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Abstract
Numerous genetic variants have been successfully identified for complex traits, yet these genetic
factors only account for a modest portion of the predicted variance due to genetic factors. This has
led to increased interest in other approaches to account for the “missing” genetic contributions to
phenotype, including joint gene-gene or gene-environment analysis.

A variety of methods for such analysis have been advocated. However, they have seldom been
compared systematically. To facilitate such comparisons, the developers of the Multifactor
Dimensionality Reduction (MDR) simulated 100 data replicates for each of 96 two-locus models
displaying negligible marginal effects from either locus (16 variations on each of 6 basic genetic
models). The genetic models, based on a dichotomous phenotype, had varying minor allele
frequencies and from 2 to 8 distinct risk levels associated with genotype. The basic models were
modified to include “noise” from combinations of missing data, genotyping error, genetic
heterogeneity, and phenocopies. This study compares the performance of three methods designed
to be sensitive to joint effects (MDR, Support Vector Machines (SVM), and the Restricted
Partition Method (RPM)) on these simulated data.

In these tests, the RPM consistently outperformed the other two methods for each of the 6 classes
of genetic models. In contrast, the comparison between other two methods had mixed results. The
MDR outperformed the SVM when the true model had only a few, well-separated risk classes;
while the SVM outperformed the MDR on more complicated models. Of these methods, only
MDR has a well-developed user interface.
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INTRODUCTION
A key challenge for genetic analysis today is to account for the bulk of the phenotypic
variance in complex traits attributable to genetic factors. Traditional univariate statistical
genetic analysis methods have been highly successful: by early 2011, genome-wide
association studies (GWAS) alone have identified over 4400 genetic variants contributing to
disease (Hindorff et al. 2009). However, for many complex traits (e.g. obesity, smoking,
diabetes), the variants identified by studies with large samples and dense genome-wide
genotyping account for only a modest fraction of the phenotypic variance estimated to be
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attributable to genetic contributions [Goldstein 2009; Hirschhorn 2009; Kraft and Hunter
2009]. This has led to increased interest in other approaches to account for the “missing”
genetic contributions to phenotype.

Several mechanisms have been suggested that could account for genetic effects that are not
identified by current GWAS strategies. These include rare variants or other variants not
surveyed by current GWAS chips, structural variants (e.g. copy number variants such as
insertion/deletions or copy neutral variation such as inversions and translocations), genetic
heterogeneity, parent-of-origin effects, and joint effects of multiple factors (such as gene-
gene interactions, and gene-environment interactions) [Galvan, et al. 2010; Manolio, et al.
2009].

Though it is likely that all these mechanisms play some role in the “missing” genetic
heritability for complex diseases, the possibility of joint effects presents a particularly
appealing target for research. It is known that such mechanisms play an important part in
biology, with well-documented examples in model organisms of epistasis having substantial
impact on phenotypes ranging from gross morphology to longevity to efficiency of
reproduction [Anholt, et al. 2003; Gerke, et al. 2009; Mackay 2010; Vieira, et al. 2000;
Wolf, et al. 2005]. Further, many important traits of medical interest (such as heart disease,
hypertension, diabetes, cancer, and infection) arise from biological systems controlled by
interacting genetic factors [Churchill, et al. 2004; Lander and Schork 1994; Phillips 2008;
Routman and Cheverud 1995; Schork 1997; Szathmary, et al. 2001]. The term “interaction”
is used with multiple meanings in biological research [Wang, et al.]. In this manuscript,
“interaction” will be used in the broad sense of “joint effects”, including, but not limited to,
the statistical definition of interaction.

Numerous approaches have been suggested for examining joint effects. Several of these are
particularly designed to be sensitive to joint effects even if one or more of the contributing
factors displays little to no marginal effect in univariate analysis. Of these, one of the most
popular is the Multifactor-dimensionality reduction (MDR) approach [Ritchie, et al. 2001].
Others include the Restricted Partition Method (RPM) [Culverhouse, et al. 2004], and a
machine learning approach based on Support Vector Machines (SVM) [Chen, et al. 2008].

Although each of these methods has intellectual appeal and their own strengths and
weaknesses, a comparison of results on identical data can be useful for researchers who are
choosing a method for data analysis. The Ritchie group provided a convenient setting for
such a comparison by simulating data for 96 two-locus disease risk models (100 data
replicates each), publishing the results of the MDR on these data, and making the datasets
publicly available [Ritchie, et al. 2003]. A subsequent publication [Ritchie, et al. 2007]
revised the power reported for the MDR upward in the case of many of the models involving
genetic heterogeneity to correct an overly stringent definition of “success” used in the 2003
publication. The revised definition calls the method a success in cases of genetic
heterogeneity if the top result was either of the two causal pairs of SNPs included in the
generating model.

In 2008, Chen et al. took up the challenge to test their Support Vector Machine (SVM)
approach on these same data [Chen, et al. 2008]. They used the updated definition for power
from the 2007 Ritchie et al. paper for their method, but compared their results to the MDR
results published in the 2003 Ritchie et al. paper (success for models containing genetic
heterogeneity only if the first of two causal pairs in the data was the top result of the
analysis). As a consequence, instead of the split decision resulting from using the updated
definition consistently, it appeared as if the SVM was superior to the MDR for each of the 6
broad model classes from which the 96 tested models were derived.
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In this paper, the results of the three methods (MDR, SVM, RPM) on these simulated data
are compared using the updated definition of success (i.e. the top pair of loci are causative)
for all three methods.

METHODS
Data

The 96 data models are based 6 basic genetic interaction models, each modified in 16 ways
to include all combinations 4 challenges for genetic analysis: genotyping error, missing data,
phenocopies, and genetic heterogeneity. For each of these 96 combination models, 100
replicate datasets were generated and made available for researchers who wished to test
alternative methods. (Data available upon request from the authors of [Ritchie, et al. 2003].)

For each genetic model, the functional loci are single-nucleotide polymorphisms (SNPs).
The six epistatic models (Figure 1) were chosen to represent a range of allele frequencies
and patterns of risk-genotype associations. The polymorphisms associated with risk (the
causative SNPs) in the first two models have minor allele frequency (MAF) = 50%; in
Models 3 and 4, both SNPs have MAF = 25%; and in the final two models, the MAF for
both of the causative SNPs is 10%. A second key difference between the models is the
number of levels of risk. The first model displays only two levels of risk, the second model
contains an additional intermediate risk level, while the other models have even more
distinct risk levels. A third difference between the models is the level of risk for “low risk”
individuals. In the first 3 models, genotypes carried by a substantial portion of the
population (37.5%, 62.5%, and 25% respectively) carry no risk of disease. Thus, in a case/
control setting, no cases would be sampled from these “low risk” joint genotypes. In
contrast, Model 4 contains a single cell that is absolutely protective (representing only 0.4%
of the population) while in Models 5 and 6 every joint genotype carries some risk.

All of the models were selected to display interaction effects but little to no main effects
when genotypes were generated according to Hardy-Weinberg proportions. The models
were chosen to represent a wide range of two-locus models with this property (varying
minor allele frequencies, varying population prevalence, and varying numbers of risk
levels). In addition, some of them have been previously been discussed in the literature. For
instance, the second model (Fig 1B) was initially described by [Frankel and Schork 1996].
In this model, high risk of disease is dependent on inheriting exactly two high-risk alleles (A
and/or B) from two different loci. The high-risk genotype combinations in this model are
AAbb, AaBb, and aaBB, with penetrances of 0.1, 0.05, and 0.1, respectively, corresponding
to a population disease prevalence of 2.5%. This model has been shown to achieve the
maximum heritability possible for a two locus purely epistatic model with the given disease
prevalence (KP = 2.5%) and allele frequencies (p(A) = p(B) = 0.5) [Culverhouse, et al.
2002]. In fact, this model is part of a class of models that provide maximum genetic
contribution to phenotypic variance whenever the prevalence of the phenotype is less than
25%. A discussion of each of the other models can be found in [Ritchie, et al. 2003].

Each dataset consists of 200 cases and 200 controls, each with genotypes for 10 unlinked
SNPs, 2 of which are associated with the phenotype. Each of the non-associated SNPs had
MAF equal to that of the associated SNPs in the generating model (i.e. MAF = 0.5 for
Models 1 and 2, MAF=0.25 for Models 3 and 4, and MAF = 0.1 for Models 5 and 6).
Genotypes were generated under Hardy-Weinberg equilibrium.

Sources of noise
For each of the six epistasis models, 16 submodels were produced based on the presence or
absence of combinations of the following types of noise typical for genetic association data:
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genetic heterogeneity (GH), phenocopies (PH), genotyping error (GE), and missing
genotypes (MS). For each submodel, 100 datasets with were simulated. This resulted in a
total of 6 × 16 = 96 different testable models, each with 100 replicates available for the
evaluation of power. Because of improvements in genotyping technology since the original
publication of these simulated data, the genotyping error rates and missing data rates
simulated by Ritchie et al. are higher than typical for current genetic studies.

Genetic heterogeneity was simulated having two different two-locus combinations
associated with the risk of disease. In each case, both pairs of causative variants were
included in the simulated genotype data and both had the same generating model. Half of the
affected individuals were due to one pair of the causative loci, while the other half were
associated with the other pair of causative loci.

Phenocopies were simulated such that 50% of the individuals labeled as affected were
chosen at random, independent of the genetic model. These individuals were assumed to be
affected due to random environmental factors.

Genotyping error was simulated using a directed-error model [Akey, et al. 2001]. This
model simulates systematic genotyping errors that result in overrepresentation of one allele.
For each locus, a bias towards the a or the A allele was prescribed. Five percent of the
genotypes were selected and, unless it was already homozygous in the biased direction, the
genotype was changed so that it had one more of the overrepresented alleles. Although this
rate was common at the time the data was generated, it is considerably higher than is
common today.

Missing data was simulated by randomly selecting 5% of the individuals in a dataset. These
individuals were deemed to have failed genotyping and were excluded from the analysis.

Analytic Methods
Restricted Partition Method (RPM)

The RPM is an exploratory tool to investigate, in a model agnostic manner, joint effects of
genetic and environmental factors contributing to quantitative or dichotomous phenotypes.
The method partitions multilocus genotypes (or genotype-environmental exposure classes)
into statistically distinct “risk” groups, then evaluates the resulting model for phenotypic
variance explained. It is sensitive to factors whose effects are apparent only in a joint
analysis, and which would therefore be missed by many other methods.

The RPM algorithm is an iterative search procedure for finding an optimized partition of the
genotypes. Genotypes are sequentially merged based on the similarity of the mean values of
their phenotypic trait. Selection of which genotypes to merge at each step is based on
statistical criteria from a multiple comparisons test. Initially, each multi-locus genotype
forms its own group. The algorithm proceeds as follows:

1. A multiple comparisons test is performed to identify which (if any) genotype
groups have different mean quantitative trait values. The procedure halts if all
groups have different means.

2. Pairs of genotype groups with means that are not significantly different from each
other are ranked according to the difference in means between the two groups.

3. The pair from step 2 with the smallest difference (i.e., most similar mean values) is
merged to form a new group.

4. The algorithm returns to step 1.
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To provide a measure of the importance of the final results, the variance attributable to the
joint genotypes in the final model [i.e., R2 = (between group variance)/(total phenotypic
variance)] is computed. A natural consequence of this definition is that, if the genotypes are
merged into a single group at the end of the algorithm, then R2 = 0, reflecting the lack of
evidence for quantitative trait differences between the genotypes. This does not indicate that
the mean values of the genotypes are identical, only that there is not sufficient evidence to
reject the null.

The Games–Howell variant of Tukey's Honestly Significant Difference (HSD) multiple
comparison method with α = 0.05 is the default and was used for these analyses. (The
Games–Howell version allows for the variance and sample sizes to vary between groups
[Games and Howell 1976].)

Because the R2 estimated by this procedure has a distribution that is difficult to
parameterize, the RPM software uses a permutation-based strategy to estimate p-values.
Phenotype values are permuted among the individuals. For each permutation of the data, the
RPM model R2 is computed, cumulatively producing an empirical null distribution for the
model in question. The test statistic from the unpermuted data is compared to this empirical
null to approximate the p-value for the model.

Although the RPM algorithm was designed for quantitative phenotypes, subsequent
empirical evaluation demonstrated its utility for dichotomous traits [Culverhouse 2007]. The
violation of distributional assumptions for the merging rule affects the statistical
interpretation of the final groups, but does not affect the validity of the permutation-based p-
values of the final model.

Multifactor Dimensionality Reduction (MDR)
The MDR method is designed to analyze the association of dichotomous traits and
combinations of discrete predictors (genetic or environmental exposures). The MDR method
can analyze an arbitrary number of simultaneous predictors. For clarity, this description will
focus on how the method works for pairwise analyses of SNPs. The approach is easily
generalized to more predictors that need not be restricted to SNPs, but can include any
predictor that can be discretized into distinct strata.

A key part of the MDR is cross-validation. The process begins by dividing the data into
equal sized subsets (e.g. 10). One subset is set aside as testing data and the rest of the data is
combined to be a training data set.

The first pair of SNPs is selected and the corresponding joint genotypes are represented in a
table, each cell representing one of the 9 genotypes aabb, aabB, aaBB, aAbb, aAbB, aABB,
AAbb, AAbB, AABB. Each of these 9 cells are labeled as either high-risk or low risk: high-
risk if the ratio of affected individuals to unaffected individuals exceeds some threshold T,
and low-risk otherwise. The threshold would typically be equal to the ratio of cases to
controls in the data. Since cells labeled “low risk” will typically contain some cases, and
cells labeled “high risk” will contain some controls, model will have an associated
misclassification rate. After going through every possible pair of SNPs, the pair with the
lowest misclassification rate in the training set will be chosen. The prediction error based on
how well this model classifies the testing data is then recorded.

Next, a new subset of the data is chosen to be the testing set, and the rest of the data
(including the old testing set) becomes the new training set. The process is repeated for
every pair of predictors, and again a best model from the training data is selected and its
accuracy in the testing data is recorded.
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After each of the subsets has been used as the test data, one will have a collection of best
pairs and their associated testing errors. In an ideal situation, the same pair would be chosen
every time. In general, the pair chosen most frequently (i.e. the pair with the greatest cross-
validation consistency) is selected as the top pair. If there is a tie, it can be broken by
choosing the pair with the lowest average misclassification rate in the test data.

For a more complete description of the MDR, see [Ritchie, et al. 2001].

Support Vector Machine (SVM)
The SVM approach also focuses on dichotomous phenotypes, with the aim of finding a
hyperplane, H, in the space of genotypes that maximizes prediction accuracy (i.e. does the
“best” job of separating the cases from the controls). Under the ideal conditions (i.e. there is
a hyperplane that perfectly separates the two classes), the hyperplane is defined by H : wTx
+ b = 0 such that for any control, i, its corresponding genotype vector xi satisfies the
equation wTxi + b ≤ −1, and for any case, j, its corresponding genotype vector x j satisfies
the equation wTx j + b ≥ 1 and the minimum distance of any of the data points to the plane,

, is as large as possible. Vectors representing the genotypes of the cases and controls that
lie on the boundaries (i.e. wTxi + b ≤ − 1 and wTx j + b ≥ 1, respectively) are called support
vectors.

In general, it will not be possible to find a hyperplane that separates the cases from the
controls perfectly. In this case, the optimization function will include a penalty for
misclassified points proportional to their distance from the boundary. The resulting set of
support vectors includes the vectors for misclassified subjects as well as the boundary
subjects.

If, as would typically be the case for epistatic interactions, the decision boundary is
inherently non-linear, the SVM approach can be modified by use of a non-linear
transformation to project the data non-linearly into a higher dimensional space, where they
are more likely to be linearly separable [Cover 1965]. Technical details of the suggested
approach, including the selection of additional parameters, are provided in [Chen, et al.
2008].

RESULTS
The statistic used for comparison in the previous analyses of these data ([Chen, et al. 2008;
Ritchie, et al. 2007; Ritchie, et al. 2003]) is a simple count of how often the top ranked two-
locus SNP-pair from the analysis was a causative pair. To make the comparisons as
straightforward as possible, the same statistic will be used in this study. Table I lists how
often MDR, SVM, and RPM found a causative pair of SNPs (a true signal) as the top signal
in these data. The numbers listed for the MDR and the SVM were results from the
developers of the methods performing the analyses ([Chen, et al. 2008; Ritchie, et al. 2007]).

The overall results can be summarized as follows: for 78/96 (81%) of the model-noise
combinations examined the RPM model outperformed both of the other methods. For 16/96
(17%) of the model-noise combinations, the RPM tied for highest power with at least one of
the other two methods. For the final 2/96 (2%) of the model-noise combinations, the RPM
performed better than the MDR, but worse than the SVM. For none of the model-noise
combinations did the RPM perform more poorly than both of the other methods.

In addition to this global summary of results, it can be informative to examine individual
results in more detail. One can observe that although differences in power to identify the
causative SNP pair were sometimes dramatic, there were numerous instances, even when

Culverhouse Page 6

Genet Epidemiol. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



there are no ties, where the differences were modest. The combination of genetic Model 6
(which had 8 different risk levels) together with noise from genetic heterogeneity and
missing data is a model that displayed a dramatic difference: the RPM identified the a
causative pair of interacting SNPs 76% of the time, compared to 22% for MDR and 34% for
SVM. In contrast, all three methods performed well for the combination of genetic Model 2
(displaying 3 risk levels) and noise from phenocopies: the RPM correctly identified the
causative pair in all 100 of the datasets, the MDR identified the correct pair in 99% of the
replicates, and the SVM in 97%.

Even though some of the more modest differences between the methods could simply be the
result of sampling variability, the differences between the methods are clearly not random,
even within each of the six genetic models. Under the null hypothesis that each method is
equally good (so when the RPM and another method do not tie for the best, which one
“wins” is random), the RPM performed significantly better than the other two methods for
each of the 6 model classes. For models 5 and 6 (with at least 6 different risk levels, all > 0,
and MAF=0.1), there are no ties and the RPM outperforms both of the other methods in each
of the 16 model-noise combinations (p = (1/3)16 = 2.3 × 10−8 that this could be due to
chance). These two models also contain many examples where there were dramatic
differences in power.

For model 3 (7 risk levels, 14% of the population has 0 genetic risk, and MAF=0.25), the
RPM out performs the other two methods for 13 of the model-noise combinations and ties
the best other method for the other 3 combinations (p = (1/3)13 = 6.3 × 10−7). For models 1
and 2 (no more than 3 risk levels, at least half of the population with 0 genetic risk, and
MAF=0.5), the RPM outperforms the other methods in each of the 11 settings where it does
not tie for the best (p = 5.6 × 10−6). Finally, for model 4 (7 risk levels, <1% of the
population having no genetic risk, MAF=0.25), of the 13 settings where the RPM does not
tie for the best power, the point estimate for the power of the RPM is greater than those for
the other two methods in 11, and is less than only one of the other methods in the other 2
settings (p = 1.1 × 10−4).

If the RPM is removed from consideration and only the MDR and SVM are compared, the
situation is more complicated. Model 1 fits the basic framework of the MDR ideally, with
only two, well-separated levels of risk. For this model, the MDR is clearly superior to the
SVM and never ranks lower than the SVM for any of the error/noise combinations (p = 1.1
× 10−4). In contrast, for Models 2, 3, and 4 (where number of risk levels increase, the MAF
decreases to 0.25, and the proportion of the population with no genetic risk decreases), the
two methods perform similarly, but begin to trend to the SVM as the models become more
complicated (p = 0.50, p = 0.27, p=0.11, respectively). Finally, for models 5 and 6, (at least
6 risk levels, no genotype is risk-free, MAF=0.1) there are no ties between MDR and SVM,
with SVM demonstrating more power in each setting (p = 1.5 × 10−5). Thus, which of the
MDR or SVM has superior power is highly model dependent.

DISCUSSION
Each of the three methods (RPM, MDR, SVM) has strengths and weaknesses as analysis
methods for detecting joint or interaction effects of multiple loci. The MDR is the easiest to
use given its polished user interface. It is also the most commonly used of the three
approaches and, as a consequence, is something of a standard for comparison. Given this, it
seemed appropriate to test the methods using data generated by the developers of the MDR.
Although these data represent only a limited range of dichotomous phenotype models for the
comparison of these methods, the results provide insight into the strengths and weaknesses
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of the three approaches, some of which could have been predicted from the basic features of
the methods.

For these data sets and the designated metric (the number of times the top pair from the
analysis was a “causal” pair), the RPM was the most successful of the three, demonstrating
significantly superior power for each of the 6 classes of models tested. In a secondary
comparison between the MDR and SVM, each demonstrated superiority over the other in
certain settings. Though the deviations in performance were sometimes small, and may in
part be due to sampling variation, the distributions of these deviations revealed highly
significant differences between the methods.

An examination of the analytic underpinnings of these methods can help us understand the
differences in performance seen for these data. First, the MDR and RPM have more in
common with each other than either has with the SVM approach. Both the MDR and RPM
are based on evaluating a single partition of the multi-locus genotypes for association to
phenotype. The most important differences being (i) the RPM was designed to deal with
quantitative phenotypes and is also appropriate for dichotomous traits [Culverhouse 2007])
while the basic MDR is inherently a tool for dichotomous traits; (ii) the RPM separates the
multi-factor cells into statistically distinct risk strata (the number determined by the data),
while the MDR, dichotomizes the cells into low and high risk; (iii) the MDR utilizes a cross-
validation procedure as part of its evaluation of the models; (iv) the MDR focuses on finding
the single best 2-SNP (or n-SNP) model, while the RPM assumes that there may be more
than one multi-SNP combination contributing to phenotypic variability; and (v) (as a
consequence of (iv)) the permutation tests to evaluate statistical significance are different.
For example, for a two-locus analysis, permutations are performed in the RPM only for pairs
of SNPs demonstrating statistically distinct risk strata, and a multiple test correction must be
used. In contrast, the MDR extreme value approach requires every pair of SNPs in the data
to be evaluated for each permutation, but the result does not require further correction for
multiple tests.

The key similarity between the MDR and the SVM that separates both from the RPM is the
fact that both MDR and SVM dichotomize the multi-locus genotypes (the MDR based on a
fixed threshold, typically the sample disease prevalence; the SVM adaptively chosen to fit
the data), while the RPM allows for more (or fewer) distinct risk levels. These basic
differences may provide an essential part of the explanation for which situations are optimal
for the use of each methods. First, when comparing the MDR to the SVM, one sees that
Model 1 fits the basic framework of the MDR ideally, with only two, well-separated levels
of risk. For this model, the MDR is clearly superior to the SVM and never ranks lower than
the SVM, no matter which of the error factors have been added. Model 2 also suits the MDR
approach well, with genotypes containing 62.5% of the population having no chance of
containing a case (i.e. again, the high and low risk cells are well separated). In contrast, for
models 5 and 6, each displaying several distinct risk levels, the SVM is clearly more
powerful than the MDR (even though they both dichotomize). One possible explanation for
this is the greater flexibility provided to the SVM through the use of a data-derived threshold
for dichotomization, rather than the a priori threshold used by the MDR. Another possible
contributing factor is the use of cross-validation by the MDR. These particular models, with
gradations in risk, contain larger fractions of the populations with genotype-associated risk
near the population prevalence. In data sampled from these models, particularly those with
noise, specific genotypes may be less consistently classified as high or as low risk in the
cross-validation portion of the MDR algorithm.

The strategy of the RPM to allow its model to contain intermediate risk groups may be the
reason it outperforms the two dichotomizing methods for these models. In addition, because
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the RPM explicitly makes use of the degree of separation between risk groups when
defining its models, it is also strengthened when there are well-separated risk groups. This
may help explain why the RPM maintains higher power in genetic models 1 and 2 for many
of the noise combinations that considerably weaken the other two approaches.

There are substantial computational benefits to choosing an a priori threshold to dichotomize
the cells into low and high risk (as the MDR does): the method greatly simplifies the
evaluation space (all the 21,146 ways to partition the 9 cells of a two-SNP model) to a single
partition. The RPM may take up to 8 iterations of the algorithm to choose the partition. This
simplification can provide a substantial computational saving when multiplied by all pairs of
SNPs. The computational difference becomes even more significant when models involving
more than two factors are examined.

However, as we have seen, the simplification has associated costs: First, by making
distinctions between cells that are have essentially the same risk (e.g. a cell with 50.0%
affected individuals would be called “low risk” while a cell with 50.1% affected would be
called “high risk”), the algorithm (particularly the cross-validation) may be unstable and
produce sub-optimal results. Second, by collapsing multiple distinct risk levels to only 2,
some of the information about association to the trait may be lost.

The SVM also dichotomizes the data but uses a transformation of a hyperplane determined
by the data to choose the best “cut point”. Whether it is due to the flexibility of the choice of
cut point, or simply the lack of the cross-validation feature, the SVM performed better than
the MDR when the data contained genotypes with associated risks near the overall
population risk.

Another key contrast between the RPM and MDR is that the RPM takes an open attitude to
multiple signals while the MDR is clearly focused on identifying the single best set of
predictors is the data for any level of analysis (e.g. two-locus, three-locus, etc.). The
approach of the RPM requires much more post-analysis interpretation from the user. This
difference in focus has a secondary impact on the permutation approaches used by the MDR
and RPM for statistical evaluation. The MDR, focused on the single top signal, uses an
extreme value comparison to evaluate significance. After identifying the top signal in the
original data, it permutes the data multiple times, each time running the full MDR and
selecting the single top result from each permutation. By comparing the original top signal
to the distribution of top signals from the permutations, the multiple comparisons have
already been taken into account. This is another way that the interpretation of MDR results
is straightforward. In contrast, the RPM does not assume that all the SNP pairs have the
same null distribution and so generates individual null distributions for each SNP pair of
interest. As a result, a post-analysis correction for multiple tests must be applied. However,
this approach can result in considerable computational savings as permutations need only be
performed on the top signals rather than on every pair in the data. The SVM, as a well-
known approach derived from standard machine learning algorithms, is primarily a source of
hypothesis generation and has no specific approach to statistical significance. However, in
general, the SVM approach requires a complete optimization of the parameters that would
be computationally much more expensive than the MDR fixed threshold. To ameliorate this
problem, the authors suggest several ways in which the parameter space could be sampled in
a computationally efficient manner to obtain approximately optimal penalization parameters.
The requirement for data specific parameter optimization, combined with the lack of
software provided by the authors, will make this approach somewhat daunting for many
researchers.
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Other points of comparison between the methods include their applicability to quantitative
as well as dichotomous phenotypes, incorporation of covariate information, and utilization
of family data. The RPM is appropriate for either quantitative or dichotomous phenotypes
without modification. Covariates can be addressed by analyzing the residual after a
regression including the covariates for a quantitative phenotype or converted to a categorical
(or ordinal) variable to be included directly in the analysis for either quantitative or
dichotomous phenotypes. Similarly, though family structure cannot be directly modeled in
an RPM analysis, at least two plausible options are available. For a quantitative trait, the
residuals from a mixed model taking pedigree relationships into account could be analyzed
(as described in [Aulchenko, et al. 2007]). In addition, it had been demonstrated that the
crude approach of increasing sample size by naively including related individuals from
modestly sized families can increase power for either quantitative or dichotomous traits
without substantially increasing false positive rates [Culverhouse, et al. 2009]. The SVM is
inherently limited to the analysis of dichotomous phenotypes and has not been extended to
incorporate covariates or related individuals. Although the basic MDR is limited to
dichotomous phenotypes and categorical covariates for unrelated individuals, several
variants of the method have been developed. Not all of these focus on identifying the single
“best model”. Among these are the MDR-PDT [Martin, et al. 2006], which is appropriate for
nuclear family data, and the pedigree-based GMDR [Lou, et al. 2008], which is appropriate
for both quantitative and dichotomous traits, can adjust for covariates, and can use data from
arbitrary pedigree structures in a statistically appropriate way.

This study has numerous limitations. The most obvious is that the six genetic models cannot
possibly represent the full space of possible two-locus models, much less the space of higher
order interactions that would be required to fully model true biology. In fact, they only
represent 3 different sets of minor allele frequencies. Similarly, both the sample size and the
specific noise models included represent only isolated points in a high dimensional space.
The relatively small sample size for an examination for interactions (200 cases, 200
controls) may have been particularly problematic for the cross-validation methodology used
by the MDR, which exacerbates the problem of sparse cells in these data. Other limitations
include the fact that test data included only a handful of markers instead of the thousands or
millions and that the only estimate of power or the false positive rate is how often the “top”
signal was causative. In spite of these limitations and more, these data do provide a range of
both genetic models and error that can be used as a common testing ground for multiple
analytic methods and which highlight several differences between the three methods
examined here.

In summary, for these data, the RPM was consistently the most powerful for each of the 6
basic genetic models, while the MDR and SVM each surpassed the other for some models.
The genetic models in these analyses each consisted of two interacting dichotomous loci,
with MAF ranging from 0.1 to 0.5, and with between 2 and 8 distinct risk levels associated
with the 9 two-locus genotypes in each model. The data included in these comparisons
consisted of the 6 genetic models, each modified by the 16 combinations of the presence or
absence of 4 types of data noise: genetic heterogeneity, phenocopies, missing data, and
genotyping error. Key factors that appear to distinguish the performance of the MDR from
that of the SVM are that MDR performed at its best when there were few, well-separated
genetic risk levels, while the SVM outperformed the MDR for more complicated two-locus
genetic models. The MDR software is available at
http://www.multifactordimensionalityreduction.org. The SVM results reported by [Chen, et
al. 2008] used software from a library for SVM (LIBSVM) developed by Chang and Lin
[2005]. This software is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Software
implementing the RPM is available from the author.
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Figure 1.
Multilocus penetrance functions and allele frequencies (p, q) used to simulate case-control
data exhibiting gene-gene interactions in absence of main effects. For each model, the
marginal penetrances all equal the population disease frequency, KP.
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