

for gene set enrichment methods; however, and it is

difficult to compare the performance of different

gene set-level statistics when a gold standard is

absent.

In order to address this difficulty we propose a

new metric, CMC, essentially a positive predictive

value where the true positives are determined by

weighted overlaps between different methods. The

results of testing 132 experimental data sets suggest

that the Wilcoxon rank sum test and WKS test can

better cover the predictions of the mean test, the me-

dian test, the w2 test and Hotelling’s T2 test, but not

vice versa. We postulate that it is because WKS

covers not just location shift but also shape changes of

the observed distribution of differential expression

compared with the background distribution and

Wilcoxon rank sum test is robust to the extreme

values. Since the WKS test reports more gene-sets

than the Wilcoxon rank sum test in our experiments,

it is likely to have higher sensitivity (see Supplementary

Materials).

To further improve the biological utility of gene

set enrichment analysis, we believe that the inclusion

of additional biological features such as topology or

covariates as discussed in the ‘Gene set-level statistics’

section would be more useful than changing statis-

tics. Utilizing more domain knowledge is likely to

reveal more insights in the analysis. The concept

of gene set enrichment analysis has been applied to

biological features in addition to expression, such

as SNPs, copy number variation [49] and protein–

protein interaction networks.

METHODS
We collect all human gene expression data sets based

on microarrays from GEO, and split each data set ac-

cording to their phenotypes. All GEO data sets have

proper gene name annotations for each probe-set.

Subsets within the same GEO entry are scrutinized

and only one subset is chosen to avoid redundancy.

The data sets with fewer than 10 samples per pheno-

type were discarded. We imputed missing values of

each test set using the LSimpute_gene algorithm

[22], which construct weighted multiple regression

models based on other genes that best correlated with

the genes with missing values. We ensured all ex-

pression values were log transformed. Data sets that

were normalized by approaches other than RMA

or MAS 5.0 were also discarded. In total 132 test

sets remained. We then perform t-test and use abso-

lute values of t-statistic as the gene-level statistic of

each probe-set. Probe-sets that share the same gene

name were combined according to Stouffer’s

method [31].

Table 2: CMC of null data set compared with filtered data set, using original statistics and TIF weighted statistics
at a¼ 0.01

Type w2-test Hotelling’s
T2 test

Mean
test

Median
test

WKS
test

Wilcoxon rank
sum test

Null data set (original) 0.19 0.15 0.22 0.22 0.19 0.21
Original statistics 0.21 0.23 0.24 0.28 0.40 0.44
Original statistics
(leave one out)

0.18; 0.16; 0.16;
0.21; 0.14

0.20; 0.17; 0.17;
0.21; 0.17

0.21; 0.20; 0.22;
0.18; 0.16

0.24; 0.22; 0.25;
0.20; 0.18

0.31; 0.33; 0.36;
0.31; 0.29

0.38; 0.35; 0.36;
0.33; 0.33

Null data set (weighted) 0.19 NA 0.20 0.22 0.18 0.17
TIF weighted statistics 0.20 NA 0.21 0.25 0.33 0.31
TIF weighted statistics
(leave one out)

0.18; 0.12;
0.12; 0.20

NA 0.18; 0.16;
0.20; 0.10

0.21; 0.18;
0.22; 0.12

0.23; 0.25;
0.29; 0.23

0.22; 0.25;
0.19; 0.27

WKS andWilxocon rank sum test show significant higher CMC than in Null data set
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We use 201 pathways from KEGG as the collec-

tion of gene sets for all analysis. We tested 5 gene

set level statistics and one global test, Hotelling

T2 test, which were reviewed favorably by

Ackermann and Strimmer [13]. A Hotelling T2 stat-

istic for a gene set is calculated as follows:

T2 ¼
nxny

nx þ ny
ð �X � �YÞS�1ð �X � �YÞt,

where �X and �Y are vectors having k (total number of

genes in the gene set) elements, representing the

mean expression levels of the genes in the gene set

among two phenotypes, with nx and ny samples, re-

spectively, and S�1 is the inverse of the pooled co-

variance matrix. The problem of Hotelling T2 test in

practice is that when k> nxþ ny, which is common,

the singularity of S makes finding the inverse diffi-

cult. Kong et al. [50] solved the issue by using PCA

(principal component analysis) to reduce the dimen-

sionality, and we use the same approach to compute

the Hotelling T2 statistic.

For all five gene set-level statistics (Table 1), we

applied the method from Hung el al. to weight the

gene level statistics by a topological influence factor

(TIF). Hotelling’s T2 statistic cannot be separated

to gene-level and gene set-level, so TIF weight-

ing cannot be performed. The significance levels

(P-values) are calculated using simulated back-

grounds and corrected for multiple testing using

the FDR procedure [51].

To calculate CMC, we define Wk as the predic-

tion profiles of predictor k under the FDR cutoff of

0.05. W is a two dimensional M by N matrix, where

M is the total number of data sets (M¼ 132) and

N is the total number of gene sets (N¼ 201). Wk

(i,j)¼ 1 if predictor k assigns a Q-value below the

FDR cutoff for gene set j in data set i, otherwise

Wk (i,j)¼ 0.

The MC of a predictor k is defined as:

MCk ¼

PM
i¼1

PN
j¼1

Wkði,jÞ �
PS
l¼1,
l 6¼k

Wlði,jÞ

0
B@

1
CA

ðS� 1Þ �
PM
i¼1

PN
j¼1

Wkði,jÞ
,

where S is the total number of predictors.

The numerator is the total number of votes that

predictor k gets from other predictors and the de-

nominator is the maximum votes it can get.

In order to control dependency among different

predictors, we first model the probability p that

predictor k agrees with predictor l in 500 null data

sets, generated by shuffling the sample tags of an ar-

bitrarily chosen human data set from the Gene

Expression Omnibus (GEO; a public database of

high throughput gene expression data), GDS2835

[47]. Altering the total number of null data sets and

the source experimental data set does not change p
appreciably. p is defined as:

pk,l ¼

P500

i¼1

PN
j¼1

Wkði,jÞ �Wlði,jÞð Þ

P500

i¼1

PN
j¼1

Wlði,jÞ
:

We use p as the weight of each vote accordingly

and define CMC for predictor k as follows:

CMCk ¼

PM
i¼1

PN
j¼1

Wkði,jÞ �
PS
l¼1,
l 6¼k

ðWlði,jÞ=pk:lÞ

0
B@

1
CA

PM
i¼1

PN
j¼1

PS
l¼1,
l 6¼k

ðWkði,jÞ=pk:lÞ
:

CMC is then a weighted ratio that indicates the

fraction of predictions supported by other predictors.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Review critical steps in performing a statistically robust gene set
enrichment analysis.

� Demonstrate the large number of false positives due to inappro-
priate statistical backgrounds.

� Introduce a novel ‘controlled mutual coverage (CMC)’ index to
evaluate gene set statistics.
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