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Abstract

The accurate diagnosis of parasitic nematode infections in livestock (including sheep and goats) is central to their effective
control and the detection of the anthelmintic resistance. Traditionally, the faecal egg count reduction test (FECRT),
combined with the technique of larval culture (LC), has been used widely to assess drug-susceptibility/resistance in
strongylid nematodes. However, this approach suffers from a lack of specificity, sensitivity and reliability, and is time-
consuming and costly to conduct. Here, we critically assessed a specific PCR assay to support FECRT, in a well-controlled
experiment on sheep with naturally acquired strongylid infections known to be resistant to benzimidazoles. We showed
that the PCR results were in close agreement with those of total worm count (TWC), but not of LC. Importantly, albendazole
resistance detected by PCR-coupled FECRT was unequivocally linked to Teladorsagia circumcincta and, to lesser extent,
Trichostrongylus colubriformis, a result that was not achievable by LC. The key findings from this study demonstrate that our
PCR-coupled FECRT approach has major merit for supporting anthelmintic resistance in nematode populations. The findings
also show clearly that our PCR assay can be used as an alternative to LC, and is more time-efficient and less laborious, which
has important practical implications for the effective management and control strongylid nematodes of sheep.
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Introduction

Strongylid nematodes of ruminants are responsible for sub-

stantial economic losses due to the diseases that they cause and the

costs associated with their treatment and control [1]. These

parasites impose a major financial burden on livestock industries

globally. Small ruminants, such as sheep, can become infected

with multiple strongylid nematodes, including species of Teladorsa-

gia, Trichostrongylus, Haemonchus, Nematodirus, Cooperia, Chabertia and/

or Oesophagostomum [2], which differ in their geographical

distribution, pathogenicity and susceptibility to various anthelmin-

tics [3].

The accurate diagnosis of nematode infections is central to their

effective control, supports investigations into their epidemiology

and ecology, and, importantly, can assist substantially in the

monitoring of anthelmintic resistance in strongylid populations.

Such resistance has emerged as a major economic and bionomic

problem [4], predominantly as the result of an excessive and

uncontrolled use of broad-spectrum anthelmintics (representing

three main classes: benzimidazoles, imidazothiazoles and macro-

cyclic lactones). Although there has been a recent breakthrough in

the development of a new drug, monepantel, representing an

alternative compound class (amino-acetonitrile derivatives, AADs)

[5], success in the discovery of new anthelmintics has been scarce

over the last two decades [6]. Therefore, although there is hope for

new, effective anthelmintics, there is also a major need to preserve

compounds that we currently have at our disposal. Hence,

monitoring the drug-susceptibility and -resistance status of

strongylid nematode populations in livestock needs to be a high

priority, and should underpin integrated management strategies.

Various in vitro methods, such as egg hatch- and larval

development assays, have been used for estimating levels of drug-

susceptibility/resistance in strongylid nematodes of small rumi-

nants, cattle and horses. However, these assays can suffer from

a lack of reliability, reproducibility and sensitivity [7]. The

method most widely used to assess the efficacy of different

anthelminthics in live sheep is the faecal egg count reduction test

(FECRT) [8]. The diagnostic component of this test involves the

enumeration of strongylid eggs in faecal samples before and after

treatment of the animals with an anthelmintic compound. From

the results, the percentage of reduction in the number of

strongylid eggs per gram (EPG) following treatment provides an

estimate of the susceptibility/resistance of nematode populations

to a particular compound, and a population of worms is

considered resistant if the reduction is ,95% [9]. However,

strongylid populations usually comprise multiple species, and it is,

thus, not possible to assess the effect of a drug on different

species in the populations, because eggs in faeces cannot be

delineated to genus or species based on morphology (with the

exception of Nematodirus). Therefore, the technique of larval
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culture (LC) is required to allow eggs to develop through to

third-stage larvae (L3s), which can then be differentiated

morphologically. However, LC has intrinsic limitations, which

relate predominantly to the different requirements for hatching

and larval development of individual nematode species [10],

methodological differences among diagnostic laboratories, and

the inability to unequivocally identify and differentiate particular

genera and/or species [11].

There have been significant advances in establishing molecular

methods for the genus- or species-specific diagnosis of strongylid

infections in livestock [12]. Recently, we evaluated the perfor-

mance of a PCR method for the diagnosis of naturally acquired

strongylid nematode infections in sheep [13]. We established the

diagnostic sensitivity (98%) and specificity (100%) of this assay by

comparison with a conventional faecal flotation method, and also

applied a system to rank the contribution of particular strongylid

nematodes to EPGs in individual sheep with mixed-species

infections. The ability to rapidly identify and rank nematodes

according to their numerical contribution to observed faecal egg

count results represents a major advantage over routine coprolo-

gical methods, and shows clear potential to replace the conven-

tional technique of LC. Therefore, we proposed that this PCR tool

[13] can be used as a practical adjunct to conventional FECRT to

enable the rapid inference of which species or genera of strongylid

nematodes are susceptible or resistant to particular anthelmintic

drugs. Here, we assess this tool for this purpose in a controlled

experiment on sheep with naturally acquired infections of

strongylids known to be resistant to benzimidazoles. We directly

compared the results from the PCR evaluation with those obtained

from routine LC and worm counts.

Materials and Methods

Experimental Design
The present study was conducted on a farm in Rokewood with

owners permission [37u539S/143u439E], Victoria, Australia, with
a known resistance problem in strongylid nematodes against one

or more benzimidazoles; Relevant permission was granted from

the owner of this farm to undertake this observational field study,

which involved routine anthelmintic treatment of sheep and

collection of faecal samples from sheep on this farm in

Rokewood. This study was approved by the Animal Ethics

Committee (AEC no. 0810850.1) of the University of Mel-

bourne. Merino sheep (n= 80; 15 months of age; 36–59 kg; with

ear tag identification) were available for FECRT and were shown

previously to have average faecal egg counts of $150 EPG.

Sheep were divided randomly into four groups (of 20 each),

designated AB (albendazole-treated), ABC (albendazole-untreated

control), MP (monepantel-treated) and MPC (monepantel-un-

treated control), respectively. For one sheep in group AB, no

faecal sample was obtained after repeated sampling attempts,

such that 19 samples could be collected. Groups AB and ABC

were kept on the same pasture as were MP and MPC.

Albendazole (ValbazenH, Coopers Animal Health) and mon-

epantel (ZolvixH, Novartis) were administered orally by a qualified

veterinarian using a syringe at a dose of 4.75 mg/kg (albenda-

zole) and 2.5 mg/kg (monepantel), according to the bodyweight

of the heaviest sheep in groups AB and MP, respectively. The

experiment was conducted over a period of 13 days. Faecal

samples were collected from sheep on days 0 and 10. Groups AB

and MP were treated on day 0. A total number of 30 sheep (see

subsection 2.3) were necropsied on day 13.

Procurement of Faecal Samples and Conventional
Coprological Testing
Fresh faecal samples (6.5–20 g) were collected directly from the

rectum of individual sheep into plastic bags, chilled for transport

and then stored at 4uC for a maximum of 1 week [14]. The

numbers of small- to medium-sized (i.e. ,100 mm in length and

,50 mm in width), thin-walled ‘strongylid eggs’ per gram (EPG) of

faeces were counted using a standard flotation method [15] with

a theoretical detection limit of 10 EPG.

For each of the four experimental groups, an equal amount of

faeces (2.5 g) from each individual sample was used to set up a 50 g

composite LC in a plastic beaker. The cultures were incubated at

25uC for 10 days. L3s were then recovered by filling each beaker

with water (25uC) and inverting it on to a Petridish [16]. The

sheath extension lengths [17] of 100 L3s from each of the four

cultures were measured to differentiate among Teladorsagia/

Trichostrongylus, Haemonchus and Chabertia/Oesophagostomum L3s.

Total lengths of L3s were measured to differentiate Teladorsagia

from Trichostrongylus, according to the criteria of three different

authors [18–20]. To further refine the delineation Te. circumcincta

and Trichostrongylus, 50 L3s from each culture were exsheathed in

aqueous hypochlorite (5%), and their caudal morphology exam-

ined for the presence/absence and number of tubercles [20].

Total Worm Counts (TWC)
Three days following the second collection of faecal samples (on

day 13), nine, nine, nine and three sheep were selected randomly

from groups AB, ABC, MP and MPC, respectively, and then

necropsied (approval granted through AEC no. 0810850.1). The

entire gastrointestinal tract was removed from each of these sheep.

Ligations were positioned anterior and posterior to the abomasum.

TWC was performed as described by Anderson [21]. In brief, the

entire contents of the abomasum and the proximal six meters of

the small intestine were collected separately and each diluted in

one litre of water. An aliquot (250 ml) thereof was fixed in

formaldehyde (final concentration: 5%). The large intestine was

opened longitudinally, distal to the spiral colon, and the worms

recovered were fixed in 70% ethanol. Individual adult worms were

identified morphologically to species according to Gibbons [22].

PCR Testing
Genomic DNA from strongylid eggs, isolated from individual

faecal samples, were column-purified and diluted (1/50) as

described previously [23]. PCR-based testing was carried out as

reported recently [13], employing primer pairs HAE-NC2, TEL-

NC2, TRI-NC2, CHO-NC2 and OEV-NC2, in separate reac-

tions, for the specific amplification from the second internal

transcribed spacer (ITS-2) of nuclear ribosomal DNA from

Haemonchus contortus, Teladorsagia circumcincta, Trichostrongylus spp.,

Chabertia ovina and Oesophagostomum venulosum, respectively. In

addition, primer pair NC1–NC2 [24] was used, as a control, to

assess inhibition in, and amplification efficiency for individual

genomic DNA samples. Individual samples were identified as test-

positive on the basis of the detection of an amplicon and also of

a single, specific melt-peak that was consistent with that of an

homologous control (for each PCR run). The specificity of the

PCR, the cycling conditions and the products were verified by

selective sequencing of amplicons using an established approach

[25] and the subsequent comparison of individual sequence tags

against known reference sequences for Te. circumcincta, T. axei, T.

colubriformis, T. vitrinus and C. ovina (GenBank accession nos.

AY439025.1, AY439026.1, AB503252.1, AY439027.1 and

AY439021.1, respectively).
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Any suspected inhibition in the PCR assay, potentially linked to

faecal constituents (e.g., humic acids, phenolic compounds and/or

polysaccharides), was assessed for all samples for which there was

a discrepancy in results between faecal egg count and PCR. In

brief, aliquots (2 ml) from samples that were test-negative by PCR,

but were shown to contain strongylid eggs by coproscopic

examination, were spiked with a limited amount (1 pg) of genomic

DNA from H. contortus and then subjected to PCR. The

amplification results from these aliquots were compared directly

(in the same experiment) with that from 1 pg of H. contortus DNA

alone and a sample without DNA (no-template control).

Statistical Analysis
Samples were tested in conventional methods and PCR in

a blinded manner. The reduction in EPG was calculated using the

program RESO FECRT v4.0 (http://www.vetsci.usyd.edu.au/

sheepwormcontrol/index.html). A population of stronglid nema-

todes was defined as resistant to an anthelmintic if the reduction in

EPG was ,95% and the lower confidence limit of the percentage

of reduction was ,90% [9]. The proportion of sheep that

remained test-positive from day 0 to day 10 by PCR was

compared between groups using Fisher’s exact test in the program

Stata v.12.0 (StataCorp, USA). The performance (i.e., sensitivity,

specificity and Kappa value) of individual PCR assays was

calculated using an established approach [26]. The sensitivity

and specificity as well as Kappa statistics of PCR were assessed in

relation to results of TWC for 30 sheep, employing the program

WinEpiscope 2.0 (http://www.clive.ed.ac.uk./winepiscope/);

95% confidence intervals (CI) for sensitivity and specificity values

were calculated using the exact binomial method in Stata. The

sensitivity of the specific PCRs for the detection of patent

strongylid nematode infections was calculated by comparing the

presence of adult female worms of individual species and the

corresponding PCR results (because the PCR is based on the

specific amplification of genomic DNA from thin-shelled strongy-

lid eggs; [23]). The performance of the PCR assay using primer

pair TRI-NC2 was calculated for all infected sheep as well as for

those with a minimum TWC of $100 adult female Trichostrongylus.

Results

Results from FECRT Coupled to Conventional
Coproscopic Testing and PCR
The coprological testing of 158 individual faecal samples

collected from 79 sheep showed that 136 (86%) of these samples

contained strongylid eggs. The arithmetic mean EPG in group AB

decreased from 142 (day 0) to 41 (day 10), whereas there was no

decrease in their corresponding (untreated) control group. The

mean number of EPG in the group MP decreased from 177 (day 0)

to 5 (day 10), whereas the numbers increased slightly in group-

MPC (see Table 1) during the 10-day period. Based on this

reduction in EPG numbers in groups AB and MP, calculated

efficacies (with reference to their untreated control) were 64%

(95% CI, 31–82%) and 97% (95% CI, 93–99%), respectively. For

ten of the 136 samples with an EPG of 10–250, no PCR

amplification was detected for any species. With the exception of

one sample, these ten samples were from sheep that had received

anthelmintic treatment (i.e., three, six and one sample from groups

AB, MP and MPC, respectively) and all had an EPG of ,50.

Microscopic examination of the strongylid eggs in these samples

indicated that they were damaged/degraded, with the exception of

the sample from group MPC. Molecular screening by PCR

showed that 135 (85%) faecal samples were test-positive for one or

more of the target nematode species (which included Te.

circumcincta, Trichostrongylus and C. ovina). Of these samples, there

were nine, for which no strongylid eggs were detected by faecal

flotation. The molecular analysis of 79 individual faecal samples

collected on day 0 revealed that the largest percentage of test-

positive faecal samples related to Te. circumcincta (84%), Trichos-

trongylus (92%) and, to a lesser extent, C. ovina (56%), which was

a consistent pattern for all four groups on day 0 (Table 1). No

sample was test-positive by PCR for H. contortus or O. venulosum.

Using the PCR assay, 19 sheep in group AB were test-positive

on day 0 and 15 sheep were test-positive on day 10. In contrast, all

20 sheep in group ABC were test-positive by PCR on days 0 and

10 (P =0.047). On day 10, all of the 15 test-positive samples in

group AB related to Te. circumcincta, and three to Trichostrongylus,

whereas C. ovina was not detected (see Table 1). In group MP, of

the 20 samples that were test-positive by PCR on day 0, three were

test-positive for Te. circumcincta only on day 10. In contrast, all 19

samples from group MPC were test-positive by PCR on day 0 and

also on day 10 (P,0.001). The melting-curve analysis of all 301

amplicons produced in this study (irrespective of experimental

group) as well as selective sequencing and comparison of resultant

sequence tags (n =26) with reference sequences demonstrated

unequivocally the specificity of both the amplicons and the PCR

conditions employed.

Comparison of Results Achieved by Routine Larval
Culture (LC) and Total Worm Counts (TWC) with those
from Molecular Testing
On day 10, a pooled faecal sample representing all animals in

each experimental group was tested by LC (Table 2). L3s of Te.

circumcincta and Trichostongylus were identified in cultures represent-

ing three of the four experimental groups, and no larvae were

detected for group MP. L3s of Chabertia/Oesophagostomum were

identified in cultures representing both control groups (ABC and

MPC) but not in the others. Morphometric comparisons of these

L3s, according to Gordon [19] and McMurtry [20], consistently

inferred Te. circumcincta as the most abundant parasite for each

group, followed by Trichostrongylus spp., whereas Chabertia/Oesopha-

gostomum were least abundant. This relationship was most pro-

nounced in group AB, wherein.90% of the L3s were identified as

Te. circumcincta. Measurements of total body length of L3s with

a sheath extension of 30–40 mm inferred Te. circumcincta and

Trichostrongylus spp. in groups ABC and MPC, and mainly Te.

circumcincta in group AB (Fig. 1). These findings were similar to the

results achieved by PCR testing of individual faecal samples from

each of the four groups of sheep, although LC appeared to under-

estimate the contribution of Chabertia/Oesophagostomum relative to

the PCR, which can be explained by the ‘sensitivity’ of the

molecular method. Notably, morphometric boundaries, as defined

by Dikmans and Andrews [18], yielded results that were markedly

different from those achieved using the criteria of Gordon [19] and

McMurtry [20], with L3s of Trichostrongylus predicted as being most

abundant in all cultures.

To provide an independent comparison of LC and PCR, we

conducted a routine TWC on 30 sheep (representing animals

randomly-selected from each of the four groups). Because test-

positive results in LC and PCR are dependent on the presence of

eggs in faeces, TWCs related to the numbers of adult female

worms in individual sheep, although worms of both sexes were

counted (see Table 3). TWC data revealed the presence of females

of Te. circumcincta, Trichostrongylus spp. (T. axei, T. vitrinus, T.

colubriformis) and C. ovina in 21 (70%), 16 (53%) and eight (27%) of

the sheep examined, respectively (Table 3). Moreover, in group

AB, all sheep harboured Te. circumcincta (60–7340 females),

whereas just three, low intensity infections of Trichostrongylus (50–
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160 females) were found, and no Chabertia or Oesophagostomum.

These results are consistent with those achieved by PCR and LC

using the morphometric criteria defined by Gordon [19] and

McMurtry [20].

Indeed, usually there was a close agreement between the routine

TWC and PCR results achieved for each individual sheep

examined using both methods. PCR analysis detected infections

with Te. circumcincta, Trichostrongylus and C. ovina in 22 (73%), 12

(40%) and eight (27%) of the sheep examined, respectively

(Table 3). Although Te. circumcincta was detected by PCR in three

of 20 faecal samples from group MP on day 10, no adult worms of

this species were detected by TWC in two of these three sheep (i.e.,

nos. 1415 and 1443) for which TWC reference data were

recorded. Similarly, although Trichostrongylus DNA was detected

by PCR in a sample from sheep no. 1442 from group AB, no

worms were detected by TWC in the same sheep. Nonetheless,

adult females of Te. circumcincta and Trichostrongylus (i.e. T. axei and

T. vitrinus) were detected by TWC in sheep no. 1330 from group

ABC, but DNAs from these parasites were not detected in the

faeces from this sheep by PCR on day 10. Trichostrongylus DNA was

Table 1. Results of coprodiagnostic testing.

Day 0 Day 10

Groupsa ABC AB MPC MP Total (%) ABC AB MPC MP Total (%)

Number of animals 20 19 20 20 79 (100) 20 19 20 20 79 (100)

Faecal egg count positive 20 15 19 19 73 (92) 20 17 19 7 63 (80)

Mean 117.5 142.1 182.5 177 – 115.5 41.1 199 5 –

standard deviation 181.6 239.2 228.7 137.6 – 125.7 35.9 317.4 8.3 –

Range 10–770 0–1070 0–760 0–530 – 20–530 0–120 0–1310 0–30 –

PCR positive 20 19 19 20 78 (99) 20 15 19 3 57 (72)

H. contortus 0 0 0 0 0 (0) 0 0 0 0 0 (0)

T. circumcincta 15 17 16 18 66 (84) 17 15 15 3 50 (63)

Trichostrongylus 18 17 18 20 73 (92) 17 3 19 0 39 (49)

C. ovina 10 8 12 15 45 (56) 13 0 15 0 28 (35)

O. venulosum 0 0 0 0 0 (0) 0 0 0 0 0 (0)

Results from the testing of 158 individual faecal samples by conventional faecal egg count and species-specific PCRs using the primer pairs HC-NC2 (Haemonchus
contortus), TEL-NC2 (Teladorsagia circumcincta), TRI-NC2 (Trichostrongylus spp.), CHO-NC2 (Chabertia ovina) and OEV-NC2 (Oesophagostomum venulosum). Shown are the
number of egg count positive samples, mean eggs per gram, standard deviation, and range of strongylid egg counts recorded for the individual groups of sheep. Also
shown are the number of species positive samples as determined by PCR for the different groups of sheep on days 0 and 10 of the experiment.
aGroups of sheep assigned as ABC (albendazole-untreated control), AB (albendazole-treated), MPC (monepantel-untreated control), MP (monepantel treated).
doi:10.1371/journal.pone.0037327.t001

Table 2. Larval culture results.

Reference (length in mm)

Dikmans and Andrews Gordon McMurtry

Groupa Genus (797–866) (720–880) (700–914) xL3c PCR (Ct)

ABC Teladorsagia 20 56 65 54 17/20 (22.97)

Trichostrongylus 78 42 33 40 17/20 (23.06)

Chabertia/Oesophagostomum 2 2 2 6 13/20 (25.30)

AB Teladorsagia 18 91 98 92 15/19 (24.61)

Trichostrongylus 82 9 2 8 3/19 (25.53)

Chabertia/Oesophagostomum 0 0 0 0 0/19 (N/Ab)

MPC Teladorsagia 16 48 54 52 15/20 (23.36)

Trichostrongylus 76 44 38 40 19/20 (21.39)

Chabertia/Oesophagostomum 8 8 8 8 15/20 (22.54)

MP Teladorsagia 0 0 0 0 3/20 (26.18)

Trichostrongylus 0 0 0 0 0/20 (N/A)

Chabertia/Oesophagostomum 0 0 0 0 0/20 (N/A)

Larval culture results, following anthelmintic treatment (day 10), showing the percentage of different species (%), as determined by exsheathment and total body length
measurement according to different authors [18–20]. Also shown are the numbers of species detected by PCR and mean cycle threshold value (Ct).
aGroups of sheep assigned as ABC (albendazole-untreated control), AB (albendazole treated), MPC (monepantel-untreated control), MP (monepantel treated).
bNo data available.
cExsheathed third-stage larvae.
doi:10.1371/journal.pone.0037327.t002
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detected by PCR in the faeces from 12 sheep with 160 to 11,850

female worms per sheep, but not in four sheep (nos. 1443, 1427,

1315 and 1443) in which ,100 adult female worms per sheep

were found. In spite of some differences in results between PCR

and TWC, the diagnostic performance of the PCR was high.

Using TWC as a reference method, PCR achieved an overall

sensitivity ( = the ability to detect a patent infection involving

female worms of any of the species or genera being tested for) of

100%, a specificity of 87.5% and a Kappa value of 0.91 (Table 4).

Kappa calculated for each PCR for each species or genus of

parasite showed substantial to perfect agreement [26] with TWC

results. During this study, the assay sensitivity could not be

calculated for the species of O. venulosum and H. contortus, as these

parasites were not detected in any of the sheep using any of the

diagnostic methods employed.

Discussion

The diagnostic performance of the molecular assay assessed

herein was high (sensitivity 100% and specificity 87.5%) in relation

to TWC. Only for a small number of sheep there was

a disagreement in the results between the two tests. Of the 136

faecal samples that contained strongylid eggs, only ten samples

were test-negative by PCR (with no evidence of inhibition).

Notably, for all PCR test-negative samples, EPG was ,250, and

all but one were collected from sheep following anthelmintic

treatment. Microscopic examination revealed an abnormality in

eggs and their shells from these samples, suggesting that the eggs

were not viable and that DNA degradation led to these ‘false-

negative’ PCR results. However, egg loss during flotation may also

have contributed, suggesting that the direct isolation of DNA from

faecal matter should be explored. Four sheep with ,100 adult

female worms of Trichostrongylus (T. axei and T. vitrinus) were PCR-

test negative for this genus. Three of these four sheep were in

groups AB and MP, suggesting that anthelmintic treatment led to

a reduction in fecundity or affected the ability of the female worms

to produce intact eggs, although this was not apparent upon

morphological examination of these worms following TWC.

Alternatively, the eggs themselves, and their DNA, may have

undergone degradation in the gastrointestinal tract during or

following treatment. Furthermore, the detection of low intensity

infections by faecal flotation can be challenging due to the dilution

and uneven distribution of eggs in the faeces of the host as well as

daily variations in egg excretion [27], limiting the sensitivity of the

faecal flotation approach (i.e., from a single 4 g sample collected at

one time point). These latter statements are also supported by the

technical limitation of FECRT, which only provides information

on the effect of treatment on the reproduction of female worms

rather than providing direct evidence of their effective removal

[7]. It is most likely that the diagnostic sensitivity of individual

assays is influenced by the reproductive potential of different

species, so that eggs from highly fecund species (such as H. contortus,

O. venulosum and C. ovina) can be more readily detected in sheep

with small worm burdens than those for species with low fecundity

(e.g., Te. circumcincta and Trichostrongylus) [28]. A similar restriction

may apply also to the detection of parasite DNA by PCR, such

that prepatent and very low-level infections might only be

detectable by necropsy.

False-positive results were uncommon. In all nine cases, for

which amplicons were produced from faecal samples in which no

strongylid eggs were detected, subsequent sequencing confirmed,

unequivocally, their specific identity, showing the limited sensitiv-

ity of the McMaster flotation method, also consistent with our

previous field study [13]. In addition, in three samples found to be

test-positive by PCR (and verified by direct DNA sequencing), we

detected no evidence of infection based on routine total worm

count (TWC). Given that TWC is based on sampling and

examining sub-aliquots of gut contents, we infer this discrepancy

to relate to limitations in the sensitivity of TWC rather than an

issue with the PCR assay. Indeed, because only one 20-th of the

total gut wash (1 litre) is examined for worms, the theoretical

Figure 1. Histogram for the distribution of larval body-length. Distribution of the total lengths of third-stage larvae (L3) with a sheath
extension of 30–40 mm, and the identification of Teladorsagia circumcincta L3s with respect to their total length (mm), as given by different authors
[18–20].
doi:10.1371/journal.pone.0037327.g001
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minimum number of worms detectable using this approach is 20

(which equates to the observation of 1 worm in the aliquot

examined). Moreover, although it has been shown [29] that the

vast majority of trichostronglyids infecting the small intestine of

sheep are usually present in the first six meters, the effect of sub-

sampling from the gut wash likely compromises the accuracy of the

method. This aspect has not been critically assessed to date and,

thus, warrants detailed investigation. The inaccuracy related to the

probability of detecting worms in a sub-sample would be

particularly pronounced in sheep with low numbers of worms,

potentially leading to significant over- or under-estimation of

infection intensity. Acknowledging these issues, we selected TWC

as the reference method, because it is recognized as the ‘gold-

standard’ for the diagnosis of infections with gastrointestinal

helminths [30].

Consistent with EPG and TWC data, the present PCR results

did not show any evidence of resistance to monepantel in

gastrointestinal strongylids, supporting previous reports of the

efficacy of this new anthelmintic [31,32]. In contrast, the PCR

assay did provide evidence of a reduced susceptibility to

benzimidazoles (i.e., albendazole) in one or more nematode

species in the population of sheep in this study. These results were

expected, based on the history available for this farm (J. Larsen,

unpublished) and also the relatively high prevalence of benzimid-

azole resistance in sheep in Australia [33,34], and were supported

by coproscopic and TWC data. Indeed, following albendazole

treatment, 17 of 19 sheep were shown to harbour strongylids based

on McMaster flotation (day 10) and, despite a notable overall

reduction in EPG, the number of samples with eggs increased

(between days 0 and 10) from 15 to 17 in group AB. PCR-based

testing detected infection/s in 15 of the 19 sheep on day 10, with

Table 3. Total worm count results.

Abomasum Small intestine Large intestine

Sheep no. GroupaEPG
Teladorsagia
females

all
adults L4 Ct

Trichostrongylus
females all adults L4 Ct

Chabertia
females

all
adults L4 Ct

1394 ABC 310 770 1960 10220 22.72 5000 8090 1200 20.72 1 1 0 27.16

1452 ABC 150 800 1200 8150 20.95 2460 3850 0 18.61 4 8 0 22.31

1338 ABC 40 200 520 1160 26.38 700 1140 0 25.34 6 7 0 24.48

1434 ABC 50 920 1620 2840 24.04 80* 100 0 40* 0 0 0 40

1353 ABC 30 300 450 11450 24.76 1460 2170 0 23.42 0 0 0 40

1330 ABC 530 850* 1300 5350 40* 6050* 9050 200 40* 3 3 0 26.82

1385 ABC 110 680 1120 1580 23.47 640 970 0 23.45 3 4 0 23.73

1429 ABC 280 3360 7200 30120 16.03 3420 4540 500 22.67 0 0 0 40

1403 ABC 120 1000 1950 7200 23.41 1506 2286 128 23.74 5 8 0 22.12

1427 AB 110 7340 11280 12500 21.91 60* 120 40 40* 0 0 0 40

1315 AB 50 1350 2200 5050 22.57 50* 100 0 40* 0 0 0 40

1390 AB 120 980 1660 600 22.4 0 20 0 40 0 0 0 40

1417 AB 60 60 80 1100 25.68 0 0 0 40 0 0 0 40

1305 AB 10 400 600 14500 25.1 160 200 440 25.51 0 0 0 40

1306 AB 40 816 1152 624 22.86 0 48 0 40 0 0 0 40

1409 AB 90 2600 4000 2250 24.5 0 0 0 40 0 0 0 40

1368 AB 30 80 160 160 24.6 0 20 0 40 0 0 0 40

1442 AB 30 200 300 5600 19.74 0* 0 0 27.03* 0 0 0 40

1313 MPC 750 1480 2640 820 18.53 10760 19880 1760 19.73 1 3 0 22.1

1345 MPC 1310 11200 17360 12460 21.92 1540 2460 0 23.66 7 11 0 22.18

1395 MPC 420 1800 3000 20850 20.94 11850 17750 1100 19.1 0 0 0 40

1387 MP 0 0 0 0 40 0 20 0 40 0 0 0 40

1415 MP 0 0* 0 0 26.14* 0 0 0 40 0 0 0 40

1443 MP 10 0* 0 0 25.5* 20* 20 0 40* 0 0 0 40

1379 MP 0 0 0 0 40 0 0 0 40 0 0 0 40

1362 MP 30 0 0 0 40 0 0 160 40 0 0 0 40

1326 MP 0 0 0 0 40 0 0 0 40 0 0 0 40

1451 MP 10 0 0 0 40 0 0 0 40 0 0 0 40

1399 MP 0 0 0 0 40 0 0 0 40 0 0 0 40

1445 MP 10 0 0 0 40 0 0 0 40 0 0 0 40

Total worm count results for 30 sheep following anthelmintic treatment. Corresponding faecal egg counts are given in eggs per gram (EPG) and PCR results, as cycle
threshold values (Ct). Discrepancies between total worm count and PCR results indicated by asterisk. Negative PCR results are indicated by the number 40.
aGroups of sheep assigned as ABC (albendazole-untreated control), AB (albendazole-treated), MPC (monepantel-untreated control), MP (monepantel-treated).
doi:10.1371/journal.pone.0037327.t003
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subsequent sequencing indicating the presence of Te. circumcincta in

all and T. colubriformis in three sheep with EPGs of 0–120 following

treatment. Although C. ovina was initially detected in eight sheep in

group AB (on day 0), this nematode was not detected following

albendazole treatment (on day 10), providing no evidence of drug

resistance in this species. Based on these data, a specific diagnosis

of resistance to albendazole was possible and indicated a pre-

dominant link to Te. circumcincta and, to lesser extent, T.

colubriformis.

Using the criteria defined by Gordon [19] and McMurtry [20],

the LC results, following anthelmintic treatment, were similar to

those achieved by PCR. Nonetheless, the morphological identifi-

cation of L3 stages (based on total length and caudal morphology)

is complicated by the similarity between Teladorsagia and Trichos-

trongylus species. Most notably, when using the criteria defined by

Dikmans and Andrews [18], the majority of the L3s from LC for

group AB were identified as Trichostrongylus rather than Te.

circumcincta, thus leading to an entirely different diagnosis and

conclusion regarding resistance. The inference that Trichostrongylus

had the highest level of resistance to albendazole was neither

supported by the PCR-test results nor the TWC data, emphasizing

the problems associated with the use of LC. The limitations in the

differentiation of some parasites following LC are reinforced by

findings that host (e.g., immune response) and/or environmental

factors (e.g., climate and/or the availability of appropriate

nutrients for first- and second-stage larvae) can influence the

length of the developing L3s [20], obviously, leading to further

challenges for a correct diagnosis of resistance in the context of

FECRT combined with LC. Because PCR relies on the use of

species/genus-specific DNA markers, such factors do not adversely

impact on its application and reliability. Furthermore, although

PCR can detect C. ovina and Oesophagostomum and differentiate

them, L3s of these parasites cannot be delineated morphologically

[17]. In addition to these technical considerations, LC has

significant practical limitations compared with a PCR-based

method, particularly in relation to time-efficiency and the cost of

testing.

In conclusion, based on the results of the present and previous

studies [13,23], we have consistently demonstrated that our PCR

approach, employing genetic markers in nuclear rDNA, is specific

for strongylid nematodes [12,25] and achieves the sensitivity

required for efficient diagnosis of naturally acquired strongylid

infections in sheep. In addition, the present investigation provides

strong evidence that this molecular assay can support FECRT for

the detection of anthelmintic resistance in strongylid populations,

thus eliminating the need for LC. A molecular assay that directly

detects drug resistance, and, thus, replaces or at least reduces the

need for FEC-based reduction trials altogether, would be a major,

additional step forward. However, current tests are limited to the

detection of benzimidazole resistance based mainly on three main

mutations (linked to amino acid positions 167, 198 and 200) in the

beta tubulin gene [7,35], but neither levamisole nor macrocyclic

lactone resistance, which appear to be multi-faceted and polygenic

[36]. Therefore, molecular assays for the direct detection of drug

resistance will likely be limited until the genetics and genomics of

resistance are much better understood. In contrast, coupled to

current FECRT methods, our specific PCR assay provides a rapid,

efficient and universally applicable tool for the diagnosis of

resistance and the early detection of residual populations of worms

in sheep following treatment, possibly reflecting an early emer-

gence of resistance.

Taken together, our results show that the present PCR is useful

as a rapid approach for routine intra vitam diagnosis of strongylid

infections in sheep and, combined with conventional FECRT, for

assessing the emergence of anthelmintic resistance, without the

need for additional costly and time-consuming ante mortem (i.e., LC)

or post mortem (TWC) analyses. Further applications of PCR might

include its use for assessing the monospecificity of cultures used for

a range of experimental investigations of strongylids and

mechanisms of drug resistance in particular species or, for

instance, to assess the status of parasitism in flocks of sheep

destined for import/export. Given the broad applicability of such

a molecular-diagnostic assay, our current focus is now on adapting

it to a semi-automated platform for routine application in a service

laboratory setting.
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Table 4. Determined assay performance.

Parasite species (n) Sensitivity [95% CI] (n) Specificity [95% CI] Kappa [95% CI] Female worms

Teladorsagia circumcincta (20/21) 95.2% [76.2–99.9] (7/9) 77.8% [40.0–97.2] 0.75 [0.5–1.0] $60

Trichostrongylus spp. (11/16) 68.8%a [41.3–89.0] (13/14) 92.9% [66.1–99.8] 0.61 [03–0.9] $20

Trichostrongylus spp. (11/12) 91.7% [61.5–99.8] (17/18) 94.4% [72.7–99.9] 0.86 [0.7–1.0] $100

Chabertia ovina (8/8) 100% [63.1–100] (22/22) 100% [84.6–100] 1.00 (1.0–1.0) $1

Oesophagostomum venulosum (0/0) N/Ab N/A (30/30) 100% [88.4–100] N/A N/A N/A

Haemonchus contortus (0/0) N/A N/A (30/30) 100% [88.4–100] N/A N/A N/A

Total (22/22) 100% [84.6–100] (7/8) 87.5 [47.4–99.7] 0.91 [0.7–1.0] N/A

PCR assay performance and direct comparison with total worm count results. Shown are the calculated diagnostic sensitivity and specificity of the PCR, the number of
cases identified as positive or negative in comparison to total worm counts (n), calculated Kappa values and their 95% confidence interval (CI). Also shown are the
minimum number of species females as detected by PCR and the total diagnostic performance (the ability to detect infections involving the presence of any females of
the target species by PCR).
aall PCR false-negative test results related to TWC results of ,100 female worms per sheep.
bNo data available.
doi:10.1371/journal.pone.0037327.t004
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