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Abstract
Investigation of bivalent ligands at μ, δ and κ opioid receptors is now focused on the preparation
of ligands containing κ agonist and μ agonist/antagonist pharmacophores at one end joined by a
linking chain containing the μ antagonists pharmacophores (naltrexone, naloxone or nalbuphine)
at the other end. These ligands were evaluated in-vitro by their binding affinity at μ, δ and κ
opioid receptors and their relative efficacy in the [35S]GTPγS assay.

Ligands 6-8 displayed better or the same affinity at κ and μ receptors compared to the monovalent
ligands 1-5. Ligands 6-8 generally showed reduced affinity at δ receptor compared to the
monovalent ligands 1-5. Functional assays showed that the ligand 6 was a κ agonist/antagonist
and μ antagonist whereas ligands 7 and 8 were κ agonists and μ agonists/antagonists.

Introduction
The heterodimerization of G-protein coupled receptors has important implications because it
represents another mechanism that could modulate receptor function and suggests additional
targets for drug development.1-3 There is now an increasing realization that activity at a
single receptor is insufficient for modulating multiple targets for the treatment of a range of
disorders.4 Bivalent ligands have been developed for a variety of G-protein coupled receptor
targets including opioid 5,6 adrenergic,7 dopamine,8 serotonin,9 muscarinic receptors,10 but
also enzymes such as butyrylcholinesterase.11 The methodical combination of
pharmacophores from selective ligands that act on specific targets (receptors) is an
important technique used for the generation of bivalent ligands. There is the possibility that
the development of bivalent ligands in the opioid field which bridge the gap between
binding sites on dimerized receptors will lead to a new generation of analgesic drugs that
may not cause physical dependence or tolerance with chronic use.12

Previous reports from our laboratories indicated that the mixed action of the κ/μ agonist
butorphan (1) has a more promising profile of activity than the κ agonist/μ antagonist –
cyclorphan.13,14 This finding led to the synthesis of a series of homo-bivalent ligands
incorporating butorphan (1) as the pharmacophore connected by linking spacers of varying
lengths.15,16 It was observed that the affinity of these ligands was sensitive to the character
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and length of the spacer. The homobivalent ligand 9 containing butorphan (1) at both ends
of the 10-carbon linking ester chain (Figure 1) (Ki=0.09 nM at μ and 0.049 nM at κ) was the
most potent ligand in this series.15,16 In the course of the synthesis of a series of hetero-
bivalent ligands containing butorphan (1) at one end and other pharmacophores at the other
end of the linker, we also found that the stereochemistry of the pharmacophores, the N-
substituents of the pharmacophore, ester linkages and the spacer lengths were crucial factors
for optimum interactions of such ligands at opioid receptor binding sites.17 The spacer
length for these compounds was dictated by the peak potency that was observed when
sebacoyl ester (10 carbon) unit was incorporated into the molecule. A multiple ligand 10
(Figure 1) derived from the linkage of a δ selective peptide antagonist Dmt-Tic (2′6′-
dimethyl-L-tyrosine-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) and a μ/κ morphinan
agonist butorphan (1) through a two-methylene spacer was found to maintain exactly the
same characteristics as the two reference compounds.18

Portoghese et al. has also reported a range of homo and hetero dimeric ligands with varying
linker lengths designed to investigate pharmacodynamic and organizational features of
opioid receptors.19 For example, recently reported heterodimeric ligands containing δ
antagonist (naltrindole) and κ agonist (ICI-199,441) pharmacophores joined by variable
length oligoglycyl-based linkers were demonstrated to possess significantly greater potency
and selectivity when compared to their monomer congeners providing further evidence for
the opioid receptor hetero-oligomerization phenomena.20

In order to further investigate opioid bivalent ligands containing pharmacophores that have
established κ/μ/δ affinity, a combination of agonist and antagonist pharmacophores was
employed in the design of bivalent ligands for exploring the interaction between receptors.
Here we report the synthesis of three heterodimeric ligands derived from the linkage via a 10
carbon spacer of the μ antagonists nalbuphine (2), naltrexone (3) or naloxone (4) and a μ / κ
agonist butorphan (1).

Chemistry
The heterodimeric ligands 6, 7 and 8 were prepared by condensing the acid 5 with either
nalbuphine (2), natrexone (3) or naloxone (4) in the presence of DCC and DMAP as
previously reported (Figure 1).17

Pharmacological Results and Discussion
Affinity and Selectivity of the Synthesized Ligands

All the novel heterodimer ligands were evaluated for their affinity at and selectivity for μ, δ
and κ human opioid receptors with Chinese hamster ovary (CHO) cell membranes stably
expressing one of the human opioid receptors. The data are summarized in Table 1. For
comparison purposes, opioid binding affinity data for butorphan (1), nalbuphine (2),
naltrexone (3) and naloxone (4) are included in Table 1. The monovalent ligand 5 and the
homobivalent ligand 9 reported previously17 were also included in order to evaluate the
contribution of the spacer itself or the pharmacophores to binding.

Heterodimeric compounds such as 6 (butorphan (1) combined with nalbuphine (2)), 7
(butorphan (1) combined with naltrexone (3)) and 8 (butorphan (1) combined with naloxone
(4)) with a 10-carbon linking ester, displayed slightly better affinity at μ (around 2 fold)
compared to the monovalent ligand 5. Compound 7 (butorphan (1) combined with
naltrexone (3)) and 8 (butorphan (1) combined with naloxone (4)) showed lightly better
affinity at κ (~ 2 fold) receptor while compound 6 (butorphan (1) combined with nalbuphine
(2)) retained same affinity at κ, but all had lower affinity than butorphan (1). From the data
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shown in table 1, the heterodimer 6 (containing butorphan (1) and nalbuphine (2)) showed
increased affinities both at μ (Ki = 0.46 nM) and a 6 fold increase (Ki = 0.34 nM) at κ
receptors compared to nalbuphine (2), while the affinity at δ receptor was an average of the
two monomeric ligands 1 and 2. Similarly, the heterodimer 8 (containing butorphan (1) at
one end and naloxone (4) at the other), displayed a 2 fold increase at μ (Ki = 0.43 nM) and a
10 fold increase at κ receptors (Ki = 0.13 nM) as well as 2 fold increase at δ receptor
compared to naloxone (4). It is interesting to note that compound 7 (containing butorphan
(1) and naltrexone (3)) displayed almost identical affinities at all three opioid receptors as
the monomer naltrexone.

Efficacy of Selected Ligands
To characterize the relative efficacy of the ligands, butorphan (1), nalbuphine (2) and mono-
valent ligand 5 were selected for the [35S]GTPγS assay. Table 2 showed the agonist and
antagonist properties of the ligands in stimulating [35S]GTPγS binding mediated by the κ
opioid receptor. Ligand 6 produced similar maximal stimulation of [35S]GTPγS binding
(Emax) comparable to that of butorphan (1) and nalbuphine (2), but less than that of selective
agonist U50,488. The EC50 value of this ligand is slightly higher than butorphan (1), but
much lower than nalbuphine (2). Contrasted to the parent compounds, butorphan (1) and
nalbuphine (2), ligand 6 can inhibit U50,488-stimulated [35S]GTPγS binding although it
had a high IC50 value, which suggests that this ligand was a κ agonist/antagonist.

Ligand 7 produced similar maximal stimulation of [35S]GTPγS binding (Emax) compared to
that of butorphan (1), but was higher than that of naltrexone (3). Contrasted with the parent
compound naltrexone (3), ligand 7 did not inhibit U50,488-stimulated [35S]GTPγS,
suggesting that this ligand was κ agonist.

The agonist and antagonist properties of these ligands in stimulating [35S]GTPγS binding
mediated by the μ opioid receptor are shown in Table 3. Ligand 6 produced minimal
stimulation of [35S]GTPγS binding mediated by μ receptor while it produced complete
inhibition (I ) of the DAMGO stimulated [35 max S]GTPγS binding comparable to that of
butorphan (1) and nalbuphine (2). These data indicates that ligand 6 is a μ antagonist.
Ligand 7 produced similar maximal stimulation of [35S]GTPγS binding (Emax) and maximal
inhibition (I ) of the DAMGO stimulated [35 max S]GTPγS binding mediated by μ receptor
comparable to that of butorphan (1), while producing higher maximal stimulation of
[35S]GTPγS binding (Emax) and lower maximal inhibition (Imax) of the DAMGO-stimulated
[35S]GTPγS binding mediated by μ receptor comparable to that of naltrexone (3). The data
indicates that ligand 7 is a μ agonist/antagonist.

Conclusions
Heterodimeric ligands were synthesized containing κ agonist and μ agonist/antagonist
pharmacophores at one end joined by a 10 carbon linker chain containing μ antagonists
pharmacophores (naltrexone, naloxone and nalbuphine) at the other end. These ligands were
evaluated in vitro by their binding affinity at opioid receptors. Ligands (6-8) either displayed
slightly better or retained the same affinity at κ and μ receptors compared to the monovalent
ligands 1-5. Ligands 6-8 showed reduced affinity at δ receptor compared to the monovalent
ligands 1 and 5. Functional assays showed that the ligand 6 was a κ agonist/antagonist and μ
antagonist, while ligand 7 was a κ agonist and μ agonist/antagonist.

A possible explanation for the lower affinity at the κ receptor displayed by ligand 5
(butorphan (1) with alkyl side chain) in comparison to butorphan 1 would be that the side
chain in 5 hinders robust binding of the ligand at the κ and μ receptor site. Similarly the
higher affinity at κ receptor for the bivalent ligands 6-8 containing butorphan (1) (a high
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affinity κ receptor ligand), a 10-carbon linking chain, and a μ antagonist ligand such as
nalbuphine, naltrexone or naloxone, could be attributed to the higher binding affinity of both
butorphan (1) at the κ site and the μ antagonist (nalbuphine, naltrexone or naloxone) at the
μ receptor site.

These ligands either retained or displayed better affinity at κ, μ and δ receptors compared to
the reference compounds. These heterodimeric ligands could serve as probes of the opioid
receptor-oligomerization phenomena and represent a useful starting point in the synthesis of
a new generation of ligands endowed with analgesic effects with minor tolerance and
dependence. Potential medications for cocaine abuse requiring both κ agonist and μ
antagonist,13,21 require further pharmacological studies to confirm these observations.

Experimental Section
Melting points were determined on a Thomas-Hoover capillary tube apparatus and are
reported uncorrected. 1H and 13CNMR spectra were recorded on a Bruker AC300
spectrometer using tetramethylsilane as an internal reference. Element analyses, performed
by Atlantic Microlabs, Atlanta, GA, were within 0.4% of theoretical values. Analytical thin-
layer chromatography (TLC) was carried out on 0.2 mm Kieselgel 60F 254 silica gel plastic
sheets (EM Science, Newark). Flash chromatography was used for the routine purification
of reaction products. The column output was monitored by TLC.

General Procedure for the Preparation of Ligands 6-8
The acid 5 (0.6 mmol) and an appropriate opioid (0.5mmol) were dissolved in anhydrous
dichloromethane (15 mL) under nitrogen. A catalytic amount of 4-dimethylaminopyridine
was added, followed by N, N’-dicyclohexylcarbodiimide (0.6 mmol). The solution mixture
was stirred at room temperature overnight, the solid was filtered off and the crude product
was purified by column chromatography on silica gel (EtOAc : Et3N, 100 : 1) to afford the
corresponding bivalent ligands.

(5α, 6α)-17-(cyclobutylmethyl)-6, 14-dihydroxy-4, 5-epoxymorphinan-3-yl 17-
(cyclobutylmethyl)morphinan-3-yl sebacoylate (6)—colorless oil (40.4%). 1HNMR
(300Hz, CDCl3): 7.10(d, J=8.4Hz, 1H), 6.92(d, J=2.1Hz, 1H), 6.85(dd, J=8.1Hz, 2.1Hz,
1H), 6.78(d, J=8.1Hz, 1H), 6.65(dd, J=8.1Hz, 2.4Hz, 1H), 4.64(d, J=5.1Hz, 1H), 4.60(d,
J=4.8Hz, 1H), 4.17-4.08(m, 2H), 3.12(d, J=18.9Hz, 1H), 3.02(d, J=18.9Hz, 1H),
2.85-1.05(m, 59H). 13CNMR(75Hz, CDCl3): 172.3, 171.5, 149.2, 148.5, 141.9, 135.1,
132.9, 131.3, 130.7, 128.4, 121.5, 118.7, 118.4, 118.0, 91.6, 69.9, 66.5, 62.9, 61.4, 60.5,
55.8, 46.1, 45.6, 44.8, 43.6, 41.7, 37.7, 36.5, 34.8, 34.3, 33.8, 33.6, 32.6, 32.0, 30.8, 28.9,
28.8, 27.7, 26.8, 26.69, 26.65, 26.4, 26.3, 24.8, 24.7, 24.3, 23.9, 23.3, 22.0, 18.7, 18.6, 14.1.
Anal.(C52H70N2O7 · 0.5 H2O) C, H, N.

17-(cyclopropylmethyl)morphinan-3-yl(5α)-17-(cyclopropylmethyl)-14-
hydroxy-6-oxo-4,5-epoxymorphiana-3-yl sebacoylate (7)—colorless oil
(48.4%). 1HNMR(300Hz, CDCl3): 7.10(d, J=8.1Hz, 1H), 6.92(d, J=2.1Hz, 1H), 6.85(dd,
J=8.1Hz, 3Hz, 2H), 6.68(d, J=8.4Hz, 1H), 4.69(s, 1H), 3.21(d, J=5.7Hz, 1H), 3.12-0.84(m,
55H), 0.57(d, J=7.5Hz, 2H), 0.16(d, J=4.8Hz, 2H). 13CNMR(75Hz, CDCl3): 207.6, 172.4,
171.3, 149.2, 147.7, 142.0, 135.2, 132.6, 130.09, 130.07, 128.4, 122.8, 119.2, 118.5, 118.1,
90.6, 70.0, 61.9, 61.5, 59.2, 55.8, 50.6, 45.6, 44.9, 41.8, 37.7, 36.5, 36.0, 34.9, 34.4, 33.9,
31.2, 30.7, 29.03, 29.00, 28.9, 27.8, 26.7, 26.5, 24.8, 24.7, 24.4, 22.9, 22.1, 18.8, 9.3, 4.0,
3.8. Anal.(C51H66N2O7 ·1.5 H2O · 2 HCl) C, H, N.
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(5α)-17-allyl-14-hydroxy-6-oxo-4,5-epoxymorphinan-3-yl-17-
(cyclobutylmethyl)morphinan-3-yl sebacoylate (8)—pink solid (22.9
%). 1HNMR(300Hz, CDCl3): 7.10(d, J=8.1Hz, 1H), 6.92(s, J=2.1Hz, 1H), 6.85(dd,
J=8.1Hz,1.5Hz, 2H), 6.70(d, J=8.4Hz, 1H), 5.86-5.75(m, 1H), 5.26-5.17(m, 2H), 4.69(s,
1H), 3.17-2.82(m, 6H), 2.65-0.93(m, 49H). 13CNMR(75Hz, CDCl3): 183.6, 172.4, 171.3,
149.2, 147.7, 142.0, 135.1, 134.9, 132.6, 130.0, 129.9, 128.4, 122.9, 119.2, 118.4, 118.2,
118.1, 90.5, 70.1, 62.0, 61.4, 57.6, 55.8, 50.5, 45.6, 44.7, 43.1, 41.6, 37.7, 36.5, 36.0, 34.8,
34.3, 33.9, 32.7, 31.1, 30.5, 29.0, 28.9, 27.9, 27.8, 26.7, 26.5, 24.7, 24.6, 24.4, 24.0, 23.0,
22.1, 18.8. Anal. (C50H64N2O7 ·2 H2O) C, H, N.

Opioid Binding to the Human μ, δ and κ Opioid Receptors
Chinese hamster ovary (CHO) cells stably transfected with the human κ opioid receptor
(hKOR-CHO), δ-opioid receptor (hDOR-CHO), and the μ-opioid receptor (hMOR-CHO)
were obtained from Drs. Larry Toll (SRI International, Palo Alto, CA) and George Uhl
(NIDA Intramural Program, Bethesda, MD), respectively. The cells were grown in 100 mm
dishes in Dulbecco’s modified Eagle’s media (DMEM) supplemented with 10% fetal bovine
serum (FBS) and penicillin-streptomycin (10 000 units/mL) at 37°C in a 5% CO2
atmosphere. The affinity and selectivity of the compounds for the multiple opioid receptors
were determined by incubating the membranes with radiolabeled ligands and 12 different
concentrations of the compounds at 25°C in a final volume of 1mL of 50 mM Tris-HCl, pH
7.5. Incubation times of 60 min were used for the μ-selective peptide [3H]DAMGO and the
κ-selective ligand [3H]U69,593. A 3h incubation was used with the δ-selective antagonist
[3H]naltrindole.

[35S]GTPγS Binding Studies To Measure Coupling to G Proteins
Membranes from CHO cells stably expressing either the human κ or μ opioid receptor were
used in the experiments. Cells were scraped from tissue culture plates and then centrifuged
at 1000g for 10 min at 4°C. The cells were resuspended in phosphate-buffered saline, pH
7.4, containing 0.04% EDTA. After centrifugation at 1000g for 10 min at 4°C, the cell pellet
was resuspended in membrane buffer, which consisted of 50 mM Tris-HCl, 3 mM MgCl2,
and 1 mM EGTA, pH 7.4. The membranes were homogenized by with a Dounce
homogenizer, followed by centrifugation at 40000g for 20 min at 4°C. The membrane pellet
was resuspended in membrane buffer, and the centrifugation step was repeated. The
membranes were then resuspended in assay buffer, which consisted of 50 mM Tris-HCl, 3
mM MgCl2, 100 mM NaCl, and 0.2 mM EGTA, pH 7.4. The protein concentration was
determined by the Bradford assay using bovine serum albumin as the standard. The
membranes were frozen at –80°C until use.

CHO cell membranes expressing either the human κ opioid receptor (15 μg of protein per
tube) or μ opioid receptor (7.5 μg of protein per tube) were incubated with 12 different
concentrations of the agonist in assay buffer for 60 min at 30°C in a final volume of 0.5 mL.
The reaction mixture contained 3 μM GDP and 80 pmol of [35S]GTPγS. Basal activity was
determined in the presence of 3 μM GDP and in the absence of an agonist, and nonspecific
binding was determined in the presence of 10 μM unlabeled GTPγS. Then, the membranes
were filtered onto glass fiber filters by vacuum filtration, followed by three washes with 3
mL of ice-cold 50 mM Tris-HCl, pH 7.5. Samples were counted in 2 mL of Ecoscint A
scintillation fluid. Data represent the percent of agonist-stimulation [35S]GTPγS binding
over the basal activity, defined as [(specific binding/basal binding) × 100] - 100. All
experiments were repeated at least three times and were performed in triplicate. To
determine antagonist activity of a compound at the μ opioid receptors, CHO membranes
expressing the μ opioid receptor were incubated with the compound in the presence of 200
nM of the agonist DAMGO. To determine antagonist activity of a compound at the κ opioid
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receptors, CHO membranes expressing the κ opioid receptor were incubated with the
compound in the presence of 100 nM of the κ agonist U50,488.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Butorphan (−) 3-hydroxy-N-cyclobutylmethylmorphinan

U-50488 trans (1s, 2s)-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-
benzeneacetamide

U-69593 (+)(5α, 7α, 8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4,5]dec-8-yl]-
benzeneacetamide

DAMGO [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin
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Fig. 1.
Structures of opioids and bivalent ligands
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