
Genetic Engineering of Cyanobacteria to Enhance Biohydrogen
Production from Sunlight and Water

Hajime Masukawa, Masaharu Kitashima,

Kazuhito Inoue, Hidehiro Sakurai,

Robert P. Hausinger

Abstract To mitigate global warming caused by burning

fossil fuels, a renewable energy source available in large

quantity is urgently required. We are proposing large-scale

photobiological H2 production by mariculture-raised

cyanobacteria where the microbes capture part of the huge

amount of solar energy received on earth’s surface and use

water as the source of electrons to reduce protons. The H2

production system is based on photosynthetic and nitrogenase

activities of cyanobacteria, using uptake hydrogenase mutants

that can accumulate H2 for extended periods even in the pres-

ence of evolved O2. This review summarizes our efforts to

improve the rate of photobiological H2 production through

genetic engineering. The challenges yet to be overcome to

further increase the conversion efficiency of solar energy to H2

also are discussed.
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INTRODUCTION

Photobiological production of H2 by cyanobacteria and

eukaryotic microalgae that use H2O as the electron donor

has the potential to produce renewable clean energy on a

scale sufficient to meet much of the world energy demand

(Ghirardi et al. 2007, 2009; Sakurai and Masukawa 2007;

Tamagnini et al. 2007; Bothe et al. 2010; Ghirardi and

Mohanty 2010). In cyanobacteria, H2 gas is generated by

either hydrogenase or nitrogenase (Tamagnini et al. 2002,

2007). Both enzymes are sensitive to inactivation by O2. In

contrast to hydrogenase that catalyzes the reversible

reduction of protons to H2, nitrogenase catalyzes the uni-

directional production of H2 as an obligatory side reaction

during the fixation of N2:

N2þ8e�þ8 Hþþ16 ATP ! H2þ2 NH3þ16 (ADP + PiÞ
ð1Þ

In the absence of N2 (e.g., under Ar), all electrons are

allocated to H2 production:

2e� þ 2 Hþ þ 4 ATP ! H2 þ 4ðADP þ PiÞ ð2Þ

Although the reaction of nitrogenase requires a large

investment of ATP (2 ATP per e-), the reaction is practically

irreversible, thus allowing H2 to be accumulated as high as

20–30% of the total atmosphere, even with simultaneous O2

evolution (Sakurai and Masukawa 2007; Yoshino et al.

2007). Nitrogenase is restricted to bacteria and archaea, and

nitrogen-fixing oxygenic phototrophs are limited to a subset

of the cyanobacteria. Heterocyst-forming cyanobacteria are

able to reconcile the two incompatible processes of O2-

sensitive nitrogenase and of oxygenic photosynthesis by

undergoing differentiation in which about 5–10% of the

vegetative cells become heterocysts that provide a micro-

aerobic environment, allowing nitrogenase to function in an

aerobic environment (Wolk et al. 1994; Berman-Frank et al.

2003) (Fig. 1). Because of their ability to generate energy by

oxygenic photosynthesis while forming a separate space for

anaerobic reactions, we are taking advantage of heterocyst-

forming cyanobacteria to improve nitrogenase-based H2

production through gene engineering. Such improvements

will allow the development of large-scale photobiological

H2 production on the sea surface.

INACTIVATION OF UPTAKE HYDROGENASE

(HUP)

One of the major obstacles to efficient solar energy con-

version to H2 is the presence of hydrogenases that reabsorb
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the H2 produced by nitrogenases, especially in the presence

of O2 (Tamagnini et al. 2002, 2007; Sakurai and Masukawa

2007). Two distinct types of hydrogenases are known in

cyanobacteria: the Hup and the bidirectional hydrogenase

(Hox). Hup catalyzes a virtually unidirectional uptake of

H2, and Hox catalyzes both uptake and production of this

gas. Many heterocystous cyanobacteria contain both Hup

and Hox, although a few have only Hup (Tamagnini et al.

2007; Masukawa et al. 2009). Anabaena sp. PCC 7120 has

been chosen as a model strain to improve nitrogenase-

based H2 production (Masukawa et al. 2002a) because it is

amenable to genetic engineering (Elhai and Wolk 1988)

and its complete genomic sequence is available (Kaneko

et al. 2001). As this organism contains both types of

hydrogenases, each individual and both hydrogenases were

inactivated by targeted gene disruption, producing two

single mutants, DHup and DHox, and a double mutant,

DHupDHox (Masukawa et al. 2002a). Elimination of Hup

activity resulted in a 4- to 7-fold increase in the rates of H2

production in an Ar atmosphere compared with wild-type

cells, while the effects of inactivation of Hox activity on H2

production were not evident under the conditions tested.

Hup-disrupted mutants also were shown to be effective in

enhancing H2 production by several other Anabaena and

Nostoc strains of cyanobacteria (Happe et al. 2000; Lind-

berg et al. 2002; Schütz et al. 2004; Carrasco et al. 2005;

Yoshino et al. 2007).

A promising approach to further improve photobiolog-

ical H2 production in the presence of O2 is to initially select

parental strains with high nitrogenase activity and inacti-

vate their Hup activities. Out of 13 heterocystous strains

tested, Nostoc sp. strain PCC 7422 exhibited the highest

nitrogenase activity as measured by the acetylene reduction

assay (Yoshino et al. 2007). After determining the nucle-

otide sequences of Hup-encoding genes of Nostoc sp. PCC

7422, the Hup-minus mutant (DHup) was constructed by

insertional disruption of hupL. When the DHup mutant

cultures were grown in an initial headspace gas of

Ar ? 5% CO2 under continuous illumination, they accu-

mulated H2 up to 20–30% (v/v), concomitant with oxygen

evolution. The presence of 20% O2 in the initial headspace

gas of the DHup cultures inhibited H2 accumulation by

\20%, suggesting a low susceptibility of the nitrogenase

of this mutant to O2. A high conversion efficiency of light

energy to H2 of 1.8% versus total solar radiation (averaged

over 6 days) was obtained for the DHup mutant at an

Fig. 1 Photobiological H2 production by heterocyst-forming cyano-

bacteria. Vegetative cells of cyanobacteria produce carbohydrates

(CH2O) by oxygenic photosynthesis (the Calvin cycle). Under

nitrogen-limited conditions, a subset of cells forms developmentally

specialized heterocysts that do not produce O2 because they lack

photosystem II activity. Heterocysts are surrounded by peptidoglycan,

glycolipid, and polysaccharide layers, which restrict the entry of O2,

and a small amount of O2 that diffuses into heterocysts is removed by

respiration; thus, the inside of heterocysts is kept microoxic. The

microoxic environment protects the O2-labile nitrogenase from

inactivation by O2, and the enzyme is utilized for the unidirectional

H2 production. Electrons required for nitrogenase reaction depend on

sucrose provided by vegetative cells. Sucrose is degraded by the

metabolic pathway involving the oxidative pentose phosphate path-

way (OPPP), generating NADPH used for the reduction of ferredoxin

(Fd) by photosystem I (PSI) and for the formation of ATP by

oxidative phosphorylation. ATP is also formed by photophosphory-

lation involving photosynthetic electron transport system and PSI. In

wild-type cells, H2 produced is absorbed by the Hup. By inactivating

the gene encoding Hup, the mutant cells can accumulate H2 even in

the presence of O2 produced by photosynthesis. By creating selective

mutations in the gene encoding nitrogenase, the mutated nitrogenases

direct the electron flux through the enzyme selectively toward proton

reduction in the presence of N2
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incident light energy of 70 lmol photons m-2 s-1 of pho-

tosynthetically active radiation. Under laboratory (optimal)

conditions, efficiencies exceeding 1% versus total solar

radiation are sometimes reported (Kumazawa and Mitsui

1994; Sakurai and Masukawa 2007); however, these high

efficiencies are only attained at low light intensities of about

one twenty-fifth of full sunlight received on the equator, and

the efficiencies greatly decline with increasing light inten-

sities as shown in the PCC 7120 DHup mutant (Masukawa

et al. 2002b). Under full sunlight, the highest efficiencies

reported were about 0.1% (Tsygankov et al. 2002). Possible

strategies to overcome the problem of low light saturation in

cyanobacteria include decreasing the number of light-har-

vesting antenna (Melis 2009; Kosourov et al. 2011) and/or

reaction center concentrations by targeted mutagenesis and

selection of wild-type strains with better tolerance to high

light intensity.

MODIFICATION OF THE CATALYTIC ACTIVE

CENTER OF NITROGENASE

According to Eqs. 1 and 2, one expects to be able to

increase the H2 production activity of nitrogenase by

decreasing the electron allocation to N2 fixation. Although

replacement of N2 by Ar is effective for increasing H2

production, this approach increases the operational cost for

large-scale generation of H2. Mutagenesis of nitrogenase

offers an alternative mechanism to redirect electron flow

and overcome this N2 competition.

The well-characterized molybdenum-containing nitro-

genase consists of an Fe protein (dinitrogenase reductase)

and a MoFe protein (dinitrogenase). The Fe protein con-

tains a single [4Fe–4S] cluster and supplies electrons from

reduced ferredoxin or flavodoxin to the MoFe protein. The

latter contains two unique metal clusters, the [8Fe–7S]

P-cluster and the [1Mo–7Fe–9S–1X–homocitrate] FeMo

cofactor, where the FeMo-co is believed to be the active

site that binds and reduces substrates. Homocitrate is

required for efficient nitrogen fixation. The crystal structure

of the purified MoFe protein from the homocitrate synthase

gene (nifV) disruption mutant of Klebsiella pneumoniae

revealed an altered enzyme that contains citrate, instead of

homocitrate, in its FeMo-co (Mayer et al. 2002). Citrate-

containing nitrogenase was shown to catalyze the reduction

of N2 poorly, but this enzyme was able to reduce protons

effectively in an N2 atmosphere. The cyanobacterium

Anabaena sp. PCC 7120 has two homocitrate synthase

genes, nifV1 and nifV2, in its chromosome (Kaneko et al.

2001). With the DHup strain as the parental strain, two

single gene disruption mutants, DHupDNifV1 and

DHupDNifV2, and a double gene disruption mutant,

DHupDNifV1DNifV2, were constructed (Masukawa et al.

2007). N2-fixing growth rates of the two nifV single

mutants and the double mutant were decreased moderately

and severely, respectively, compared with those of the

parental DHup strain. For the DHupDNifV1 cells, both the

rate of H2 production and the heterocyst frequency were

sustained at higher levels than those for the parental DHup

strain, leading to significantly increased rates of H2 pro-

duction by the former culture compared with those by the

latter culture in the presence of N2. Although the presence

of N2 inhibited H2 production by the DHupDNifV1DNifV2

mutant less strongly than that by the parental DHup strain

and the other nifV mutants, H2 production activity of the

former mutant was low. With Anabaena sp. PCC 7120, the

inactivation of nifV1 has proven effective in improving H2

production in the presence of N2.

Not only the FeMo-co itself but also the amino acid

residues in the vicinity of the FeMo-co are important in

substrate reduction. Substitutions of selected amino acids

in the vicinity of the FeMo-co active site within Azoto-

bacter vinelandii nitrogenase were shown to eliminate or

greatly diminish N2 fixation while, in some cases, allowing

for effective proton reduction (Seefeldt et al. 2009).

Therefore, certain amino acid exchanges near FeMo-co in

cyanobacterial nitrogenase might produce variant MoFe

proteins that redirect the electron flux through the enzyme

preferentially to proton reduction, producing more H2 in

the presence of N2 in an aerobic environment. Based on the

crystal structure of A. vinelandii MoFe protein (Einsle et al.

2002), portions of 19 amino acid residues, all highly con-

served, are predicted to reside within 5 Å of FeMo-co. Out

of this set, six residues (Q193, H197, Y236, R284, S285,

and F388) in the NifD subunit of Anabaena MoFe protein

(equivalent to residues Q191, H195, Y229, R277, S278,

and F381 in A. vinelandii) were targeted for mutagenesis in

an attempt to direct electron flow selectively toward proton

reduction in the presence of N2. Each of the selected six

residues was replaced by nonpolar, polar, or charged resi-

dues by using a parental Anabaena strain with DNif and

DHup mutations; in total, 49 NifD variants were con-

structed (Masukawa et al. 2010). Several variants exam-

ined in an N2 atmosphere significantly increased their in

vivo rates of H2 production, approximating rates equivalent

to those in an Ar atmosphere when measured on a chlo-

rophyll a basis, and these cultures accumulated high levels

of H2 compared to the reference strains including the DHup

strain. The R284H culture exhibited the most dramatically

increased levels of accumulated H2 compared to the ref-

erence strain cultures when grown under N2. The H2

accumulation by this mutant under N2 after 1 week was

87% of that observed for the reference strains under Ar.

This variant has the potential of being used as the parental

strain for further engineering of Anabaena in efforts to

attain even greater levels of photobiological H2 production.
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CONCLUDING COMMENTS

We have demonstrated several promising strategies for

enhancing photobiological production of H2 in an aerobic,

nitrogen-containing environment. More than 1% conver-

sion efficiencies of light energy to H2 have been attained

with the DHup mutant under laboratory conditions. To

further increase the conversion efficiency under outdoor

conditions, there are many challenges to be overcome.

These hurdles involve the factors limiting light utilization

efficiency at high light intensity, inhibitory effects of fixed

nitrogen on nitrogenase activity, the low turnover rate of

nitrogenase (6.4 s-1), etc. By combining several effective

improvements through genetic engineering, high-H2-pro-

ducing cyanobacterial strains suitable for large-scale pro-

duction could be created.
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