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HER2-positive breast cancers have poorer prognosis and are prime candidates for molecular-targeted therapy because they are
driven by the unique mechanism of HER2 oncogene addiction. While anti-HER2 agents such as trastuzumab and lapatinib
are integral to the treatment of HER2-positive breast cancer, intrinsic and secondary resistance pose a significant challenge,
underscoring the need to develop novel anti-HER2 therapies. In recent years, an array of promising and novel anti-HER2
therapeutic agents and their combinations have entered various stages of clinical development. However, questions remain on
the optimal sequences of HER2-directed therapies and selection of patients for the most appropriate drug or combinations;
incompletely defined mechanisms of trastuzumab action and resistance have also dampened the progress of more successful
biomarker-driven treatment approaches. This paper summarizes existing preclinical and clinical evidence on the mechanisms of
trastuzumab action and resistance and provides an up-to-date overview of novel HER2-directed therapies in clinical development.

1. Background

Human-epidermal-growth-factor-receptor-2 (HER2-) over-
expressing breast cancers account for 20-25% of invasive
breast cancers and are associated with an aggressive biologic
behaviour translating to poorer clinical outcomes [1]. The
development of trastuzumab, a recombinant humanised mo-
noclonal antibody targeting the extracellular domain (ECD)
of the HER2 protein, has dramatically altered the natural
history of HER2-positive breast cancer and ranks among
the most significant advances in breast cancer therapeutics.
Trastuzumab was originally approved for use in HER2-
positive metastatic breast cancer by the United States Food
and Drug Administration (FDA) in 1998, based on a ran-
domised phase III study, where the combination of trastu-
zumab and chemotherapy in previously untreated patients
significantly improved objective response rates (ORR), pro-
gression-free survival (PFS), and overall survival (OS) over
chemotherapy alone [2]. FDA approval for the use of tras-
tuzumab in the adjuvant setting was obtained in 2006, based
on an interim analysis of two National Cancer Institute-Co-
operative Group trials (NSABP 31 and NCCTG N9831)

demonstrating remarkable prolongation of disease-free sur-
vival (DFS) with the addition of trastuzumab to chemo-
therapy in HER2-positive early breast cancer [3].

Despite this notable success, 70% of patients with HER2-
positive breast cancers demonstrate intrinsic or secondary
resistance to trastuzumab [4], highlighting the importance
of developing new therapies for this disease. This paper
aims to explore the possible mechanisms of trastuzumab re-
sistance, provide an overview of the myriad of HER2-direct-
ed therapeutic options that have entered active clinical de-
velopment in recent years, and examine their implications on
the future management of HER2-positive breast cancer.

The data for this paper were obtained by searching the
PubMed database using Entrez. The search terms used in-
cluded the following combined subject headings: HER2-
positive breast cancer, herceptin, trastuzumab, resistance,
P95HER2, phosphatidylinositol 3-kinase (PI3K)/Akt, phos-
phatase and tensin homolog (PTEN), HER3, insulin-like
growth factor 1 receptor (IGF-1R), angiogenesis, lapati-
nib, pertuzumab, trastuzumab-DM1 (T-MD1), HER?2 tyro-
sine kinase inhibitors (TKIs), heat-shock protein (HSP)



90 inhibitors, vascular endothelial growth factor (VEGF)
inhibitors, IGF-1R inhibitors, and bispecific antibodies. The
citation lists of all retrieved articles were examined to identi-
ty potentially relevant articles, and proceedings from con-
ferences of the American Society of Clinical Oncology and
San Antonio Breast Cancer Symposium were searched for
relevant abstracts.

2. Mechanisms of Action and
Resistance to Trastuzumab

2.1. Epidermal Growth Factor Receptor Family Signalling Path-
way. HER2 belongs to a family of transmembrane recept-
or tyrosine kinases, which also includes HERI (also known
as epidermal growth factor receptor (EGFR)), HER3, and
HERA4. Ligand binding to the ECD of these receptors results
in either homodimerisation between two molecules of the
same receptor or heterodimerizaton between two differ-
ent receptors. Dimerisation in turn induces tyrosine kinase
phosphorylation and downstream signalling onto the PI3K
and mitogen-activated protein (MAP) kinase cascades, lead-
ing to cell survival and proliferation, respectively. While
EGFR, HER2, and HER3 are all implicated in carcinogenesis,
the dimers vary in their signalling potencies, with the
HER2/HER3 heterodimer possessing the strongest mitogenic
potency, particularly in the activation of the PI3K/Akt sur-
vival pathway. The HER2 protein possesses two unique
features; firstly, unlike other HER family members which
exist in an inactivated state, it can be constitutively activated
and is capable of ligand-independent dimerisation, and sec-
ondly, it is the preferred heterodimerisation partner for other
HER proteins [5, 6].

2.2. Mechanisms of Action of Trastuzumab. Ironically, the
mode of action of trastuzumab remains incompletely defined
despite its routinary clinical application. Extensive preclinical
research has been conducted to elucidate these mechanisms,
and the following possibilities have been proposed.

2.2.1. Immune-Mediated Response. An important proposed
mechanism of action of trastuzumab is antibody-dependent
cellular cytotoxicity (ADCC), which is triggered through the
detection of Fc portion of trastuzumab by the Fcy receptor
on immune effector cells, particularly natural-killer cells, re-
sulting in cell lysis of HER2-positive target cells bound to
trastuzumab [5]. This mechanism of action is supported by
findings from a preclinical study of HER2-overexpressing
murine xenograft models, in which the antitumour activity
of trastuzumab was markedly reduced in mice bearing
defective Fcy receptors [7]. These observations are further re-
inforced by in vivo data from a pilot study of 11 patients
with HER2-positive early breast cancer, where a positive cor-
relation was observed between response to neoadjuvant tras-
tuzumab and ADCC activity [8].

2.2.2. Inhibition of HER2 Proteolytic Cleavage. p95HER2
fragments resulting from the proteolytic cleavage of the
HER2 ECD have generated much interest due to the associa-
tion of the 100-115 kDa p95HER?2 fragment with a clinically
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more aggressive subset of HER2-positive breast cancers [4]. A
preclinical study has demonstrated that trastuzumab inhibits
HER2 ECD cleavage through the proposed mechanism of
steric hindrance [9], and several clinical studies have shown
correlation between trastuzumab-induced decline in serum
HER2 ECD levels with improved tumour response and PFS,
lending support to this hypothesis [10, 11].

2.2.3. Inhibition of Signal Transduction Pathways and Cell-
Cycle Progression. The role of trastuzumab in abrogating the
PI3K/Akt signaling pathway has been addressed in two pre-
clinical studies, where treatment of HER2-gene-amplified
breast cancer cells with trastuzumab caused growth inhi-
bition through PTEN upregulation and downregulation of
PI3K activity and Akt function [12, 13]. Other studies have
suggested that trastuzumab also exerts its influence further
downstream the cell signalling cascade, causing G1 phase
cell-cycle arrest through upregulation of cyclin-dependent
kinase (cdk) inhibitor p27XiP! expression [14, 15].

2.2.4. Inhibition of Angiogenesis. Investigators have reported
that HER2-overexpressing cell lines possess higher basal lev-
els of VEGF expression and that stimulation with the HER3
and HER4 ligand, heregulin 1, further enhances VEGF sec-
retion [16], suggesting that upregulation of angiogenesis may
contribute to the tumorigenicity of HER2-positive breast
cancer. Trastuzumab induced normalisation and regression
of the vasculature in HER2-overexpressing breast cancer
xenografts [17], whilst in a separate study, the combined
administration of trastuzumab and paclitaxel resulted in the
best response in tumour models compared to either treat-
ment alone, indicating that trastuzumab-induced normalisa-
tion of tumour vasculature may have permitted more ef-
ficient intratumoural drug delivery, resulting in synergistic
activity of the combination [18].

2.3. Mechanisms of Trastuzumab Resistance. Understanding
the mechanisms behind trastuzumab resistance is a critical
step towards the development of novel anti-HER?2 strategies.
Molecular mechanisms that contribute to trastuzumab resis-
tance include the following.

2.3.1. Truncated HER2 Receptor. Truncated p95HER?2 frag-
ments exhibit resistance to trastuzumab because they lack
trastuzumab-binding epitopes and may arise either through
proteolytic cleavage of the HER2 ECD or alternative trans-
lation-initiation sites of the HER2 protein [4]. Due to their
propensity to cause more rapid and acute activation of
mitogenic signaling cascades, expression of 100-115kDa
P95HER?2 fragments in the mammary glands of transgenic
mice resulted in far more aggressive and invasive breast
tumours compared to those driven by the full-length recep-
tor [19]. As such, p9SHER2 has a potential role both as a
prognostic and predictive biomarker. Indeed, patients with
breast cancers overexpressing p95HER2 were found to have
a higher incidence of lung metastases and experienced sig-
nificantly shorter PFS and OS with trastuzumab treatment,
compared to patients expressing only the full-length receptor
[20].
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2.3.2. Aberrant Activation of Downstream Signalling Pathways.
Genetic aberrations in the PI3K/Akt pathway are among the
most prevalent in breast cancer and have been shown to
mediate trastuzumab resistance. These include loss-of-func-
tion PTEN deletions and activating mutations of PI3KCA,
the gene encoding the p110 catalytic subunit of PI3K [21].
A preclinical study employing a large-scale functional RNA
interference screen detected PTEN as the main modulator
of trastuzumab sensitivity in a HER2-overexpressing breast
cancer cell line. Furthermore, both PTEN knockdown as
well as transfection of the cell line with a PI3KCA mutation
rendered it insensitive to trastuzumab [22]. In concordance,
both PIK3CA mutations and PTEN loss were associated with
inferior time-to-progression and survival in a retrospective
study of 256 trastuzumab-treated HER2-positive metastatic
breast cancer patients [23].

2.3.3. Compensatory Activation of Parallel Signalling Path-
ways. Inhibition of the HER2 oncogenic pathway with
trastuzumab may result in compensatory crosstalk and ac-
tivation of alternative signalling pathways, such as IGF1IR
and HERS3 signalling pathways [24]. Aberrant activation of
IGF1R signalling was the first mechanism of trastuzumab re-
sistance to be described. In a preclinical study, co-expression
of HER2 and IGFIR in breast cancer cells resulted in loss
of sensitivity to trastuzumab treatment, whereas blocking
ligand activation of IGFIR restored trastuzumab-related
growth inhibition [25]. In addition, upregulation of HER3
signalling and consequent activation of the PI3K/Akt path-
way has been demonstrated upon exposure of HER2-positive
breast cancer cell lines to HER TKIs [26]. In concordance, the
HER2/HER3 dimerisation inhibitor, pertuzumab, exhibited
activity in breast cancer cells resistant to trastuzumab
through potent inhibition of HER3 ligand-induced morpho-
genesis, lending support to the hypothesis that compensatory
activation of this pathway is a key mediator of trastuzumab
resistance [6, 27].

2.3.4. Steric Hindrance of Receptor-Antibody Interaction. The
binding between trastuzumab and HER2 may be dis-
rupted by the membrane-associated glycoprotein mucin-4
(MUCA4), as evidenced by the overexpression of MUCA4 in a
trastuzumab-resistant breast cancer cell line and subsequent
restoration of trastuzumab binding through MUC4 siRNA
knockdown [28]. Similarly, another preclinical study demon-
strated that a breast cancer cell line acquired trastuzumab
resistance through the upregulation of a cleaved form of
the MUCI1 protein, MUC1*, and resistance was reversed by
MUCI* antagonists [29].

3. Treatment of Trastuzumab-Resistant
HER2-Positive Breast Cancer

Only two agents possess regulatory approval for the treat-
ment of HER2-positive breast cancer, with a lull of nearly a
decade between the initial FDA approval of trastuzumab and
that of lapatinib in 2007. Therefore, the management of pa-
tients with prior trastuzumab failure has long represented an
area of unmet clinical need, with existing treatment options

that include HER2-directed therapies being limited to (i)
the continuation of trastuzumab beyond progression, (ii) the
alternative use of lapatinib, or (iii) a combination of both.

3.1. Existing Strategies in the Management of
Trastuzumab-Resistant Disease

3.1.1. Trastuzumab Beyond Progression. Preclinical data
showing that trastuzumab withdrawal resulted in rapid re-
growth of trastuzumab-resistant cell lines [30, 31] lent sup-
port to the strategy of continuing trastuzumab beyond dis-
ease progression in clinical practice. Although frequently uti-
lised by breast cancer physicians, the evidence for this was
previously substantiated only by retrospective clinical data
[32, 33]. Only recently did results from a prospective phase
II study emerge, demonstrating that continuing trastu-
zumab in combination with capecitabine in HER2-positive
metastatic breast cancer patients who had progressed on
trastuzumab was superior to treating with capecitabine
alone, with improved ORR (48.1% versus 27%, P = 0.0115)
and median time-to-progression (8.2 months versus 5.6
months, P = 0.0338) [34]. Data from other prospect-
ive studies examining the same issue but using differ-
ent chemotherapeutic regimens are awaited (Pandora,
NCT00444587; THOR, NCT00448279) [35].

3.1.2. Lapatinib. Lapatinib is a reversible small-molecule
TKI of EGFR and HER2 which was first found to possess
antitumour activity in HER2-dependent cells lines [36]. Sub-
sequent preclinical and retrospective clinical studies have also
indicated its potential activity in the subset of p9SHER2-
overexpressing, trastuzumab-resistant breast tumours [37,
38].

Lapatinib gained regulatory approval for use in HER2-
positive metastatic breast cancer patients who have received
prior anthracyclines, taxanes, and trastuzumab, based on
a pivotal phase III study demonstrating the superiority of
lapatinib and capecitabine compared to capecitabine alone
in ORR (22% versus 14%, P < 0.09) and PFS (8.4 months
versus 4.4 months, P < 0.001) in this group of patients [39].
In addition, lapatinib has demonstrated promising activity in
central nervous system (CNS) metastases, which affect one-
third of patients with advanced HER2-positive breast can-
cer. The high incidence of CNS metastases in HER2-positive
breast cancer is in part contributed by the inability of trastu-
zumab to penetrate the blood-brain barrier. In a multi-cen-
tre phase II study, 20% of patients with refractory brain
metastases achieved a CNS objective response following
treatment with lapatinib and capecitabine [40], highlighting
the promise of a small molecule TKI in this subset of patients.

Lapatinib is currently being evaluated in combination
with chemotherapy as first-line metastatic treatment in
HER2-positive disease in the ongoing MA31 study, where
it is being compared to trastuzumab in combination with
taxane-based chemotherapy (NCT00667251). In addition, a
randomised phase II study has been planned to evaluate
the efficacy of lapatinib versus trastuzumab in combination
with first-line chemotherapy in metastatic patients whose
tumours display concomitant overexpression of HER2 and



P95SHER2 (NCTO01137994). Lapatinib is also being evalu-
ated as monotherapy or in combination with trastuzumab
in early-stage breast cancer in the adjuvant (ALTTO,
NCT00490139; TEACH, NCT00374322) and neoadjuvant
(neoALTTO, NCT00553358; GeparQuinto, NCT00567554)
settings.

3.1.3. Lapatinib and Trastuzumab. A preclinical study in
HER2-overexpressing breast cancer cell lines suggested that
dual anti-HER2 blockade was synergistic because lapatinib
induced HER2 accumulation at the cell surface, resulting in
enhanced trastuzumab-binding and increased trastuzumab-
mediated ADCC [41]. A randomised phase III study con-
ducted in heavily pretreated HER2-positive metastatic breast
cancer patients who progressed on trastuzumab demon-
strated that the combination of trastuzumab and lapatinib
significantly improved clinical benefit rates (CBR) (24.7%
versus 12.4%, P = 0.01) and median PFS (12 weeks versus 8.1
weeks, P = 0.008) compared to lapatinib alone [42]. These
findings confirmed the efficacy of dual anti-HER2 block-
ade in the context of a chemotherapy-free regimen associated
with minimal toxicities. Recently, preliminary data from the
neoALTTO study suggested that dual anti-HER2 blockade
combined with paclitaxel chemotherapy can further impro-
ve treatment efficacy, resulting in significantly higher patho-
logic complete response (pCR) rates than paclitaxel com-
bined with either trastuzumab or lapatinib alone in the neo-
adjuvant setting (51.3% versus 29.5% versus 24.7%, respec-
tively; P < 0.01); dual blockade was associated with mildly
increased but manageable toxicities [43].

3.2. Novel HER2-Directed Therapies (Table 1). The emer-
gence of more robust preclinical data in recent years has cata-
pulted therapeutic advances in this arena, resulting in a rapid
expansion in the armamentarium of anti-HER?2 agents being
developed clinically. These include dimerisation inhibitors,
antibody-drug conjugates, tyrosine kinase inhibitors, HSP90
inhibitors, mTOR/PI3K inhibitors, antiangiogenic agents,
IGF-1R inhibitors, and bispecific antibodies.

3.2.1. Dimerisation Inhibitor, Pertuzumab. One of the closest
to regulatory approval amongst several novel anti-HER2
agents in advanced clinical development is pertuzumab,
which is a humanised monoclonal antibody that binds to an
epitope on the dimerisation domain located on domain II of
the HER2 ECD, distinct from the binding site of trastuzumab
on domain IV. Consequently, it potently inhibits HER2 as
well as the dimerisation of HER2 with other HER fami-
ly receptors, including HER3 [6]. The growing body of pre-
clinical evidence supporting the central role of the HER2-
HERS3 interaction in driving PI3K/Akt-mediated tumorige-
nesis in HER2-overexpressing breast cancers strengthens the
scientific rationale behind the development of this class of
agents [26].

Pertuzumab combined with trastuzumab results in con-
current blockade of multiple HER family members, and
their synergistic activity has been demonstrated in HER2-
overexpressing breast cancer xenograft models [44]. Dual
inhibition with pertuzumab and trastuzumab has reached
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an advanced phase of development in combination with
chemotherapy. A randomised phase III study (CLEOPATRA,
NCT00567190) evaluated the benefit of adding pertuzumab
to the combination of trastuzumab and docetaxel in pre-
viously untreated HER2-positive metastatic breast cancer.
Although no comprehensive data has been released, prelimi-
nary results of the recently completed study indicate that the
primary endpoint of PFS was significantly prolonged in the
experimental pertuzumab-containing arm. These potentially
practice-changing findings have led Genentech/Hoffman-La
Roche to seek regulatory approval for the drug combination
[45]. A similarly designed randomised phase III study
evaluating the addition of pertuzumab to trastuzumab plus
chemotherapy will soon commence in the adjuvant setting
(NCT01358877).

The dual anti-HER2 combination of pertuzumab and
trastuzumab has been evaluated without chemotherapy in
the open-label, phase II BO17929 study conducted on
HER2-positive metastatic breast cancer patients with prior
trastuzumab failure, yielding extremely promising results.
Complete response rates, ORR, and CBR were 7.6%, 24.2%,
and 50%, respectively, and the median PFS was 5.5 months.
The combination was well tolerated, and importantly, the
incidence of cardiac dysfunction was minimal [46]. The
rationale for developing pertuzumab in combination with
trastuzumab was reinforced by data from a separate arm of
the same study, which showed that 14.3% of patients re-
sponded to the reintroduction of trastuzumab upon disease
progression on pertuzumab monotherapy, demonstrating
that the two HER2-directed agents have synergistic, nonover-
lapping mechanisms of actions [47]. Further support for
the potential development of this chemotherapy-free anti-
HER2 combination was derived from the recently completed
phase II NeoSphere study, which evaluated the efficacy of
preoperative pertuzumab, trastuzumab, or their combina-
tion, with or without docetaxel in HER2-positive early-
stage breast cancer. Similar to what has been reported in
neoALTTO, pCR rates were highest with docetaxel plus
dual anti-HER2 blockade compared to docetaxel with either
trastuzumab or pertuzumab alone (45.8% versus 29% versus
24%, P < 0.014). Interestingly, a promising pCR rate of
17.8% was achieved with dual anti-HER2 blockade in the
absence of chemotherapy, further highlighting the poten-
tial of combining two anti-HER2 agents with different mech-
anisms of action [48].

3.2.2. Antibody-Drug Conjugate (ADC), Trastuzumab-DM]1.
T-DM1 is the first and only HER2-directed ADC in clinical
development and combines the intracellular delivery of a
microtubule-depolymerisation agent, DM1, a maytansine
derivative, with the antitumour activity of trastuzumab.
Upon binding to the HER2 receptor, T-DM1 is internalised
and DMI1 released intracellularly, enabling the selective
delivery of the potent cytotoxic agent to HER2-overexpres-
sing cells with limited systemic toxicity [6, 49]. Preclinical
studies have demonstrated the enhanced efficacy of this agent
compared to unconjugated trastuzumab in both trastu-
zumab-sensitive as well as in trastuzumab-resistant HER2-
overexpressing tumour models [50, 51].
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TaBLE 1: Pertinent clinical trials of novel HER2-directed therapies in HER2-positive breast cancer.

Trial

Development phase

Study population (sample
(*Protocol No.)

size/planned enrollment)

Agents under evaluation

Dimerisation inhibitor (Pertuzumab)/Genentech

CLEOPATRA

BO17929 [46]

NeoSphere [48]

Randomised phase III b . _
(NCT00567190) MBC, 1st line (n = 808)
MBC, >2nd line, prior
Phase II trastuzumab (n = 85)
Randomised phase III . a _
(NCT01358877) Adjuvant, “EBC (n = 3806)
Randomised phase I1 Neoadjuvant, stage II/III EBC

(n =417)

Docetaxel + trastuzumab + pertuzumab versus
docetaxel + trastuzumab + placebo

Pertuzumab + trastuzumab pertuzumab —
pertuzumab + trastuzumab on “PD

Chemotherapy + trastuzumab + pertuzumab
versus chemotherapy + trastuzumab + placebo

Docetaxel + trastuzumab + pertuzumab versus
docetaxel + pertuzumab versus
docetaxel + trastuzumab versus

pertuzumab + trastuzumab

Antibody-Drug Conjugate (Trastuzumab-DM1)/Genentech

MARIANNE

EMILIA

TDM4450g [53]

Randomised phase I1I . _
(NCT01120184) MBGC, Istline (n = 1092)

Randomised phase III ﬁaBsS;szrﬁgl:Tet;f;I:::
(NCT00829166) (n = 980)

Randomised phase II . _
(NCT00679341) MBC, 1st line (n = 137)

Neoadjuvant/adjuvant, stage
I-III (n = 135) after
anthracyclines

Single-arm phase IT
(NCT01196052)

T-DM1 + pertuzumab versus T-DM1 + placebo
versus trastuzumab + taxane

T-DM1 versus lapatinib + capecitabine
T-DM1 versus trastuzumab + docetaxel

T-DM1

Novel Tyrosine Kinase Inhibitors

(i) Neratinib (HK-272)/Pfizer

NEFERTT

Reference [60]

ExteNET

FB-7

Randomised phase IT . _
(NCT00915018) MBGC, 1st line (n = 480)

Randomiedphaer1 456 2 i
(NCT00777101)

(n = 233)

Single-arm phase II MBC, >2nd line, prior

(NCT00398567) trastuzumab (n = 45)
Randomised phase 11~ AcJuant BoePosive

(NCT00878709) Completed trastuzumab
Randomised phase IT Neoadjuvant, stage IIB-IIIC

(NCT01008150) (n =120)

Neratinib + paclitaxel versus
trastuzumab + paclitaxel

Neratinib monotherapy versus
lapatinib + capecitabine

Neratinib + trastuzumab

Neratinib monotherapy versus placebo

Neratinib + paclitaxel versus
trastuzumab + paclitaxel

(ii) Afatinib (BIBW-2992)/Boehringer Ingelheim

LUX-Breast 1 Randomised phase III MBC, >=2nd line, prior Afatinib + vinorelbine versus
(NCT01125566) trastuzumab (n = 780) trastuzumab + vinorelbine
Single-arm Phase II MBC, >2nd line, prior L.
Reference [62] (NCT00431067) trastuzumab (1 = 41) Afatinib monotherapy
(iii) ARRY-380/Array BioPharma
Expansion phase I MBC, >2nd line (n = 50) ARRY-380 monothera
(NCT00650572) = - Py

(iv) ARRY-334543/Array BioPharma

Advanced solid tumours

Phase I (NCT00710736) (n = 29)

ARRY-334543 + capecitabine
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Trial

Development phase
(*Protocol No.)

Study population (sample
size/planned enrollment)

Agents under evaluation

Heat-shock protein 90 inhibitors

(i) Tanespimycin (17-AAG)/Bristol-Myers Squibb

Reference [67]

Single-arm phase II MBC, >2nd line, prior
(NCT00773344) trastuzumab (n = 29)

Tanespimycin + trastuzumab

(i1) AUY922/Novartis

MBC, >2nd line, prior

Phase Ib/II (NCT001271920) trastuzumab (1 = 45)

AUY 922 + trastuzumab

mTOR inhibitors
(i) Everolimus (RADO001)/Novartis
Randomised phase IIT . _ Paclitaxel + trastuzumab + everolimus versus
BOLERO-1 (NCT00876395) MBC, st line (n = 717) paclitaxel + trastuzumab + placebo
BOLERO-3 Randomised phase III %fi&jﬁ;‘:ﬁ?iﬁ;ﬁ: Vinorelbine + trastuzumab + everolimus
(NCT01007942) (n = 572) versus vinorelbine + trastuzumab + placebo

Reference [70]

MBC, >2nd line, prior

trastuzumab (n = 55)

Single-arm phase II MBC, >2nd line, prior
(NCT01283789) trastuzumab (n = 45)

Phase I/Il (NCT00426566)

Everolimus + trastuzumab

Everolimus + lapatinib

(ii) Deforolimus (AP23573)/Ariad

Single-arm Phase IT MBC, >2nd line, prior
(NCT00736970) trastuzumab (n = 34)

Deforolimus + trastuzumab

(iii) Temsirolimus (CCI-779)/Wyeth

Single-arm phase I/II
(NCT01111825)

MBC, >2nd line, prior
trastuzumab (n = 65)

Temsirolimus + neratinib

PI3K inhibitors

(i) BKM120/Novartis

Single-arm phase Ib/II MBC, >2nd line, prior

(NCT01132664) trastuzumab (n = 70) BKM120 + trastuzumab
(ii) BEZ235/Novartis
Single-arm phase II MBC, >2nd line, prior
(NCT01288092) trastuzumab (7 = 120) BEZ235 monotherapy

Angiogenesis inhibitors

(i) Bevacizumab/Genentech/Roche

AVEREL

ECOG1105

BETH

Docetaxel + trastuzumab + bevacizumab
versus docetaxel + trastuzumab
Carboplatin + paclitaxel + trastuzumab +
bevacizumab versus carboplatin +
paclitaxel + trastuzumab + placebo
Chemotherapy + trastuzumab + bevacizumab
versus chemotherapy + trastuzumab

Reference [78]

o oo MBC, 1st line (n = 407)
A MBC, Ist line (n = 459)
Randomised phase III .
(NCT006ZI;898) Adjuvant, EBC (n = 3509)
(ii) Pazopanib/GlaxoSmithKline
Randomised phase II .
(NCT0034I7)919) MBC, 1st line (n = 62)
Randomised phase III Inflammatory breast cancer,
(NCT0055}<)9103) >2nd line (n = 360) Prior

trastuzumab/chemotherapy

Pazopanib + lapatinib versus lapatinib

Pazopanib + lapatinib versus lapatinib

IGF-1R inhibitors

(i) Cixutumumab (IMC-A12)/Eli Lilly

MBC, >2nd line, prior
trastuzumab, anthracycline
and/or taxane (n = 154)

Randomised phase IT
(NCT00684983)

Lapatinib + capecitabine + cixutumumab
versus
lapatinib + capecitabine
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TaBLE 1: Continued.

Development phase

Trial (*Protocol No.)

Study population (sample
size/planned enrollment)

Agents under evaluation

(ii) BMS-754807/Bristol-Myers Squibb

Phase I/II (NCT00788333)

MBC, >2nd line, prior
trastuzumab (n = 48)

BMS-754807 + trastuzumab

Bispecific antibody (MM-111)/Merrimack Pharmaceuticals

Phase I/II (NCT01097460)

MBC, >2nd line, prior
trastuzumab (n = 50)

MM-111 + trastuzumab

*Bold rows denote ongoing studies or trials pending results, *Clinical Trials.gov-http://clinicaltrials.gov/, ®metastatic breast cancer, “disease progression, Yearly

breast cancer.

Excellent response rates of 40% to T-DM1 have been re-
ported in an open-label, single-arm, phase II study con-
ducted in patients with HER2-positive metastatic breast can-
cer, all of whom had progressed on trastuzumab-based ther-
apy and 40% of whom had received prior lapatinib therapy.
Severe toxicities including grade 4 thrombocytopenia and
transaminitis were rare at 6% [52]. The high proportion
of patients achieving objective responses in this study has
allayed concerns that further antibody-based treatment may
be rendered ineffective due to the proteolytic cleavage of
HER?2 following prior trastuzumab exposure [51].

Multiple clinical trials have been designed to compare the
efficacy of single-agent T-DM1 with existing HER2-direct-
ed therapies combined with chemotherapy in patients with
HER2-positive metastatic breast cancer. Preliminary results
of a randomised phase II study (TDM4450g) of T-DM1 ver-
sus trastuzumab plus docetaxel (TH) in the first-line treat-
ment of HER2-positive metastatic breast cancer patients
were recently released. While response rates were comparable
in the two arms (48% versus 41%; T-DM1 versus TH, resp.),
T-DM1 was much less toxic, with grade 3 and above toxicit-
ies approximately half that of TH (37.3% versus 75%)
[53]. The EMILIA study, a multicentre, open-label, ran-
domised, phase III study comparing the efficacy of T-DM1
versus the combination of capecitabine and lapatinib in
patients who have received prior taxane- and trastuzumab-
based regimens, is nearing completion (NCT00829166). In
addition, the role of T-DM1 delivered sequentially with
anthracycline-based chemotherapy is being explored in the
adjuvant/neoadjuvant setting in patients with HER2-positive
early breast cancer (NCT01196052).

Based on preclinical research demonstrating the syner-
gistic antitumour activity of T-DM1 and pertuzumab in a
trastuzumab-resistant breast cancer xenograft model [54], a
phase Ib/II study of the combination has been performed,
demonstrating tolerability and encouraging efficacy, with an
ORR of 35.7% in a heavily pretreated HER2-positive meta-
static breast cancer population [55]. Further to this,
a three-arm randomised phase III study (MARIANNE,
NCTO01120184) is underway to evaluate T-DM1 alone and T-
DM1 combined with pertuzumab versus the reference arm
of trastuzumab plus taxane in previously untreated patients
with HER2-positive metastatic breast cancer.

3.2.3. Tyrosine Kinase Inhibitors. Since trastuzumab resis-
tance may arise from cross-talk among other HER proteins
resulting in lateral activation and incomplete inhibition of
downstream signalling, one approach to overcoming trastu-
zumab resistance is the simultaneous inhibition of multiple
HER receptors [56]. Several novel HER2 small-molecule
TKIs have demonstrated promising activity and are in
various stages of clinical development.

Neratinib (HKI-272). Neratinib, a potent, low-molecular-
weight, orally administered, irreversible pan-HER (HERI,
HER2 and HER4) receptor TKI, is one of the most advanced
novel HER TKI in clinical development and offers more com-
plete HER receptor blockade than lapatinib which inhibits
only HER1 and HER2. An early preclinical study demon-
strated that the compound inhibited cell proliferation of
HER2-overexpressing breast cancer cell lines and xenografts
through downregulation of the MAP kinase and PI3K/Akt
pathways and induced cell cycle arrest [57].

Clinical studies have evaluated neratinib as a single agent
or in combination with trastuzumab or chemotherapy. A re-
cently published phase II, open-label study evaluated the
efficacy and tolerability of neratinib monotherapy in two co-
horts of patients with HER2-positive metastatic breast can-
cer: those with and those without prior trastuzumab treat-
ment. The efficacy results of the two cohorts were a 16-week
PES (the primary endpoint) of 59% and 78%, respectively,
and an ORR of 24% and 56%, respectively, while diarrhoea
was a common but manageable toxicity [58]. Despite the
caveats of cross-trial comparisons, these results seem much
more promising than those of a phase II study of lapa-
tinib monotherapy in HER2-positive metastatic breast can-
cer patients with prior trastuzumab treatment, where ORR
was only 4.3%, and median PES was 9 weeks [59], signifying
that neratinib has a potential role as a single agent, as op-
posed to lapatinib, which is seldom administered as mono-
therapy. Several studies are ongoing to address pertinent
issues regarding the therapeutic role of neratinib, including
its efficacy in metastatic disease as single agent in a rando-
mised phase II open-label study of neratinib versus the com-
bination of lapatinib and capecitabine in patients with prior
trastuzumab and taxane exposure (NCT00777101) and in
combination with chemotherapy in a randomised phase II



study (NEFERTT, NCT00915018) comparing neratinib and
paclitaxel versus trastuzumab and paclitaxel in previously
untreated metastatic disease. It is also being evaluated in
early-stage disease both in the neoadjuvant and adjuvant
settings (NCT01008150 and NCT00878709).

Preliminary data from a phase I/II study of the combina-
tion of neratinib and trastuzumab in HER2-positive meta-
static breast cancer patients with prior trastuzumab exposure
demonstrated both tolerability and efficacy, with an ORR of
27%, 16-week PFS of 47%, and median PFS of 19 weeks [60].
These data warrant further investigations to clarify the utility
of this anti-HER2 combination.

Other HER2-Targeted TKIs. While afatinib (BIBW-2992)
targets the same receptors as lapatinib, it does so in an irre-
versible manner, resulting in more sustained inhibition of
EGFR and HER2. It has demonstrated activity in trastu-
zumab-resistant HER2-overexpressing cell lines as well as
promising clinical activity in phase I development [61]. Its
potential was confirmed in a phase II study of single-agent
afatinib, which yielded 12% response rate in a heavily pre-
treated population of HER2-positive metastatic breast cancer
patients with prior trastuzumab exposure [62]. An ongoing
phase I1I randomised study (LUX-Breast 1) is assessing the
efficacy of afatinib plus vinorelbine versus the continuation
of trastuzumab plus vinorelbine in HER2-positive metastatic
breast cancer following trastuzumab failure (NCT01125566).

Two other orally active TKIs, ARRY-380 and ARRY-
334543, are in the process of development by Array
BioPharma. ARRY-380 is a reversible and selective HER2
TKI which has demonstrated significant dose-related tumour
growth inhibition superior to that of trastuzumab and lap-
atinib in preclinical studies, as well as promising efficacy in
an ongoing phase I expansion study in HER2-overexpressing
solid tumours, including activity in p95HER2-overexpress-
ing tumours (NCT00650572) [63]. ARRY-334543, a rever-
sible pan-HER TKI which has demonstrated significant
preclinical activity in HER2-overexpressing tumour models
and synergism with trastuzumab and docetaxel [64], is cur-
rently being evaluated in early phase studies in advanced
solid tumours (NCT00710736).

3.2.4. Heat-Shock Protein 90 Inhibitors. HSP90 belongs to
a family of chaperone proteins which facilitate the con-
formational maturation and folding of various signalling
proteins, including HER2. In a preclinical study, interference
with its function led to ubiquitylation and proteasomal
degradation of HER2 and the resultant abrogation of the
PI3K/Akt pathway, in turn causing growth inhibition of
HER2-overexpressing tumours in murine xenograft models
[65]. A potential therapeutic niche for HSP90 inhibitors in
the setting of trastuzumab resistance has been described,
where administration of HSP90 inhibitors resulted in down-
regulation of truncated p95HER2 and inhibition of cell pro-
liferation in p95HER2-overexpressing trastuzumab-resistant
breast tumour models [66].

At least three HSP90 inhibitors have undergone clinical
investigation in HER2-positive breast cancer, and to date, all
have been evaluated in combination with trastuzumab. One
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promising compound is tanespimycin (17-AAG/KOS-953),
which has demonstrated significant activity and tolerability
in combination with trastuzumab in a phase II study con-
ducted in advanced trastuzumab-refractory HER2-positive
breast cancer, with an ORR of 24%, CBR of 59%, median PFS
of 6 months, and median OS of 17 months [67]. These data
undoubtedly warrant further exploration of its therapeutic
role in phase III studies. Ironically, a structurally related
biologically active form of 17-AAG, retaspimycin (IPI-504),
did not share the same success despite promising preclinical
activity in trastuzumab-resistant HER2-overexpressing cell
lines; while treatment in combination with trastuzumab
in a phase II study resulted in modest clinical activity in
heavily pretreated patients previously exposed to trastu-
zumab, it did not meet the prespecified efficacy crite-
ria for trial expansion [68]. Another HSP90 inhibitor,
AUY922, is currently being evaluated in combination with
trastuzumab in patients with trastuzumab-refractory HER2-
positive metastatic breast cancer in a phase I/II study
(NCT01271920).

3.2.5. Mammalian Target of Rapamycin (mTOR)/PI3K Inhi-
bitors. PTEN loss leads to the constitutive activation of Akt,
which in turn activates mTOR in the PI3K/Akt signalling
pathway. Two preclinical studies suggest the potential of
this pathway as a therapeutic target; HER2-overexpressing
breast cancer cell lines and xenograft models transfected with
loss-of-function PTEN mutations and activating PIK3CA
mutations resulted in trastuzumab and lapatinib resistance
which was effectively reversed by the PI3K/mTOR inhibitor,
NVP-BEZ235 [21, 69].

Everolimus. Everolimus is the most advanced mTOR inhi-
bitor undergoing clinical investigation and is being devel-
oped in combination with existing HER2-directed thera-
pies with or without chemotherapy. A recently published
phase I/IT study evaluated the chemotherapy-free combina-
tion of everolimus and trastuzumab in heavily pretreated
HER2-positive metastatic breast cancer patients with prior
trastuzumab exposure, which yielded an ORR of 15%, CBR
of 34%, and median PFS of 4.1 months. The overall safety
profile was acceptable, but did include a less than 10% in-
cidence of grade 3 diarrhoea, fatigue, and stomatitis [70].
The combination of everolimus and lapatinib is currently be-
ing investigated in a phase II study of HER2-positive meta-
static breast cancer patients with prior trastuzumab exposure
(NCT01283789).

The combination of everolimus with trastuzumab and
weekly paclitaxel appeared highly active in heavily pre-treat-
ed HER2-positive metastatic breast cancer patients with
prior trastuzumab and taxane exposure, yielding an ORR of
25%, stable disease (SD) rate of 56%, and acceptable toxi-
city profile in a multicentre phase II study [71]. Two place-
bo-controlled randomised phase III studies are in progress
to evaluate the benefit of adding everolimus to trastuzumab
and paclitaxel in the first-line metastatic setting (BOLERO-
1) and to trastuzumab and vinorelbine in patients with
prior trastuzumab and taxane exposure (BOLERO-3)
(NCT00876395, NCT01007942).
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Other mTOR/PI3K Pathway Inhibitors. Apart from evero-
limus, two other rapamycin analogues in the developmental
pipeline in the treatment of HER2-positive breast can-
cers are deforolimus (AP23573) and temsirolimus (CCI-
779). A phase II study of oral deforolimus in combina-
tion with trastuzumab has recently been completed in
HER2-overexpressing metastatic breast cancer patients with
prior trastuzumab exposure (NCT00736970). Compen-
satory increase in HER3 signalling with inhibition of the
PI3K/Akt signalling pathway supports the novel approach
of dual inhibition with an mTOR inhibitor and a pan-HER
receptor TKI [26], and the combination of temsirolimus and
neratinib has demonstrated tolerability and highly promising
activity in a phase I study [72] and is currently being
evaluated in an ongoing phase II study (NCT01111825).

Novartis is currently conducting early-phase studies of
two PI3K inhibitors that compete reversibly with the ATP-
binding site of the PI3K p110 catalytic subunit. BKM120,
a pan-class I PI3K inhibitor, is being assessed in combi-
nation with trastuzumab in a phase Ib/II study of HER2-
overexpressing breast cancer patients with prior trastuzumab
exposure (NCT01132664), while BEZ235, a dual PI3K and
mTOR inhibitor, is planned for evaluation as a single-agent
in a phase II study (NCT01288092) [73, 74].

3.2.6. Angiogenesis Inhibitors

Monoclonal Antibodies against VEGF. The rationale for the
simultaneous blockade of both HER2 and VEGF pathways
is based on preclinical data demonstrating upregulation of
angiogenesis in HER2-overexpressing breast tumours, and
clinical data demonstrating that overexpression of both
HER2 and VEGF was associated with a poorer prognosis in
breast cancer patients in a large retrospective analysis [75].
Following the results of a phase II study which demon-
strated encouraging efficacy (ORR 46%) and tolerability of
bevacizumab and trastuzumab in the first-line treatment
of HER2-positive metastatic breast cancer [76], the role
of adding bevacizumab, a monoclonal antibody against
VEGE, to the combination of trastuzumab and taxane-based
chemotherapy is being assessed in two large randomised
phase III studies, AVEREL (NCT00391092) and ECOG1105
(NCT00520975). The same strategy is also being evalu-
ated in the adjuvant setting in the ongoing BETH study
(NCT00625898) [77].

VEGF-Receptor (VEGFR) TKIs. A phase II open-label study
assessed the safety and efficacy of adding pazopanib, an oral
angiogenesis inhibitor targeting VEGFR, platelet-derived
growth factor receptor and c-kit, to lapatinib in previously
untreated HER2-positive metastatic breast cancer. Results
showed lower 12-week progressive disease (19% versus
27%) and better response rates (44% versus 30%) with
the combination compared to lapatinib alone, and whilst
toxicities of diarrhoea and abnormal liver function tests were
greater in the combination arm, they were still regarded as
tolerable [78]. This has led to an ongoing randomised phase
III study comparing the combination of pazopanib and lap-

atinib versus lapatinib monotherapy in patients with HER2-
overexpressing inflammatory breast cancer (NCT00558103).

3.2.7. IGF-1R Inhibitors. Bidirectional cross-talk between the
IGF-1R and HER2 signalling pathways is one mechanism
of trastuzumab resistance, and the human anti-IGF-1R
antibody, CP-751871 (Pfizer) and small-molecule selective
IGF-1R TKI, NVP-AEW541 (Novartis) have demonstrated
antitumour activity against trastuzumab-resistant breast
cancer tumour models [79, 80]. Two IGF-1R inhibitors are
being evaluated in combination with existing HER2-directed
therapies for the treatment of HER2-positive metastatic
breast cancer in clinical studies. Cixutumumab (IMC-A12),
an IGF-1R monoclonal antibody, is being assessed in com-
bination with lapatinib and capecitabine in patients with
prior trastuzumab, anthracycline, and/or taxane exposure in
a randomised phase II study (NCT0068493), whilst the com-
bination of trastuzumab and BMS-754807, a small-molecule,
reversible IGF-1R TKI, is undergoing evaluation in patients
with prior trastuzumab failure in a phase I/II study
(NCT00788333).

3.2.8. Bispecific Antibodies. Continuing strategies to over-
come trastuzumab resistance include the development of a
class of agents known as trifunctional, bispecific antibodies.
MM-111 is an antibody targeting both the HER2/HER3 he-
terodimer and the HER3 ligand, heregulin, and is currently
being evaluated in combination with trastuzumab in HER2-
overexpressing metastatic breast cancer patients with prior
trastuzumab exposure (NCT01097460) [81]. A phase II study
of another bispecific antibody against HER2 and CD3, ertu-
maxomab, in trastuzumab-refractory HER2-positive meta-
static breast cancer was however terminated after the com-
pany halted the development of the compound due to stra-
tegic changes (NCT00452140).

3.2.9. Novel Chemotherapy-Free Anti-HER2 Combinations.
Rational combinations of novel anti-HER2 therapies are
of particular interest not only because of their ability to
overcome trastuzumab resistance through their concurrent
blockade of multiple HER2 family members, but also
for their potential to offer chemotherapy-free therapeutic
options that are relatively less toxic. The combination of
trastuzumab and lapatinib has recently been integrated
into clinical practice [42]. Most other combinations in
development include combining a novel anti-HER2 agent
with trastuzumab. Of these, the most convincing evidence
for the benefit of dual inhibition over single-agent therapy
is derived from the randomised phase II studies, BO17929
(NCT00301899) and NeoSphere [48], which strongly sup-
port the synergistic activity of pertuzumab and trastuzumab.
Neratinib combined with trastuzumab has similarly demon-
strated promising efficacy [60]. All the HSP inhibitors and
most of the mTOR inhibitors under evaluation in HER2-
positive breast cancer have been developed in combination
with trastuzumab, with studies supporting their efficacy in
the absence of chemotherapy, although it would also be of
interest to study these agents as monotherapy to define if
trastuzumab is required for maximal efficacy [6]. Lastly, the
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combination of an mTOR inhibitor and novel HER-receptor
TKI is worthy of mention due to its strong preclinical
rationale and promising early-phase activity [72]. Apart from
dual inhibition using two HER2-directed therapies, syn-
ergism has been demonstrated between anti-HER2 agents
and angiogenesis inhibitors, with lapatinib and pazopanib
being a promising chemotherapy-free combination. The
development of even more robust chemotherapy-free anti-
HER2 combinations, driven by a clearer understanding of
basic scientific mechanisms, is highly anticipated to improve
HER2-directed therapeutic strategies in the future.

3.3. Future Challenges and Directions. With the emergence of
several novel HER2-directed agents, recent therapeutic ad-
vancements have been remarkable compared to the limited
progress following the initial regulatory approval of trastu-
zumab more than a decade ago. Improved insights into the
mechanisms of trastuzumab resistance have led to new treat-
ment strategies employing dual anti-HER2 blockade, which
have improved response rates and progression-free survival.

While the substantial amount of research dedicated to
the development of novel ant-HER2 agents is laudable, the
vast array of treatment options in an ever-changing land-
scape of anti-HER2 therapy may raise more questions than
answers. Clinicians will be continually challenged to design
optimal combinations and sequences of anti-HER2 agents,
chemotherapeutic agents, and even endocrine therapy for
the individualised treatment of patients with HER2-positive
breast cancer. These issues can rarely be fully addressed
through the simplistic design of current therapeutic trials.
At present, a physician treating an individual who has pro-
gressed on first-line trastuzumab-based therapy already faces
the dilemma of whether the patient should receive further
trastuzumab together with an alternative chemotherapeutic
agent, continue trastuzumab in combination with lapatinib,
or switch to lapatinib. The growing number of HER2-
directed therapies in the pipeline will only add to the com-
plexity of this decision-making process. In addition, a large
proportion of HER2-positive patients relapsing with meta-
static disease in the future will have received adjuvant
trastuzumab or even lapatinib therapy, indicating that new
treatment paradigms will be required for this group of pa-
tients.

The extensive preclinical efforts in elucidating mecha-
nisms of trastuzumab resistance should translate into indi-
vidualised therapy through biomarker-driven approaches.
However, this would first require the development of vali-
dated assays for the accurate measurement of resistance fac-
tors in archival tissue specimens, and to date, advancements
in this arena have been slow [24]. For example, despite the
fact that HER2 truncation is the best-studied mechanism
of trastuzumab resistance, monoclonal antibodies to analyse
p95SHER2 levels in tumour samples have only recent-
ly become available [4, 82]. The design of future prospective
clinical trials in HER2-positive breast cancer should ideally
be guided by predictive biomarkers. However, this signifi-
cantly increases the complexity of randomised studies since
a variety of mechanisms of resistance may exist in a patient
population, and in reality, it is likely to take years before
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trastuzumab resistance biomarker-directed treatment ap-
proaches may be integrated into routine clinical practice.

3.4. Conclusion. Trastuzumab resistance poses a significant
challenge in the treatment of HER2-positive breast cancer.
Substantial research has been dedicated to elucidating mech-
anisms of trastuzumab resistance, as well as developing a
myriad of novel anti-HER2 therapeutic agents with promis-
ing clinical activity. This has resulted in a major paradigm
shift in the treatment of HER2-positive breast cancer and has
given rise to a rapidly expanding range of therapeutic options
in active clinical development. Future efforts should be
directed towards biomarker-driven, HER2-directed therapies
for optimal selection of therapy for the individual patient.
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