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Abstract Arctic ecosystems have experienced and are

projected to experience continued large increases in tem-

perature and declines in sea ice cover. It has been

hypothesized that small changes in ecosystem drivers can

fundamentally alter ecosystem functioning, and that this

might be particularly pronounced for Arctic ecosystems.

We present a suite of simple statistical analyses to identify

changes in the statistical properties of data, emphasizing

that changes in the standard error should be considered in

addition to changes in mean properties. The methods are

exemplified using sea ice extent, and suggest that the loss

rate of sea ice accelerated by factor of *5 in 1996, as

reported in other studies, but increases in random fluctua-

tions, as an early warning signal, were observed already in

1990. We recommend to employ the proposed methods

more systematically for analyzing tipping points to docu-

ment effects of climate change in the Arctic.

Keywords Change point detection � Global warming �
Ecological regime shift � Sea ice retreat �
Threshold response

INTRODUCTION

Increasing concentrations of greenhouse gasses in the

atmosphere, mainly from human combustion of fossil fuels

during the anthropocene, have resulted in a global warming

(IPCC 2007). Whereas the global sea surface temperature

(SST) has increased by 0.135�C per decade from 1979 to

2005, temperature trends were three to four times larger in

many areas of the Arctic Sea (1965–1995, Steele et al.

2008). Warming impacts the physiology of species present

(e.g., Roleda et al. 2008) and promotes the invasion of

lower-latitude species into the Arctic (Carmack and

Wassmann 2006). Furthermore, the temperature increase

has led to a rapid decline in Arctic sea ice cover (Stroeve

et al. 2007; Comiso et al. 2008) and reduced habitats for

marine mammals and polar bears, in addition to changing

the light conditions and mixing processes and consequently

primary production (Gradinger 1995; Arrigo et al. 2008).

Thus, all trophic levels, from the base of the food-web to

the top predators, are potentially affected by global change.

Model projections suggest a continued accelerated warm-

ing with a potential ice-free Arctic in late summer within

25–30 years (Wang and Overland 2009). Such scenarios

have severe repercussions for the Arctic ecosystems and

the people living of the resources they provide (ACIA

2004).

It is evident from long-term monitoring and experi-

ments that Arctic ecosystems will undergo drastic changes

in response to warming, but it is less clear how and when

these changes will actually occur. Whereas responses to

smooth changes in the ecosystem services only involve a

gradual adaptation for humans, an abrupt change such as

sudden loss of valuable fisheries can have more fatal

consequences for people living in the Arctic. Over the last

decades there is mounting evidence that ecosystem

responses to extrinsic pressure such as climate can be

nonlinear and abrupt (May 1977; Groffman et al. 2006).

Occasionally ecosystem responses display hysteresis

behavior with multiple stable states, also known as regime

shifts (Scheffer et al. 2001). Thus, large changes in the

ecosystem functioning may result, even from small

changes in the climate. The term ‘‘tipping point’’ com-

monly refers to a critical threshold at which minor
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perturbations can qualitatively alter the state or develop-

ment of a system (Lenton et al. 2008). Polar, and espe-

cially Arctic, ecosystems are particularly likely to show

regime shifts in response to climate change, because

temperature increases have been and will be larger than

elsewhere and because the structure of the food-web is

relatively simple, implying that loss of key species and

invasion of new species can fundamentally alter the flow

of organic matter and nutrients through the system (Frank

et al. 2005).

A large and diverse range of climate-induced changes in

Arctic ecosystems resulting from warming, reduced sea ice

cover, altered circulation patterns, and increasing fresh-

water discharge have been reported (Greene and Pershing

2007; Wassmann et al. 2011), however, the nature of these

changes (gradual or abrupt) is not known. The existence of

ecological tipping points has mostly been investigated by

means of theoretical modeling studies and experiments,

whereas studies examining long-term monitoring data sets

for abrupt changes are few. In fact, there is an apparent

mismatch between studies reporting regime shifts and

threshold response, and the application of statistical

methods to actually document their existence. However,

over the last two decades, methods and software have

become available for analyzing nonlinear and step change

responses (Andersen et al. 2009).

Here, we will review the scientific literature for studies

suggesting regime shifts in Arctic ecosystems and carefully

determine the statistical basis for the reported tipping

points. We will present a range of simple and flexible

statistical tests for identifying tipping points, which can be

customized to the hypothesis in question. Our objective is

to demonstrate, by means of examples, the usefulness of

such statistical methods for exploring Arctic data sets.

RECENT ECOLOGICAL TIPPING POINTS

IN THE ARCTIC LITERATURE

The Arctic has, so far, passed a few documented tipping

points resulting in ecological regime shifts. Although

ecological regime shifts in marine environments are usu-

ally associated with climate change and/or overfishing

(Lees et al. 2006), it has been suggested that biological

variables could provide a more diagnostic or earlier signal

of regime shifts than climate indices (Hare and Mantua

2000; Wooster and Zhang 2004).

Probably the best described Arctic regime shifts are

those observed in the Bering Sea and a subarctic Gulf of

Alaska, and connected with the Pacific Decadal Oscillation

(PDO). The PDO is a pan-Pacific phenomenon that

includes inter-decadal climate variability and is correlated

with temperature anomalies and precipitation patterns

around the Pacific Ocean. It has a great impact on marine

ecosystems, including the Pacific sector of the Arctic

Ocean (Mantua et al. 1997; Mantua and Hare 2002). Hare

and Mantua (2000) applied a principal component analysis

(PCA) to 100 time series from the North Pacific and Bering

Sea and identified two shifts (1977 and 1989) in climate

and fish community structure. Overland et al. (2004) also

applied a PCA to an even more complex set of time series,

mostly from the Arctic Sea, and identified step changes in

the first two principal components coinciding with those

identified by Hare and Mantua (2000). Although the shifts

in the principal components for both these studies are

rather convincing, the significance of the changes was not

tested. In a more recent study, Rodionov and Overland

(2005) identified an additional step change in 1998 using

the method of Sequential T-test Analysis of Regime Shifts

(STARS). Finally, it has also been postulated that regime

shifts could have happened in 1925 and 1945 (Benson and

Trites 2002).

The climatic regime shift in the North Pacific Ocean

that took place in the winter of 1976–1977 was fully rec-

ognized no sooner than 10–15 years afterwards (Hare and

Mantua 2000) although some symptoms of the event, like

changes in SSTs and zooplankton abundance, were

apparent within a few years of the shift (Wooster and

Zhang 2004). In the Bering Sea and the subarctic Gulf of

Alaska ecosystems, it resulted in a reorganization of

community structure and a change from a highly produc-

tive benthic community of commercially important crab

and pandalid shrimp populations as well as capelin popu-

lation to a similarly productive gadid and other groundfish

populations. The main changes were distinguished based

on changes in the catch biomass. The observed reorgani-

zation in a trophic chain was reported to have negative

effects on piscivorous sea birds and marine mammals

(Anderson and Piatt 1999).

According to Hare and Mantua (2000) the shift in 1989

was not as pervasive as the previous one and was not just a

simple reversal of the climatic and ecosystem conditions

established by the 1977 shift. The biological features of

this shift were clear, although the indices of Pacific climate

were not so significantly changed. The most notable eco-

system changes beginning in 1989 involved reduced

groundfish recruitment and large increase in jellyfish bio-

mass in the Bering Sea (Mantua 2004). Brodeur et al.

(2008) reported a steep increase in jellyfish biomass, pri-

marily over the eastern Bering Sea shelf over the 1990s.

Also a positive response to the 1989 shift of pelagic fish

species was observed in the Gulf of Alaska and Bering Sea

(Benson and Trites 2002).

The last observed climate regime shift occurred in the

North Pacific in 1998–1999, but there is lack of evidence of

community reorganization following this climate event.
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Warmer conditions that came to the eastern Bering Sea

after 2000 resulted in declining jellyfish biomass, but the

response to temperature was not unequivocal for the two

regions examined (Brodeur et al. 2008). Also mesozoo-

plankton biomass and species composition of the subarctic

Gulf of Alaska and Alaskan shelf show significant changes

between years before and after this regime shift in a non-

parametric test for sample means (Batten and Welch 2004).

According to Benson and Trites (2002), the timing of

the anomalous environmental events in the North Pacific

Ocean appears to be linked to physical and biological

responses in other oceanic regions of the world. However,

regime shifts in the Arctic and subarctic region of the North

Atlantic have not been described in such details so far.

Coincident with the above-mentioned regime shift in the

North Pacific, the upper ocean circulation in the Arctic

Ocean changed substantially after an atmospheric regime

shift between the late 1980s and early 1990s, and resulted

in freshening and stratification of the shelf waters (Greene

and Pershing 2007). Lindsay and Zhang (2005) used the

model results from a regional coupled ice-ocean model

covering the Arctic Ocean, the Barents and Kara Seas, and

the Greenland–Iceland–Norwegian seas. They stated that

the late 1980s and early 1990s could be considered a tip-

ping point during which the ice–ocean system began to

enter a new era of thinning ice and increasing summer open

water because of positive feedbacks.

Increased phytoplankton production in autumn caused

by increasing area of open water and enhanced stratifica-

tion, coincided with the increase of smaller, shelf-associ-

ated copepods. PCA applied by Frank et al. (2005) to time

series of biotic, abiotic and human variables provided

statistical evidence and a concise assessment of the change

in the structure of the ecosystem. A dramatic shift from

benthic fish to a pelagic fish/macroinvertebrate-dominated

system in the Northwest Atlantic was described. Another

ecological response connected with the changes in Arctic

Ocean circulation patterns is the observation of biogeo-

graphic range expansions by boreal plankton, including

renewal of the trans-Arctic exchanges of Pacific and

Atlantic species (Greene et al. 2008). However, Drinkwater

(2006) argued that the largest and most significant climate-

induced regime shift in the North Atlantic and the high

Arctic over the last century had occurred in 1920 s and

1930 s. Among the observed biological changes were an

increased abundance of Atlantic cod off West Greenland,

Iceland, and Svalbard, migrations of capelin over the Ba-

rents Sea, as well as the northward expansion of the boreal

invertebrates. Other ‘‘tipping elements’’ in the Arctic,

according to Lenton et al. (2008), are associated with the

Arctic sea ice, Greenland ice sheet and Atlantic thermo-

haline circulation.

STATISTICAL ANALYSIS OF TIPPING POINTS

The definition of a ‘‘tipping point’’ as ‘‘a critical threshold

at which minor perturbations can qualitatively alter the

state or development of a system’’ (cf. Lenton et al. 2008)

cannot be readily assessed in a statistical hypothesis

framework. In order to formulate a testable hypothesis it is

necessary to define how ‘‘an altered state or development

of a system’’ manifests itself in the statistical properties of

the data describing the system. For example, can a small

change in temperature lead to the disappearance of the

Arctic copepod Calanus glacialis, i.e., is there a tempera-

ture threshold beyond which the mean biomass of C. gla-

cialis quickly drops below expected values (Fig. 1). The

change in mean biomass is just one of many potential

symptoms of a fundamentally altered state. In fact, there

are many ways in which the statistical properties of data

may change in response to various perturbations, and it is

generally advisable to thoroughly explore the data before

formulating the statistical hypothesis. We will here outline

some potential ways for tipping points to manifest them-

selves using the two basic statistical properties of all dis-

tributions, the mean l and variance r2 (Carpenter and

Brock 2006). Other statistical properties, such as increasing

skewness (Guttal and Jayaprakash 2008) and spectrum

reddening (Kleinen et al. 2003), have been proposed as an

early warning signal for regime shifts and can be tested

within the same principal framework outlined below.

We will formulate our hypothesis testing framework

using parametric statistics, assuming that we can describe

the observed ecosystem state (given by observations

Y = y1, y2, …, yn) with a known distribution (given by

parameters h) such that the likelihood function L(Y; h) can

be computed. All statistical testing is based on the for-

mulation of a null-hypothesis, which is basically a model

without a tipping point, and an alternative hypothesis that

includes the tipping point. The likelihood ratio (LR) test is

a general statistical test, which compares the likelihood

function for the null-hypothesis, L0(Y; h0), with that for the

alternative hypothesis, L1(Y; h1), where h0 and h1 denote

the parameters of the models under the null-hypothesis and

alternative hypothesis, respectively. The test statistic is

calculated as the ratio between the two likelihood func-

tions, such that ratios close to 1 suggests the two alternative

models to be equally good and smaller values suggest the

alternative model to describe the observations better than

the null-hypothesis.

LR ¼ K ¼ L0ðY ; h0Þ
L1ðY ; h1Þ

ð1Þ

This general test statistic can be applied to many

different hypotheses, provided that a parametric

36 AMBIO (2012) 41:34–43

123
� Royal Swedish Academy of Sciences 2012

www.kva.se/en



distributional function for the observations is proposed.

However, the problem with the LR-statistic is that the

distribution of K under the null-hypothesis is known only

for a few special cases, but if the model proposed under the

null-hypothesis constitute a sub-model (i.e., by fixing

parameter values) of the alternative hypothesis model then

-2 log(K) is asymptotically (n ? ?) v2 distributed with

degrees of freedom equal to the reduction of free

parameters between the models under the two hypotheses

(dim (h1) - dim (h0)). In the special case of normal

distributed observations with a known standard error, the

v2 approximation is exact.

We will consider four different types of responses in

both mean and variance (Fig. 2) to a perturbation (X =x1,

x2,…,xn). The case with constant mean and variance con-

stitute the most basic null-hypothesis (Fig. 2a, e), that can

be expanded to the hypotheses of a linearly increasing

relationship (Fig. 2b) or linearly increasing heteroscedas-

ticity (Fig. 2f). These two models can be further expanded

to include a change point that changes the slope of the

relationship (Fig. 2c) or changes the variance (Fig. 2g).

Finally, alternatives to the basic null-hypothesis model

having a constant mean and variance are step changes in

the mean (Fig. 2d) and variance (Fig. 2h). Hence, the basic

null-hypothesis model constitutes a sub-model to the linear

models (Fig. 2b, f) by setting the slope equal to zero, and

the linear models constitute sub-models to the segmented

models (Fig. 2c, g, respectively), which can be seen from

the model formulation of the segmented linear model

(Fig. 2c) below,

E yi½ � ¼
lþ b � xi xi\k

lþ b � xi þ d � ðxi � kÞ xi� k

�
ð2Þ

where l is the intercept, b is the initial slope, and d is the

change in slope at the change point k. The segmented

linear model includes two additional free parameters to the

strictly linear model (d and k), and additional change

points can be added to the model at the expense of two

degrees of freedom for each change point, sometimes also

referred to as knot. The segmented linear model is actually

a special case of the widely used smooth polynomial

splines with the condition of continuity in the change

points only. Since the location of the change point is not

known and should be estimated, the model (2) and its

maximum likelihood should be estimated by means of

nonlinear regression (Gallant and Fuller 1973). A similar

model for the standard error can be formulated and

estimated.

The step change model differs from the segmented lin-

ear model since it includes an unknown discontinuity point

(k) that cannot be estimated as a continuously varying

parameter by nonlinear regression, because the likelihood

Fig. 1 Will increasing sea surface temperatures and loss of sea ice lead to sudden disappearence of key species such as Calanus glacialis in the

Arctic marine ecosystems? Photos: Slawek Kwasniewski and Agata Weydmann
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function can be evaluated for the n discrete observations

only, given values for (l and d). The step change model is

E yi½ � ¼
l xi\k

lþ d xi� k

�
ð3Þ

This means that the likelihood function will be

computed for all n – 1 potential location of the step

change, and the model is chosen for that specific location

of the change point that maximizes the likelihood.

Similarly, a LR-type statistic can be computed for

assessing the significance of the model (3) relative to the

constant mean and variance model.

Zn ¼ max
1� k\n

�2 � log Kkð Þ ð4Þ

However, since this implies calculating several test

statistics for the same basic hypothesis, the v2

approximation does not apply. Calculated test statistics

for Zn can be compared with tabularized critical values on a

given significance level (e.g., 5%) for various numbers of

observations, derived either from theoretical approxima-

tions or from percentiles of Zn calculated from multiple

repeated simulations under the null-hypothesis (typically at

least 10 000). A summary of critical values under different

distributional assumptions and test types is found in

Change in standard errorChange in mean

Constant mean
Constant std.error

(E)

Constant mean
Constant std.error

(B)

(A)

Linear relationship
Constant std.error

(F)

Constant mean
Linearly increasing std.error

(C) Segmented linear relationship
Constant std.error

(G)

Constant mean
Segmented increasing std.error

Mean
St. Err.

(D) Step change relationship
Constant std.error

(H)

Constant mean
Step change std.error

Fig. 2 Simulated relationships

to illustrate simple models for

testing the significance of

tipping points. Solid and dashed
lines mark the mean and

standard errors of the simulated

distributions
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Gombay and Horváth (1996). Moreover, these critical

values of Zn will be larger than for -2log(K) in (1), since

the analysis involves the calculation of many test statistics

to find the maximum. For comparison the critical value at

the 5% significance level with n = 30 is 9.30 for Zn,

whereas the critical value for -2log(K) is approximated by

v2(1) = 3.84.

The step change model cannot be tested against the

linear models (both strictly and segmented) by means of

LR-type statistics, because they are alternative models and

do not form a nested hierarchy of models and sub-models.

In such cases, alternative models can be compared by

various goodness-of-fit criteria such as Akaike’s Informa-

tion Criterion (AIC) or Bayesian Information Criterion

(BIC) that are both calculated from the likelihood function

with a penalty for the number of parameters used in the

model formulation. AIC (-2log(K) ? 2nparameters) penal-

izes the number of parameters less strongly than BIC

(-2log(K) ? log(n)nparameters) and is therefore claimed to

over-parameterize models for larger data sets (n is the

number of observations) (Madsen 2008). A more detailed

discussion on model building and statistical inference can

be found in, e.g., Stephens et al. (2007).

The methods outlined above assume observations to be

independent but they can be expanded to also incorporate

various correlation patterns across the observations. The

LR test for the segmented linear model remains valid,

whereas the critical values for Zn increase with correlation

(see Tang and MacNeill 1993 for more details). However,

if correlation patterns between predictors and residuals still

persist after developing models like in Fig. 2, this could

suggest for improving the model describing the mean

rather than choosing a complex covariance structure for the

data. This subject is rather extensive and will not be cov-

ered any further here (see, e.g., Madsen 2008 for an

introduction).

Analysis of the models described above can be carried

out using statistical software for nonlinear regression (e.g.,

PROC MODEL in SAS or nls in R). The models in the

example given below were estimated using SAS and the

code can be found in the Supplementary material.

EXAMPLE: IDENTIFICATION OF TIPPING

POINTS

The most drastic change for Arctic ecosystems is probably

the loss of sea ice (Stroeve et al. 2007; Comiso et al. 2008)

that even during the extreme negative phase of the Arctic

Oscillation in 2009/2010 had a record year low ice extent

(Stroeve et al. 2011). An abrupt change in the sea ice extent

has been reported to have occurred in 1996 (Comiso et al.

2008), suggesting that the loss rate of sea ice increased by

factor of four, although the exact timing of the change was

not identified and tested by means of statistical methods.

Moreover, the two regressions in the analysis by Comiso

et al. (2008) were not connected and implicitly included a

discontinuity in 1996 suggesting an abrupt increase in sea

ice extent by 0.2–0.3 9 106 km2 in addition to the slope

change. Here, we will revisit a subset of these data and

examine the existence of tipping points with an improved

statistical approach. We will exemplify the application of

the statistical methods described above for detecting tip-

ping points using data on the Arctic sea ice extent down-

loaded from the National Snow and Ice Data Center

(NSIDC, www.nsidc.org) (Cavalieri et al. 1999). We used

the annual extent in September (n = 22, 1979–2010),

which is the month with the minimum extent.

During the 22 years with data there was a mean sea ice

extent of 6.6 9 106 km2 with a standard error of 0.91 9 106

km2 (Fig. 3a), but it was also apparent that the sea ice extent

was above the average in the beginning and less than average

for the more recent years (Fig. 3a). Therefore, as the next

step we analyzed if a model with a linear trend in the mean

would give a better description of the data (Fig. 3b). The

likelihood significantly improved (Table 1) according to the

LR test statistic (-2log(K) = 37.02; p \ 0.0001), and the

residual variation was reduced to 0.51 9 106 km2. The linear

model suggested a mean loss rate of sea ice extent of

0.08 9 106 km2 year-1 for the entire period.

An extension to this model was to examine if the

residual variation also changed linearly over time (Fig. 3c).

Indeed, there was an almost threefold increase in the

residual standard error with time from 0.28 9 106 km2 at

the beginning of the time series to 0.73 9 106 km2 at the

end of the time series. Due to increasing uncertainty with

time, recent years had less weight than earlier years and the

slope was therefore less (0.07 9 106 km2 year-1) than for

the model with constant standard error. There was a slight

improvement in the likelihood function only (Table 1),

but this gradual increase of the residual variation was

not significant according to the LR test statistics

(-2log(K) = 2.93; p = 0.0871). Nevertheless, the fact

that this extension was at the borderline of the significance

level (p = 0.05) was also reflected in improvements for

AIC, but not BIC. However, we will discard the hypothesis

of a linearly increasing residual standard error on the basis

of the likelihood statistics.

It has been suggested that there was a change in the loss

of sea ice extent around 1996 (Comiso et al. 2008), so to

investigate this hypothesis we proposed that the mean sea

ice extent was composed of two joined line segments with

the time location of the joint unknown (Fig. 3d). Estimating

this model resulted in a loss rate of sea ice extent by

0.05 9 106 km2 year-1 before 2000 (uncertainty of the

estimated change point was ±2.3 years), followed by more
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than a three-doubling (0.18 9 106 km2 year-1). The

residual standard error was further reduced to 0.43 106 km2.

The likelihood function, AIC and BIC all improved and the

LR test statistic also documented the significance of the

change of slope in 2000 (-2log(K) = 10.31; p = 0.0058).

In addition to the segmented linear model we hypothe-

sized that the standard error could be described by a seg-

mented model (cf., Fig. 2g). Estimating this model yielded

almost the same slopes and change point for the mean

(Fig. 3e), whereas the standard error was constant

(0.44 9 106 km2) before 2006 (±3.8 years), and then

increased linearly to (0.57 9 106 km2) by the end of the

time series. The change in the likelihood function, relative

to the model with a constant standard error, was marginal

and neither AIC nor BIC improved (Table 1). Moreover,

the LR test statistics also clearly suggested that this
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Fig. 3 Time series models describing the extent of Arctic sea ice (1979–2010) with statistics in Table 1. Solid line shows the estimated model

and dashed lines the standard error around the mean model
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proposed model extension was not significant (-2log(K) =

1.49; p = 0.4748).

As an alternative to the segmented linear model we

estimated the step change model with an unknown change

point (cf., Fig. 2d) assuming the standard error to be con-

stant. The most probable time of the step change was in

2002 with a mean sea ice extent of 7.0 9 106 km2 before

and 5.4 9 106 km2 after, both periods having a standard

error of 0.56 9 106 km2 (Fig. 3f). Although the test sta-

tistics Zn = 31.24 was clearly above the critical value, even

at the 1% significance level (*12.60; Gombay and Horváth

1996) and the model constituted a significant improvement

to the constant mean model, the AIC and BIC also indicated

that the step change model was less adequate than both the

linear and segmented linear models (Table 1). Therefore,

we investigated a potential step change in the standard error

as an extension to the linear and segmented linear mean

model (models 1 and 3 in Table 1).

For the linear mean model, the optimal step change in

the standard error was 2007, suggesting an increase in the

standard error from 0.42 9 106 to 1.05 9 106 km2

(Fig. 3g). The loss rate of sea ice extent over the entire

period was estimated at 0.07 9 106 km2 year-1. However,

the improvement in the likelihood function was relatively

small and only AIC suggested a model improvement,

whereas BIC did not (Table 1). The test statistics

(Zn = 5.18) was also somewhat below the critical value at

the 5% significance level (*9.30). Thus, there was no

significant change point for the standard error in addition to

the linear mean model.

Finally, we tested a step change in the standard error in

addition to the segmented linear mean model and found that

there was an optimal step change for the standard error in

1990 and a change in the slope of ice extent in 1996

(Fig. 3h). This model suggested a loss rate of ice extent of

0.03 9 106 km2 year-1 increasing more than five-fold after

1996 (±2.8) to a staggering rate of 0.16 9 106 km2 year-1.

The period before 1990 had relatively small random fluc-

tuations (standard error of 0.25 9 106 km2) that doubled

afterwards. This model improved the AIC relative to model

3, whereas BIC favored model 3 to model 7 (Table 1). The

test statistics (Zn = 5.45) was also somewhat below the

critical value at the 5% significance level (*9.30), corre-

sponding to a significance level of p = 0.22. Although this

change in fluctuations did not significantly improve the

model with constant standard error, it does indicate that

there could be increases in the random fluctuations before

the change in mean occurred. It is visually appealing that

the period 1990–1996 could have stronger random fluctu-

ations than other periods, and such a model actually resulted

in optimal values for both AIC (44.76) and BIC (52.40), but

nevertheless the model was not strong enough to provide

sufficient statistical evidence relative to the simpler model 3

(Zn = 6.45, p = 0.15). It is, however, likely that if more

data were included in the analyses, provided that they

showed similar patterns, the significance of this model

would improve.

CONCLUSIONS

The potential existence of thresholds or tipping points in

ecosystem responses to changing climate and human dis-

turbances has gained more popularity in the scientific lit-

erature as reflected in the growing number of publications

on this subject, but studies reporting statistical evidence for

such nonlinear responses are remarkably few (Andersen

et al. 2009). Therefore, we have outlined some basic sta-

tistical methods that can be further expanded and custom-

ized to analyze data sets for abrupt changes in the mean

and standard error of the distributions. As illustrated with

the example, the statistical analysis of tipping points is an

iterative model selection process more than a rigid

framework for hypothesis testing, where model extensions

are proposed and tested consecutively. The amount of data

naturally imposes constraints on the complexity of the

model, particularly pronounced for Arctic data sets, but this

constraint will gradually be alleviated with a continued

monitoring effort aiming at documenting climate change

effects.

In fact, tipping points can manifest themselves in vari-

ous types of responses and consequently, it is important in

the statistical analysis to examine potential changes in

different properties of the data. Although changes in the

mean probably are the most important property of such

analyses, it is also important not to neglect other properties

Table 1 Likelihood statistics, AIC, and BIC for different time series

models (cf., Fig. 3) describing the sea ice extent (1979–2010)

Model Mean Std.

Error

No. of

parameters

-2log(L) AIC BIC

0 Constant Constant 2 84.54 88.54 90.73

1 Linear Constant 3 47.52 53.52 56.79

2 Linear Linear 4 44.59 52.59 56.96

3 Segmented Constant 5 37.21 47.21 52.67

4 Segmented Segmented 7 35.72 49.72 57.36

5 Step

change

Constant 4* 53.30 61.30 65.67

6 Linear Step

change

5* 42.34 52.34 57.80

7 Segmented Step

change

7* 31.76 45.76 53.39

The number of parameters in the step change models (Models 5, 6 and

7, marked with asterisk) included one parameter degrees of freedom

for the year of the step change, although this year was not estimated as

a free-floating parameter in the same manner as other parameters
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such as the magnitude of random fluctuations. We have

outlined statistical methods to examine changes in the

standard error of the distribution, and applying this method

to sea ice extent suggested a potential tipping point, not

reported previously, in the random fluctuations 6 years

prior to changes in the mean. This observation is consistent

with the conceptual theory for regime shifts, where a

continued erosion of the sea ice resilience may amplify

perturbations of the system before critical thresholds are

exceeded and the system enters a new regime. Although

the change in random fluctuations was not significant rel-

ative to a simpler model, the other months, that were not

included, showed similar patterns (www.nsidc.org) and

would, most likely, lend sufficient power to identify this

proposed early warning signal. Such analyses could be

derived from the general statistical approaches outlined in

this study, taking seasonality into account, however, the

main objective here was to introduce the methods.
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