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Abstract
Over the last decade, multiple functional genomic datasets studying chromosomal aberrations and their down-
stream effects on gene expression have accumulated for several cancer types. A vast majority of them are in the
form of paired gene expression profiles and somatic copy number alterations (CNA) information on the same
patients identified using microarray platforms. In response, many algorithms and software packages are available
for integrating these paired data. Surprisingly, there has been no serious attempt to review the currently available
methodologies or the novel insights brought using them. In this work, we discuss the quantitative relationships
observed between CNA and gene expression in multiple cancer types and biological milestones achieved using the
available methodologies.We discuss the conceptual evolution of both, the step-wise and the joint data integration
methodologies over the last decade. We conclude by providing suggestions for building efficient data integration
methodologies and asking further biological questions.
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INTRODUCTION
Human cancer genesis and progression are enabled

by the aberrant function of genes that regulate

aspects of cell proliferation, apoptosis, genome stabil-

ity, angiogenesis, invasion and metastasis [1]. Even

before the advent of functional genomic technolo-

gies, there was already a wide agreement that recur-

rent genomic abnormalities confer an underlying

selection advantage by spanning across genes vital

for tumor development and metastasis [2]. The

importance of somatic copy number alterations

(CNA) was particularly clear in the cases of onco-

genes and tumor suppressor genes (TSGs) as the

CNA resulted in altered expression of these genes

compared with the physiological expression (dosage

effect). There have been numerous examples in

the literature of the genes identified using the

dosage alterations resultant of focal or chromosomal

arm-level amplification or deletions. Most notably

amplified oncogenes include ERBB2 [3], MYC [4],

CCND1 [5],CAD [6, 7], BCR�ABL [8] and AR [9],

while deleted TSGs include PTEN [10], CDKN2A
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[11], RB1, BRCA1, BRCA2, PTPRJ and TP53
[12–15]. A recent work studying patterns of CNA

across 26 cancer types, found a mean of 24 gains

and 18 losses per tumor sample [2]. Discovery and

functional assessment of oncogenes and TSGs is

essential for understanding the biology of cancer

and for clinical disease management.

In the last decade both CNA and gene expression

(GE) profiles for multiple cancer types have

been measured using microarray technologies in

high-throughput manner. There are many experi-

mental methods that provide information on

CNA but they vary in terms of resolution (see

Supplementary Data, Section 1 for more discussion).

Both array comparative genomic hybridization

(aCGH) and single-nucleotide polymorphism (SNP)

microarrays have been used to obtain high-resolution

information on CNA [16, 17]. With the availability of

paired gene expression and CNA information from

the same patients using high-throughput platforms, it

is reasonable to expect that additional cancer related

genes will be identified by assessing more recurrent

abnormal regions and their corresponding dosage al-

teration [2]. The Cancer Genome Atlas project [18]

(http://cancergenome.nih.gov) is generating mul-

tiple data types including gene expression and copy

number (CN) data for the same set of patients. The

critical challenge is in differentiating between alter-

ations that drive the cancer growth and other seem-

ingly random alterations that accumulate through

instability induced by tumorigenesis. The availability

of these paired data from same patients has facilitated

this process. Although it is possible to carry out ana-

lysis even with unpaired data, the analysis becomes

much more powerful when both types of data are

derived from the same patients since the relationship

can be inferred not just on averaged quantities but in

each sample. The paired data structure allows for op-

timal power and a reduction in false positives [19, 20].

However, the data produced from the functional

genomics platforms cannot be used without prepro-

cessing. In fact, it is crucial to preprocess and

normalize the data to effectively dissociate actual bio-

logical signal values from experimental noise [21–23]

prior to integrating the GE and CNA signals from

the microarray platforms. The analysis steps and the

software tools for quantifying of GE levels and obtain

CNA information from microarray data, are sum-

marized in Supplementary Tables S1 and S2. In add-

ition, replicate information would not be available

in the case of patient samples making it more difficult

to analyze the data. Finally, in tumor samples, ‘con-

tamination’ of stromal cells is typically seen further

complicating the analysis [24, 25]. The case of

integrating aCGH profiles with gene expression

information relatively straightforward, since a

gene’s expression is directly interrogated by gene-

specific probes and the gene’s CN is readily available

for the same entity interrogated by the aCGH array.

For the high-density single nucleotide polymorph-

ism (SNP) arrays, the signal value refers to a SNP

marker and the gene CN must be estimated [26].

The SNP arrays are denser and hold an advantage

over aCGH by being able to simultaneously detect

chromosomal loss of heterozygosity (LOH) and

uniparental disomy (UPD) events, apart from the

CNA.

QUANTITATIVE RELATIONSHIP
BETWEENCNA ANDGE IN
DIFFERENTCANCERTYPES
Before implementing integration methodologies,

the extent of correlation between the CNA and

the GE should be investigated. A number of studies

have quantified this relationship across a wide range

of DNA CNA like low-, mid- and high-level of

focal and chromosome arm-level amplification and

deletions. For example, Hyman et al. [27] used a

cut-off to determine the unamplified and amplified

samples. Pollack et al. [28] stratified the samples into

five categories: deletion, no change and low-,

medium- and high-level amplifications. These statis-

tically arbitrary, yet intuitive cut-offs provided evi-

dence for statistically significant correlation between

CNA and GE data [27–34].

Transcriptional changes for 10–63% of genes in

amplified regions and 14–62% in regions of loss,

across multiple cancer types has been reported

(Supplementary Table S1). Furthermore, a relative

gain (or loss) in genomic content is shown to increase

(or decrease) the expression levels averaged across all

genes in the implicated regions [29, 32, 33]. In breast

cancer, for example, a 2-fold change in DNA CN

was found associated with a corresponding 1.5-fold

change in mRNA levels on average [28]. A relative

gain or loss of a chromosome or chromosomal arm

usually resulted in a statistically significant increase or

decrease, respectively, in the average expression level

of all of the genes on the chromosome, even when

many genes seemed to be unrelated to malignant

progression or not expressed in a given cell type.
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In the context of individual genes, however, the

situation is often more complex as numerous regu-

latory mechanisms are all capable of controlling the

mRNA transcription. Therefore, even in regions of

large gains, one can expect to find significantly

downregulated genes. For example, 14% of down-

regulated genes appeared within regions of DNA

gain and 9% of upregulated genes appeared in

regions of DNA loss [29]. Furthermore, even

within a chromosomal arm that is amplified in its

entirety, one may still find contiguous regions

whose genes are expressed at levels similar to that

of normal tissue [29]. These caveats not only caution

the interpretation of some integrative analysis results,

but also serve as a constant reminder that CNA and

GE integration can only expose part of a complex

biological picture.

SIMPLE CLASSIFICATION
SCHEMES FORTHE AVAILABLE
INTEGRATIONMETHODOLOGIES
Numerous methodologies capable of integrating

genome-wide CNA information with GE profiles

have been developed in the past decade (Table 1

and Supplementary Tables S2 and S3). Though

each method is formulated uniquely, general trends

can be deduced upon closer inspection. For example,

all integration methods have a common input—the

paired data in the form of sample by gene matrices.

Most integrative methods can be categorized into

three distinct classes based on their biological and

methodological complexity. Initial stepwise methods

designed for exploring the relationship between

CN and GE employ relatively simple techniques to

quantify this interaction on a global scale. Later step-

wise methods take advantage of this established

relationship to achieve well-defined biological end-

points. Finally, there is also a class of joint methods

that are mathematically involved. Though some may

still have routine biological endpoints, others can

be more ambitious.

In terms of their objective and structure, method-

ologies can be grouped based on approach: stepwise

or joint methodologies or endpoints: gene/gene-set

discovery or subtype clustering (Figure 1). Gene/

gene-set discovery methods aim to identify candidate

genes or pathways [19, 35, 36], clusters of genes

[19, 37] and candidate regulators involved in

tumorigenesis [38–41]. Thus, they attempt to shed

light on tumor biology and identify prognostic or

therapeutic targets [42–45]. The subtype clustering

methods are usually classification schemas designed

to identify patient subgroups that may have similar

prognosis or response to treatment [46–49], and

therefore, improve on cancer risk and disease

course prediction.

THE EVOLUTIONOF SEQUENTIAL
DATA INTEGRATION
METHODOLOGIES
Following the intuitive blueprint that differential GE

results from CNA in the DNA and aided by the

notion that concordant amplification and overex-

pression are tell-tale signs of oncogenes and deletion

Table 1: A representative list of available methodologies for CNA information with gene expression profiles for
which software implementations are available

Methodology/Reference Integration type Endpoints Main statistical tools used

Ace-it [52] S Gene targets (dosage effect) nPHT
Magellan [47] S Exploratory analysis; clustering ES; nPHT; CA; GO
SODEGIR [26] S Gene targets (concomitant CN/GE alteration) Own statistic; nPHT
edira [53] S Gene targets (dosage effect) CA; nPHT
CNAmet [77] S Gene targets (concomitant CN/GE alteration) Own statistic; nPHT
Berger et al. [62] J Gene targets (dosage effect) SVD; gene shaving
SIGMA2 [75] S; J Exploratory analysis; gene targets (concomitant

CN/GE alteration)
ES; CA; PHT

iCLUSTER [46] J Clustering Latent variable Model; VS
VanWieringen & van DeWiel [56] S; J Gene targets (CN-induced DEG) Own statistic; BF; nPHT
CONNEXIC [38] J Gene targets (drivers) BF; networking
remMap [78] J Gene targets (concomitant CN/GE alteration) RA; VS
DR-Integrator [76] J Gene targets (correlated CN/GE) CA; PHT

Integration type: S, stepwise; J, joint.Main statistical tools used: ES, exploratory statistics; PHT parametric hypothesis test; nPHT, non-parametric
hypothesis test; CA, correlation analysis; RA, regression analysis; GO, gene ontology;VS, variable selection; BF, Bayesian framework; SVD, singular
value decomposition.
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along with the underexpression for TSGs, the ‘clas-

sical’ stepwise integration methodologies view inte-

gration as a two-step procedure. Typically, these

methods identify aberrant chromosome regions

before manually combining results from a separate

expression analysis to arrive at their endpoints

[27, 32, 34, 39, 42, 50, 51].

Not limited to quantifying the CNA and GE

relationship, various exploratory statistical measures

have been used for candidate gene identification.

Methods aimed at exploring gene dosage effect

have been the traditional hallmarks of stepwise

approaches. ACE-it [52], for example, is a statistical

tool intended to identify genes with concordant

CNA/GE relationship. The overall implementation

of the methodology involves stratifying samples into

two groups based on CN gain or loss followed by

implementing a one-sided Wilcoxon test to assess the

concordant changes of GE values. Schafer et al. [53]

also implemented a strategy to identify the driver

genes related to disease development. To do so,

they implement externally centered correlation

coefficients to assess the degree of concordant CN

and GE alteration.

There are several drawbacks common to these

stepwise integration methods. The first drawback

originates from the microarray platforms utilized to

measure gene expression levels and CN profiles.

Most integration methods base their analysis on the

matched GE and CNA data of genes, and this

requires steps of filtering, imputing or averaging

features from one profile to the other since the

probe sets from two platforms vary in chromosome

loci and resolution. Many of the above mentioned

methods use arbitrary thresholds to stratify CN and

GE data. The use of the simple call data in down-

stream analysis may not be optimal, as calls do not

fully account for the high degree of genetic hetero-

geneity amongst cancers [54]. Moreover, the data of

some samples or genomic regions in samples are

clearly noisier than others and thus, less confidence

should be placed on such calls. Van de Wiel and van

Wieringen [55] suggested that the uncertainty of the

discrete CNs can be propagated in the test statistic for

differential expression between CN groups or the

call probabilities of ‘loss’, ‘normal’ and ‘gain’ regions

can be considered, instead of the actual calls [56] for

better data integration. Such call probabilities reflect

Figure 1: Schematic overview of methods. Integrative methodologies can be grouped based on their integration
structure and biological endpoints. Stepwise methods typically interrogate the CN data for regions of CNAs
before results from a subsequent GE analysis are manually combined to complete the integrative procedure. Joint
integration treats CN and GE as paired data entries. Thus, only one analysis is carried out in light of the pairing.
Despite the contrasting approaches, most integrative methodologies arrive at the same biological endpoints of
gene/geneset discovery or tumor subtype classification.
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both tumor cell heterogeneity and circumvent the

loss of statistical power from which methods that

discretize to hard calls suffer. The call probabilities

also have a clear biological interpretation: the uncer-

tainty with which a call is made. This difference in

interpretation has two important consequences.

First, CN profiles from different platforms can be

compared directly when using the call probabilities.

Second, the breakpoint nature of the CN data

implies that neighboring probes (clones) share the

same CN signature over samples. This will make it

possible to borrow information across the genes

within copy number extended regions [54, 55].

These drawbacks are also applicable to the joint

integration methods.

The complexity associated with cancer cell–

genomic environments also demand additional

attention before meaningful biology can be extracted

through such stepwise integration. For example,

Garraway et al. [57] initially classified cancer samples

based on chromosomal aberrations and analyzed

aberration-based subgroups. By subsequently analyz-

ing differential expression profiles between copy

number derived sample clusters characterized by

gain and no-gain, their method was capable of

uncovering novel cancer biomarkers.

Alder et al. [36] have proposed a stepwise

approach, Stepwise Linkage Analysis of Microarray

Signatures (SLAMS), capable of uncovering tran-

scriptional signature regulators that emerge due to

CNAs. In this scenario, a prespecified gene expres-

sion signature was treated as the ‘phenotype’, while

the CNAs of signature positive samples were labeled

as the ‘genotype’. A similar stepwise analysis is then

carried out on the observed CN changes to identify

potential regulator genes.

JOINT INTEGRATION
METHODOLOGIES
Unlike stepwise methods, joint integration tech-

niques carry out one analysis by viewing CNA and

GE as paired data entries. Thus, all sources of gen-

omic information are treated as one coherent dataset

instead of separate structures that require separate

analysis. Typical to these approaches, consistent

signals that emerge only as a result of combining

both levels of evidence are used to conduct infer-

ence. As a result, joint methods are known to

employ forms of correlation [19, 59, 60] or regres-

sion [31, 59, 61] analysis. These methods face two

major challenges of high dimensionality and com-

putational feasibility. The imbalance between the

sample size and number of genes is the problem

facing most genomic analysis methods, as it decreases

the ability to differentiate between true signals and

random noise. In an integrative setting, this problem

is exacerbated as the additional data type doubles the

number of existing features, whereas, the sample size

stays the same. Therefore, data reduction methods

have been commonly called upon to deal with

such issue. Generalized Singular Value Decomposi-

tion (GSVD) is a popular regression framework used

in joint analysis due to the added value of dimension

reduction. Berger etal. [62] implemented this strategy

to identify variation patterns between two biological

inputs by iteratively projecting CNA/GE data onto

different decomposition directions. Computation-

wise, many joint methods have utilized correlation

analysis as an approach to quantify the relationship

between CNAs and GE [30, 63, 64].

Soneson et al. [65] also pursued a correlation-based

approach to achieve integration. After using principal

component analysis (PCA) to reduce dimensions,

they employed Canonical Correlation Analysis

(CCA) to identify highly correlated CNA/GE

pairs. Similarly, Gonzalez et al. [66] implemented

regularized CCA to explore the correlation structure

between paired datasets with additional emphasis

placed on the high dimensionality of the input

data. Schafer et al. [53] also introduced a correlation

approach that combines a bivariate analysis to assess

the concordance of CN/GE abnormalities.

The Significant Overlap of Differentially

Expressed and Genomic Imbalanced Regions

(SODEGIR) [26] identifies discrete chromosomal

regions of coordinated CN alterations and changes

in transcriptional levels. Instead of utilizing all sam-

ples in one analysis, each tumor is sequentially

studied for chromosome regions with concordant

dosage effect. The results are then combined,

elevating the analysis to the entire dataset of tumor

specimens.

Many genes are coexpressed in the genome and

CNAs occur simultaneously in multiple locations.

This limits the precision in locating the interacting

partners. To allow for an additional flexibility

between CNA/GE relationships, Lee et al. [19] pro-

posed a form of correlation analysis that allowed

clusters of coexpressed genes to be simultaneously

associated with CNAs throughout the genome

[42]. By implementing a bi-clustering algorithm on
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the observed CNA/GE correlation matrix, their

methodology identifies clusters of genes that are

related to other clusters of CNAs. In addition, the

methodological setup also accounted for downstream

function analysis—a novelty at the time the method

was proposed.

Altogether, many correlation-based methods

employ measures (i.e. Pearson correlation) designed

to identify features that vary linearly across both data

types. However, in scenarios where the relationship

is nonlinear, these techniques may lack the statistical

power to pick out the interesting features. Further-

more, since detectable correlations, by nature,

require data points to exhibit a certain degree of

spread, the clustering of these points, even in the

extreme regions of either data type, will pose its

own set of issues. Thus, correlation-based methods

may be less suited for integrative purposes in general.

However, rank correlation or mutual information-

based measures can be considered instead.

Specific to CNA and GE integration, the correl-

ation structures refer to the within- and between-

data correlation matrices (gene–gene and CN–GE

correlation matrices). While correlation-based meth-

ods employ judicious assumptions to simplify their

form, others may altogether ignore them. Therefore,

a complete disregard or oversimplification of these

structures can severely cripple the analysis despite

the daunting task associated with their accurate

formulation.

Dependency, as attested by such approaches may

fail in situations where all profiles across the same

feature exhibit abnormal levels. In such scenario,

the lack of a decent spread will ultimately result in

a correlation close to zero despite the strong inherent

signal. Assuming no reference base is then used

(common amongst these techniques), these tech-

niques are essentially restricted for identifying

features that: (i) exhibit a wide range of values and

(ii) behave in the same direction. Furthermore, since

these methods assume an existing linear relationship

that cannot be guaranteed, they may actually be less

suited for integration purposes. Thus, the specifica-

tion and modeling process of the correlation

structure inherent to multiple layers of genomic

data becomes key if a correlation-based approach is

indeed pursued.

Nonetheless, while correlation methods have been

used to uncover the regulatory CNAs of gene

expression, they are much less suited for tumor

subtype classification. To do so, regression-based

techniques capable of extracting feature pairs that

account for a large fraction of the observed variability

is often preferred. Consequently, these methods will

then use the selected features to infer unique alter-

ation patterns that ultimately guide the formation of

the disease subgroups. Shen et al. [46], for example,

introduced a latent variable regression approach for

tumor subtype discovery. By modeling the subtypes

as latent variables, inference was conducted by

simultaneously capturing genomic patterns that are:

(i) consistent across multiple data types, (ii) specific to

individual data types, or (iii) weak, yet consistent

across datasets that would emerge only as a result

of combining levels of evidence [46].

COpy Number and EXpression In Cancer

(CONEXIC) [38] is a Bayesian network-based

algorithm that identifies driving mutations and the

biological processes they influence. CONEXIC is

inspired by Module Networks [67], but has been

augmented by a number of critical modifications

that make it suitable for identifying drivers.

CONEXIC uses a score-guided search to identify

the combination of modulators that best explains

the behavior of a gene expression module across

tumor samples and searches for those with the high-

est score within the amplified or deleted regions.

IMPORTANTBIOLOGICAL
FINDINGS RESULTANTOF
INTEGRATIVE ANALYSIS
In the following section, we discuss important

biological insights that have been uncovered by

integrative works over the last decade. This discus-

sion is meant to highlight examples of various

biological endpoints. More examples can be found

in the Supplementary Table S3. The most important

success of the integrative analysis approaches has

been identifying genes targets of genomic CNA

and altered pathways in primary tumors. Tonon

et al. [68] identified WHSC1L1 and TPX2 as two

candidates likely targeted for amplification in both

pancreatic ductal adenocarcinoma and nonsmall-cell

lung cancer. Garraway et al. [57] identified MITF

as a potential ‘lineage addiction’ oncogene necessary

for tissue-specific cancer development and progres-

sion. Deletion of the transcription factor RUNX3

was shown to play an important role in primary

breast cancer [69]. Overexpression of VEGFA via

6p21 gain in hepatocellular carcinomas was found

to be a novel, noncell-autonomous mechanism of
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oncogene activation [48]. Adler et al. [36] used the

SLAMS algorithm to identify CSN5 and MYC as

two genetic regulators of the breast cancer. Taylor

et al. identified the nuclear receptor coactivator

NCOA2 as an oncogene in �11% of prostate

tumors [70].

Woo et al. [41] identified NCSTN and SCRIB

among others as potential drivers in hepatocellular

carcinoma progression. Akavia et al. [38] identified

TBC1D16 and RAB27A as drivers of melanoma

using their CONEXIC algorithm and suggested

that abnormal regulation of protein trafficking

contributes to proliferation in melanoma. In T-cell

prolymphocytic leukemia, 734 genes including those

involved in lymphomagenesis, cell cycle regulation,

apoptosis and DNA repair were differentially

expressed and significantly enriched in genomic

regions affected by recurrent chromosomal imbal-

ances [71]. Lee et al. showed that 7p13 were signifi-

cantly correlated with epidermal growth factor

receptor signaling pathway in glioblastoma multi-

forme, chr 13q with NF-kB cascades in bladder

cancer and chr 11p with Reck pathway in breast

cancer with their bi-clustering algorithm.

Integrative analysis has been used to identify

tumor subtypes or patient groups that have differ-

ent characteristics including patient survival, and

response or resistance to the therapy. Myllykangas

et al. [72] showed statistically significant differences

in immunopositivity of ERBB2 and MUC1 genes

in the intestinal and diffuse subtypes of gastric cancer.

Using both the GE and CNA information simultan-

eously, Shen et al. [46] clustered breast and lung

datasets. In the breast data, three distinct clusters

were identified. One cluster was separated based on

cell line differences, the second based on HER2/

ERBB2 concordant amplification and overexpres-

sion and the third based on consistent amplifications

at the end of chromosome 17q. Interestingly, the

second cluster was associated with poor survival.

Similarly, the lung tumors were separated into

four clusters. The first was characterized by

8p/underexpression and was also highly correlated

with EGFR mutation and DUSP4 deletion.

The second was highlighted by 12q amplification,

a region with known oncogenes CDK4 and

MDM2, and the final two were formed based on

the extent of 8p loss and EGFR mutation.

Zhang et al. [45] identified a very poor prognostic

group by integrating CNA and GE data on lymph

node-negative primary breast tumors that was

putatively more resistant to preoperative paclitaxel

and 5-fluorouracil-doxorubicin-cyclophosphamide

combination chemotherapy, particularly against the

doxorubicin compound, while potentially benefiting

from etoposide. Based on their analysis, Rinaldi et al.
[73] suggested B-cell associated tyrosine kinase Syk

as a possible therapeutic target in mantle cell lymph-

oma. Findings of Olejniczak et al. [74] suggested that

18q21-23 CN could be a clinically relevant predictor

for sensitivity of SCLC to Bcl-2 family inhibitors in

small-cell lung carcinoma. Etemadmoghadam et al.
[44] showed that amplification of 19q12, containing

CCNE1 and 20q11.22-q13.12, mapping immedi-

ately adjacent to the steroid receptor coactivator

NCOA3, was significantly associated with poor

response to primary treatment in ovarian carcinomas.

They also identified a cell-cycle independent role for

CCNE1 in modulating chemoresponse.

GUIDELINES FORUSING EXISTING
INTEGRATIVE ANALYSIS
METHODS
The choice for the appropriate analysis method(s)

depends upon the desired endpoint. However, a

central aim of integrative analysis combining GE

profiles with CNA is to identify driver CNA that

elicit cancer through aberrant gene expression from

myriads of passenger CNA. Therefore, given a paired

GE and CNA dataset, interested readers can use

following guidelines to make most out of their data

using existing methods.

For a given dataset, first task would be to

determine genes with CNA that are differentially

expressed. Moreover, an important task would be

to identify presence of tumor subtypes in the data

that is influenced by CNA. It would be equally

prudent to check whether large CNA (e.g. at the

whole chromosome or arm level) is affecting expres-

sion of majority of the genes in that region. The

iCluster methodology [46] can be used to identify

the tumor subtypes characterized by concordant

CNA and GE changes. This is important, as the pres-

ence of tumor subtypes or chromosome aneuploidy

can adversely affect downstream analysis. A good

example of importance of identifying tumor subtypes

was the identification of lineage-specific master

regulators by the methodology of Garraway

et al. [57].

Many software packages are available to identify

list of genes that may be enriched in oncogenes and
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tumor suppressor genes using dosage effect (SIGMA2

[75], ACE-it [52]), concordant changes in CNA/GE

(DRI [76], SODEGIR [26], CNAmet [77], remap

[78]) or Bayesian frameworks (CONNEXIC [38]).

The bi-clustering algorithm of Lee et al. [19] can be

used to identify cancer-type specific biological

pathways. The integrative methodology of Adler

et al. [36] can be used to identify genetic regulators

when distinguishing gene expression signatures are

available. It is important to note that choice of the

gene expression signature to divide the tumor sam-

ples will play a very important role in successfully

identifying the regulators.

DISCUSSION
Recent studies have estimated that >15% of heritable

gene expression variation can be directly attributed

to CN variants in normal cells [31]. It is natural to ask

how much stronger this relationship is in various

cancer types. Moreover, it is important to know

how much a decade’s worth of efforts in generating

paired data on gene expression and CNA in large

cohorts for multiple cancer types have advanced

our understanding of cancer biology and help

improve the clinical care. It is equally important to

identify weaknesses of current methodologies and

previous analysis efforts so that novel algorithms

can be developed.

Indeed, integrative methodologies have greatly

advanced our understanding of genomic CNA and

their downstream implications in cancer. While the

estimates vary depending upon the cancer type and

the analysis methodology, it is estimated that �60%

of the genes show differential expression concordant

to their CN status. These analyses have suggested

that the global correlation between GE and CN is

relatively weak but consistent across studies. There is

a strong evidence for a cis-dosage effect of CNA on

GE, and segmenting the CNA levels and probe

filtering helps to improve these observed relation-

ships [59]. The exploratory analysis has also provided

deeper insights into transcription regulation.

Increased gene expression in response to gene

amplifications may suggest that most genes are not

subject to specific auto-regulation of dosage com-

pensation, yet it is equally clear that most of these

genes are incapable of completely overriding

transcription regulatory mechanisms. Analyzing the

genomic distribution of expressed genes may permit

the inference of DNA CN aberrations, particularly in

aneuploidy (where gene expression can be averaged

across large chromosomal regions). Although

elevated expression of an amplified gene cannot be

considered as strong independent evidence of a

candidate oncogene’s role in tumorigenesis, there

exists a possible role for widespread DNA CNA in

tumorigenesis beyond the amplification (or deletion)

of specific oncogenes (or TSGs) [79, 80]. Widespread

DNA CNAs and concomitant gene expression

imbalances may disrupt critical stoichiometric

relationships in cell metabolism and physiology

(i.e. proteosome, mitotic spindle), possibly promot-

ing further chromosomal instability that directly

contributes to tumor development and progression.

A substantial portion of the phenotypic uniqueness

(and by extension, the heterogeneity in clinical

behavior) among patients’ tumors may be traced to

underlying variations in the DNA CN. Potential

cancer therapeutics can exploit specific or global

imbalances in gene expression.

Over the past decade, these methods have grad-

ually progressed from exploratory tools to specialized

techniques that uncover novel biology. These

methods have helped in identifying gene targets of

CNA during the process of tumor formation, drivers

and subtype-specific genes for multiple cancer types.

Integrative analysis has been used to identify tumor

subtypes or patient groups that have different char-

acteristics including patient survival, and response or

resistance to the therapy. Although, the advantage

provided by integrative approaches as oppose to

carrying out the same analysis using one data type

only has not been quantified in any published work.

Whereas, we have provided guidelines to the

interested readers in utilizing existing methods in

the previous section, future integration methods

will benefit by adopting following general guide-

lines, individual parts of which has been shown to

work efficiently in the literature. (i) The data inte-

gration methods should use efficient dimensionality

reduction methods, as genomic data are very high

dimensional and attempting to integrate paired data

only exacerbate the dimensionality problem, (ii) the

uncertainty of the discrete CNs should be propa-

gated to test statistics for differential expression

between CN groups, or use the call probabilities of

CN altered regions instead of the actual calls, (iii) to

reduce tumor heterogeneity, tumor subclasses could

be identified before integrating the two data types for

identifying gene targets of tumorigenesis and driver

genes, (iv) the emergence of indirect relationships
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(interactions not restricted by physical location) point

out the need for methodologies to simultaneously

model both interaction types. Most integrative

methods start analysis without taking advantage of

the gene interaction and regulatory network

information present in the literature and from

other functional genomics dataset. Moreover, func-

tional enrichment analysis, and utilization of clinical

information is primarily seen as postanalysis inter-

pretation tool rather than assistance for inference.

Methods incorporating network and clinical

information during the inference process will be

more powerful in achieving desired endpoints and

(v) finally, none of the methods described above

infer causal associations between gene expression

and disease that is governed by CNA. Causal analysis

methods followed by experimental validation

could help.

There is still a lot to be desired on the analysis side.

For example, it is interesting to note that while

the impact of CNA on GE is well explored, that

of LOH and UPD is not well established. It is not

clear as to what is the statistical power of the many

available data integration methodologies and how

much noise, which is inherent in the functional

genomics datasets, they can tolerate. It is not clear

as to what is the minimum number of samples that

are required to achieve both high sensitivity and

specificity for the desired analysis endpoints. There

is also a lack of a gold standard, with which we can

compare the newly developed methodologies. Only

one comparative analysis, exploring the impact of

CNA on GE, has been reported for five cancer

types in the literature [59]. No comparative analysis

of important biological endpoint has been carried

out. Such an analysis would be invaluable in terms

of understanding the evolutionary pathways of

cancer. An interesting, yet completely unexplored

question is to understand the role of chromosomal

aneuploidy in cancer. The origins of these genomic

abnormalities remain a subject of debate even to this

day [81]. While some view them as the central ini-

tiator of tumor formation [82–84], others believe

that they merely exist as side effects of deranged

cell division cycles [85, 86]. This question can be

answered using presently available paired datasets,

but it will require development of new

methodologies.

We hope that, with the reducing cost of next

generation sequencing, more paired datasets provid-

ing information on GE and CNA will be available.

This will reduce some of the analysis issues due to

probe bias on the microarray platforms, as well as,

provide additional information. For example, expres-

sion profiles with next generation sequencing can

also provide information on alternative splicing and

miRNA expression [87]. Genomic DNA profiles

with next generation sequencing can provide add-

itional informations like mutations, and chromosom-

al structural variations like fusion and inversion apart

from the CNA [88, 89]. Furthermore, integration

methodologies of future will integrate additional

paired information such as epigenetic methylation

and histone modification. They will not only pro-

vide more detailed insights on cancer, but also

benefit clinical care.
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Key Points

� Oncogenes and tumor suppressor genes can be identified
from genome-wide CNA profiles of cancer patients but the
critical challenge is in differentiating between alterations
that drive the cancer growth and other seemingly random
alterations that accumulate through instability induced by
tumorigenesis.

� There is a strongevidence for acis-dosage effectofCNAongene
expression and this relationship can help identification of novel
genes involved in cancer as well as other aspects of tumor biol-
ogy and clinical care

� Currently available integration methodologies can be grouped
based on methodological approach like stepwise integration or
joint integration, or integration endpoints like gene/gene-set
discovery or subtype clustering.

� There is a need for comparative analysis of pairedCNA andgene
expression data for multiple cancer types toward identification
of different biological endpoints.

� There is a need for development of novel integration methods
toward improving current methodologies and for studying
effects of anuploidy in cancer.
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