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Models of treatment effects when responses are heterogeneous
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Heckman and Vytlacil (1) synthesize and extend a recent body
of research in economics and statistics on the identification
and estimation of treatment effects when the subjects have
heterogeneous responses. This research has demonstrated the
importance of distinguishing between several different types of
treatment effects and the need to establish firmly the rela-
tionship between the different types. Heckman and Vytlacil
(H&V) distinguish between four different types: average
treatment effects (ATE), effects of the treatment on the
treated (TT), local average treatment effects (LATE), and
local instrumental variable (LIV) treatment effects. Each is
conceptually different, and each has a different set of condi-
tions for identification. The research discussed by H&V rep-
resents a genuine advance and clarification of concepts in
models of treatment effects.

The framework set up by H&V is heavily influenced by
economic and econometric terminology but has major ele-
ments that are drawn from statistics as well. The reader may
be led to suppose that the concepts and methods are applicable
only to observational data and not to randomized clinical trials
(RCTs), but this is not the case. All parts of their analysis are
equally applicable to both. The application to RCTs is most
easily seen by drawing an analogy with intent-to-treat models,
as discussed by Angrist et al. (2). Although, in an RCT, the
randomization creates a treatment-assignment dummy vari-
able that economists call an ‘‘instrument,’’ similar variables
often exist in observational data—natural experiments, quasi-
experiments, or, more generally, what economists merely call
exogenous identifying variables—and these can satisfy the
same conditions as the treatment assignment variable in an
RCT, and, hence, the same methods apply.

The major restriction in the models of H&V is the index
function restriction, which is the assumption that the propen-
sity to ‘‘participate’’ or ‘‘take up’’ the treatment, when it is
offered, can be described by a single function with a single
unobservable. H&V note correctly in their conclusions that
most of their results can be obtained, in modified form, without
an index function restriction, but their analysis in the main
makes that assumption. While imposing restrictions, the index
function model has great expository and intuitive value in the
analysis of treatment effects models.

In this commentary, I demonstrate that, with a few addi-
tional restrictions, most of the major points discussed by H&V
can be given a simple graphical interpretation that has the
same virtue of expository usefulness. Denote by ai the treat-
ment effect for subject i, often called a ‘‘random coefficient’’
in econometric models but equivalent to the heterogeneous
treatment response in treatment effect models in statistics. Fig.
1 shows a hypothetical density of ai in the population, a density
assumed to have a mean of a# . This figure appears in Björklund
and Moffitt (3), where ai is given the random coefficient
interpretation just referred to. Björklund and Moffitt call ai
the ‘‘gain’’ to the treatment for individual i. Now make the
additional restriction that selection takes place strictly on ai
and that, for illustration, selection is positive: subjects with
higher values of ai are more likely to take up the treatment if

offered, i.e., more likely to participate.‡ Denote the cutoff
value of ai as a*, above which subjects participate and below
which subjects do not.

Fig. 1 can be used to illustrate all four estimators. The
parameter a# is equivalent to the ATE. The treatment effect on
the treated is shown in Fig. 1 as aTT and is equal to E(aiuai .
a*), the mean gain of those who are participants. For future
use, Fig. 1 also shows the treatment effect on the untreated,
aTU 5 E(aiuai , a*), the mean gain that those who are
nonparticipants would have if they received the treatment. This
quantity is an unobservable. Note that a# 5 PaTT 1 (1 2 P)aTU,
where P 5 Prob(ai . a*), by construction.

The LATE estimator is representable in Fig. 1 by a discrete
change in a* moving it to a*9, which necessarily shifts aTT as
well, moving it to aTT9. The LATE estimator equals aTT 2 aTT9
divided by the area under the curve between a* and a*9, which
equals the change in the probability of participating. The
estimator termed by H&V the LIV is the limit of this change
as a*3a*9. This estimator is termed the ‘‘marginal’’ gain by
Björklund and Moffitt (3) to emphasize that it is the treatment
gain of the marginal subject just on the edge of participating
and not participating. A small expansion or contraction of the
program will bring these subjects into the program or push
them out of it and will lead to a change in the mean gain of
participants accordingly. In their empirical example, Björklund
and Moffitt analyzed a program that had a positive mean gain
for those in the program (positive aTT) but a negative marginal
gain, implying that the program was ‘‘too large’’—it had been
overextended to include subjects who were made worse off by
it. Thus the difference between the two can be important.

In general, only aTT, and changes in that quantity, are
identified. This is clear from Fig. 1. Denote the difference
between the mean outcome of the subjects of a treatment
group that is offered the program and that divides up into
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‡This selection can either arise from voluntary actions on the part of
the subjects or from decisions by the program operators to admit and
deny applicants on the basis of ai. This model is neutral on this issue.

FIG. 1. Density of treatment gains in a population.
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participants and nonparticipants in the manner described by
Fig. 1, and the mean outcome of a comparison group that is not
offered the program at all, as aUNADJ. Then, it can be shown
that aTT 5 aUNADJyP, where P is the participation rate in the
treatment group. Multiple treatment groups with different
participation rates can be used with this formula to calculate
the LATE estimator and, in the limit, the LIV estimator. Only
if P 5 1 in one of the treatment groups can a# be identified, as
is clear from Fig. 1 (‘‘identification at infinity’’).

Fig. 2 graphically illustrates this result by showing the
relationship between P and aTT. By the positive and monotonic
selection assumed here, the value of aTT falls and approaches
#a as P31. Treatment groups with different values of P form
data points along the curve. Two data points are shown in Fig.
2. With two data points, the LATE estimator can be calculated.
If the full curve were estimable, what Björklund and Moffitt
term the marginal gain and what H&V term the LIV can be
calculated as the slope of the curve in Fig. 2.§

Fig. 2 suggests what a research agenda on a program should
aim to achieve. Estimates from multiple RCTs, observational
studies, and other analyses that contain treatment groups with
different values of P yield data points on the curve. Nonpara-

metric estimation and related smoothing techniques permit the
estimation of the function, at least between the maximum and
minimum values of P in the different studies. Extrapolation is
required beyond those points.

The bounding concepts described in H&V also can be
illustrated graphically. Fig. 3 shows both aTT and aTU. The
latter is an unobservable, as previously noted, and, hence, the
aTU line cannot be estimated. This can be viewed as the reason
that a# cannot be estimated as well, for a# 5 PaTT 1 (1 2 P)aTU

is an equation with two estimable quantities, P and aTT, but
two unknowns, a# and aTU. But if a (say) lower bound aMIN is
established for aTU, a lower bound on a# can be established as
well (note that it is not the bound on the individual y values that
matter but only the bound on their difference for the un-
treated; this is implicit in the formula for the width of the
bound). Inserting aMIN in for aTU in the weighted average
formula for #a yields the desired bound for a# . It is illustrated by
the dotted line in Fig. 3. Upper bounds could be similarly
illustrated.

The results in the work by H&V provide a fruitful set of
concepts and methods for applications in future research in the
social sciences. The different concepts have seen relatively
little use to date in applications but should see more in the
future.
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§ In a personal communication from H&V, the authors show that the
ATE and LATE can be graphically obtained from the LIV by
integration.

FIG. 2. Relationship between participation rate and mean gain of
participants.

FIG. 3. Mean treatment gains with an assumed lower bound.
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