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ABSTRACT "Basic" and "gross" free energy levels are
defined for the discrete states of a macromolecular biochem-
ical kinetic system such as a free energy transducing enzyme
(e.g., myosin or NaK-ATPase). Basic free energy level differ-
ences are related to the first-order rate constants for transi-
tions between states while gross free energy differences,
along with the corresponding fluxes, determine the rate of
entropy production in the system. In muscle contraction the
analysis is complicated by the possibility of the system doing
external mechanical work. The question of the sign of the
flux or of the gross free energy level change in a given transi-
tion is examined for both single-cycle and multi-cycle mod-
els. More definite statements can be made in single-cycle
cases. Some numerical examples are included. The more
complicated cases are reserved for a subsequent paper.

We shall be concerned here with the thermodynamics and
kinetics of biochemical systems in which a macromolecule
(e.g., myosin, or a simple enzyme) or macromolecular com-
plex (e.g., Na,K-ATPase) can exist in a number of discrete
states with possible transitions between these states. Binding
of ligands, substrates, etc., is included among the transitions.
In the corresponding kinetic "diagram," the states are repre-
sented by points and each inverse pair of possible transitions
between two states is represented by a line connecting the
two states. The diagram may consist of only a single cycle
but often it is more complicated than this. The cases of inter-
est include one or more "chemical" driving forces (e.g., ATP
- ADP + Pi, or a ligand concentration gradient) and the
possibility of free energy transduction, as in active transport
or muscle contraction.

There is a certain amount of confusion in the literature
concerning the relative free energies of the states of such a
diagram, and the connection between these free energies
and the diagram kinetics. This confusion arises in part be-
cause several definitions of free energy levels of states are
possible, and the precise choice is usually not made clear.
Different definitions lead to different properties. Matters
are further complicated in the biochemistry of active muscle
by the dependence of the free energies of some myosin
states on a positional variable x (1-3) that must be intro-
duced in order to relate the myosin biochemistry to the me-
chanical work accomplished by muscle.

In an earlier paper (4), particular attention was paid to
those free energy levels (referred to as "basic" in the next
section) that are directly associated with the first-order rate
constants of the kinetic diagram. The primary purpose of
the present paper is to discuss properties of the "gross" free
energy levels (see below) that govern, for an ensemble of
macromolecular systems, the direction of spontaneous net
reaction along any line of the diagram. These are also the
free energy levels that are involved in the rate of entropy

production in an ensemble of systems. Several numerical ex-
amples will be included for illustrative purposes.

Stochastic aspects of this problem will not be included
here but they have been discussed elsewhere (4, 5).
We shall begin with a brief summary of notation and re-

sults from the previous work (4) in order to make the present
paper self-contained. The discussion will be continued in a
second paper concerned with more complicated cases (6).

Notation, definitions, and review
We consider a large ensemble of N independent and equiva-
lent macromolecular systems, each of which has the same ki-
netic diagram (states, transitions, and rate constants). We let
E represent the particular macromolecule of interest. Also,
let L = ligand, S = substrate, and P = product. Possible
states of a system are then, for example, E, ES, EP, LES,
etc., depending on the special case. Fig. 1 provides, as an ex-
ample, a diagram that we shall consider extensively in the
second paper (6). In this case there are six states in the di-
agram; the enzymatic reaction S - P provides the thermo-
dynamic drive or chemical force; and the ligand L modifies
the enzyme kinetics. For example, E = myosin, S = ATP, P
= ADP + Pi, L = actin.
For simplicity, in our examples, we shall assume that E

has at most one site for any given ligand, substrate, etc. But
this limitation is not at all necessary.

L, S. and P exist as separate species in solution as well as
possibly bound to E. We write for their chemical potentials
in solution,

[I]PL = PLO+ kT In cL, etc,

where CL = molar concentration (or activity, if necessary)
and IL0 = standard chemical potential. The concentrations
CL, etc., are constant over the time intervals we consider. In
active or facilitated transport, one or more ligands may be at
different concentrations on either side of a membrane (4).

EP(3) ES(2)

LEP(6) LES(5)

LE(4)

FIG. 1. Kinetic diagram for E = enzyme, S = substrate, P =
product. L is a ligand that modifies the enzyme kinetics.
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The N macromolecular systems may be immobilized (e.g.,
myosin in muscle, Na,K-ATPase in a membrane, an enzyme
bound to a surface) or they may be free to move in solution.
In either case, the macromolecules are assumed not to inter-
act with each other.

Immobilized Macromolecular Systems. Imagine the en-
semble frozen in composition at an arbitrary time t. Of the
N systems in the ensemble, let Nj be the number in state i
and define the probability or fraction pi = Ne/N. From the
point of view of statistical mechanics, this is an ideal solid so-
lution (see ref. 7, p. 373) with components i = 1, 2, *--. Let Ai
= -kTln Qt be the Helmholtz free energy of a single system
in state i (see also ref. 2, Section IIA). Then the canonical
partition function of the solid solution (ensemble) is

N!HlQiNt
Q= niV [2]

and the chemical potential of an arbitrary component j in
the ensemble is

A = kTdlnQ = Aj+ kT lnpj. [3]

In taking the derivative, we use N = TjNj and hold all N.
other than N1 constant. Note that if pj = 1 (all systems in
state j = standard state), lij = A>. We shall refer to Aj as the
"free energy" of state j, in order to distinguish it from the
chemical potential jij which depends on the population of
state j in the ensemble. Aj may be regarded as either the
free energy of a single isolated system in state j, or the free
energy per system if the whole ensemble is in state j (pj =
1). Incidentally, we shall use throughout the paper the ap-
proximation Gj (Gibbs free energy) = Aj since the pVj term
is negligible.
The single-system free energies Ai are fundamental in

that they are directly connected to the first-order rate con-
stants of the diagram which determine the kinetics of the
ensemble (2, 4). For example, consider first the inverse tran-
sitions between two states i and j such that no ligand is
bound or released in the transitions (e.g., a conformational
change E >± E*, or ES -± EP). That is, these are isomeric
transitions. Let the first-order rate constants for i -0 j and j

i be aij and aji, respectively. A hypothetical equilibrium
between the two states can be used to establish the connec-
tion between the A's and a's (4):

al p e = apiPe (detailed balance) [4]
I =A+kTfln pie = =Ai +A kT In pe [5]

ct./aX= exp [- (Aj - A)/kT] Kip, [6]

where e = equilibrium and Kjj is a dimensionless equilibri-
um constant.
Now suppose, on the other hand, that a ligand L (or S, or

P) is bound in the transition i - j. In this case, if we consid-
er the equilibrium between states i and j in the presence of
L in solution at its actual concentration CL (4), we have

atI C pie = a p e

equilibrium condition,

H1 + PL(C/L) = Ai + kT In pIe
+/IL =A1J= AJ + kT In p1'. [8]

Therefore

a,'=A- (Al- L)]}
=

a ==exp kT 'Ki' [9]

where again Kij is a dimensionless equilibrium constant.
Thus, in binding transitions, AL (or As, or Ap) must be in-
cluded in the free energy difference to establish the correct
relationship to the first-order rate constant ratio aijqaji (ref.
2, pp. 278 and 327). Note that this is IL(CL), not AL'(Eq. 1).

Relative free energy levels of all the states in a diagram,
when based on the free energies Ai and AL, As, or Ap (as ap-
propriate), will be referred to below as "basic" free energy
levels. On the other hand, relative free energy levels of the
states when the free energies Ai are replaced by the chemi-
cal potentials A (Eq. 3), again including AL, As, or lip as re-
quired, will be called "gross" free energy levels. The latter
levels are of course all equal when there is equilibrium
among all states i, but not otherwise. From an operational
point of view, in theoretical work, basic free energy levels
are introduced ab initio as fixed parameters of a model,
while the gross free energy levels emerge as calculated mac-
roscopic properties of the ensemble that depend on the pi
and, therefore, on the initial conditions and on the time t, in
general.

In its stochastic behavior, any individual system of the en-
semble is governed entirely by the a's of the diagram (which
are related to the basic free energy levels). The individual
system has no knowledge of ensemble properties such as the
p's, the gross free energy levels, transient versus steady-state,
etc.-or even whether there is an ensemble (N > 1).

As already mentioned, a positional variable x must be in-
troduced in the problem of muscle contraction. Some of the
Ai and some or all of the aij (depending on the model) are
functions of x (2). The above considerations still apply but,
in effect, we have to consider a different ensemble of myo-
sin molecules (= E) in each interval x, x + dx. This general-
ization is, however, not needed in studies of heavy meromy-
osin (or its subfragment Si) + ATP + actin in solution since
there is no variable x in this case.

Macromolecular Systems in Solution. We have here a
multicomponent mixture of macromolecules, in the various
states i, that may be regarded as solutes in a mixed solvent
(water, salt, ligands, etc.). The solution is necessarily dilute
with respect to macromolecules since they are assumed to be
kinetically independent. The chemical potential of systems
in state i can then be written as

L[O],u; = piu+ kT In ci,

where c, = molar concentration in solution. This is the ana-
logue of Eq. 3. In order to be able to use the notation in Eq.
3 for both cases (immobile and free), let us introduce Ci =

bpi in Eq. 10, where b is the same constant for all states i
and pi is the fraction of macromolecular systems in state i.
Thus Eqs. 3-9 apply to the present situation as well, if we
understand Ai to mean here

[7] A, pi-, + kT In b. [11]

Since only free energy differences, such as Ai - Aj, have

aj pie = at Up I
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physical significance in any case, introduction of the term
kTln b is a mere formality. Use of Ai' as essentially the free
energy of a single macromolecule (in state i) in solution is
equivalent to a procedure previously introduced in the ther-
modynamics of small systems (ref. 8, pp. 50-58).

Direction of spontaneous transition
Most of the remainder of the paper will be based on special
cases, as examples, but in this section we deal with one prop-
erty that can easily be discussed in a completely general
way. Consider an ensemble of N systems (immobilized or in
solution) with an arbitrary kinetic diagram. At an arbitrary
time t (this need not be a steady-state), let pi be the proba-
bility of state i. For any transitiont ij in the diagram, the net
mean flux i -p is

Jij(t) = N[atijp,(t)-ajipj(t)l [12]

Corresponding to Eqs. 6 and 9, we use the notation (note
A initial - final)

a,-,lIaji = e+AA'ujkT = Ki [13]

to express the relation between the a's and the basic free en-
ergy levels of states i and j for any kind of transition (con-
formational change, binding of ligand, release of ligand,
etc.). The prime indicates that AL, 1AS, etc., are included as
needed (compare ref. 2, p. 278). For example, from Eq. 9,

AA'J. = (Ai+/AL)-Aj (i. j = binding of L)

AAA'Ji = AJ-(Ai + gL) ( i = release of L) [14]

We use a similar notation for the gross free energy level
difference between states i and j. For example,

Aij = (ji + ML) - Aj (i -*]j = binding of L). [15]

In view of Eqs. 3 and 11, for an arbitrary transition ij, we
have

y'i= AA'i- + kT In (p1/p1). [16]

Then, on using Eq. 13,

aiJpi/ajipJ = e+Ap'ij/kT. [17]

To summarize: if the transition i - j occurs, the actual
free energy change in the ensemble is -Api,'j and this in-
cludes a concentration term of entropic origin, kTln (pj/pi);
if this transition is isomeric, -AA'q is the corresponding
standard free energy change; but if the transition is not iso-
meric, -AA'iJ is not the standard free energy change (be-
cause AL replaces AL', as in Eq. 9, where L = ligand).
On comparing Eqs. 12 and 17, we see that the net mean

flux Jqj for any transition ij always has the same sign as the
gross free energy level difference Ag'dj (at any time t). For
example, if i has the higher gross free energy level, the net
mean flux will be in the direction i -- j (there are, of course,
stochastic exceptions in single systems or in small groups of
systems). This is just the second law of thermodynamics at
work on individual elementary reactions of a complex reac-
tion scheme (9).
f As will be clear from the context, for brevity "transition" some-
times refers to "inverse pair of transitions."

EP(3) ES (2) A I,,FL i

10- \8^0 yA
kl+PkL

V ~~~-5kT (b) BASIC FREE (c) GROSSFREE
1 (d) ENERGY LEVELS ENERGY LEVELS

FIG. 2. (a) Kinetic diagram for E, S, P without ligand. (b)
Basic free energy levels for numerical example. Vertical and slant-
ing lines indicate possible transitions. (c) Gross free energy levels
for example. (d) First-order rate constants for example.

Thus, net reaction (positive flux) always occurs in a doum-
hill direction with reference to a set of gross free energy lev-
els. This is not true of the invariant basic free energy levels.
This point will be illustrated in the next two sections.
The product jit _Ap', is always 20, with the equality hold-

ing only at equilibrium. This product is the contribution of
the transition ij to the rate of entropy production in the en-
semble. The total rate of entropy production, at any time, t,
is (including a factor T for convenience)

dS
ii

[18]

where the sum is over all lines in the diagram (the direction
chosen along each line is immaterial). This is not to be con-
fused with the phenomenological sum 2;j1Xj (4, 9, 10) in
which the terms need not all be positive.

In muscle, with a different ensemble at each x, since each
Jq(t,x)A,'q(t,x) 20, we not only have a sum > for each x
when adding contributions from all transitions as in Eq. 18,
but we also have an integral >0 for each transition ij on
summing contributions from all intervals x, x + dx. The
total rate of entropy production is obtained from both opera-
tions combined: Mil and fdx (see the second paper, ref. 6).
Single cycle steady state: An example
A diagram consisting of only a single cycle is worth dis-
cussing separately because of its simplicity and frequent im-
portance. We choose Fig. 2a as an example (see ref. 4 for
further details). E can be either immobilized or free in solu-
tion. The extension of the properties found below to larger
single cycles will be rather obvious from this example.
The drive or chemical force in this case (Fig. 2a) is associ-

ated with the reaction S - P for which, in solution at cs and
cp, we assume is(cs) - tpp(cp) > 0 (but the reaction rate is
negligible without E). Note that this is not the standard free
energy change 1iss -,upO (4). Fig. 2b shows a hypothetical
set of basic free energy levels, with nonhorizontal lines indi-
cating possible transitions. From Eq. 13, applied around the
cycle counterclockwise, we have

a12 t23 Al= eb(s -p)/kT - K12K23K,31. [19]

Biochemistry: Hill and Simmons
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That is, AS - tip is the total basic free energy drop, the sum
of the AA'0, for one circuit. Note that, in this example, AA'qj
is not positive in every counterclockwise step. In a particular
model, any choice of a's must satisfy Eq. 19. If we apply Eq.
17 around the cycle, the p's cancel and Eq. 19 is again ob-
tained. Thus, as illustrated in Fig. 2c (which happens to be a
steady-state example), the total gross free energy drop, the
sum of the Aji'i, for one circuit is also its - tip.
The above property of the gross free energies obtains even

in a transient (i.e., at arbitrary t). It should be pointed out,
however, that in transients A1.'0j is not necessarily positive
for every counterclockwise step. For example, suppose that,
at t = 0, ps = 1 and pi = P2 = 0. Then for t > 0 but small,
we would clearly have J23 < 0 and hence A1A'23 < 0.
We turn now to the steady-state situation. As there is only

one cycle in the diagram, we must have J12 = J23 = J3l J
at steady state. Since

d1S
Td = 2,JI. A.j.= J2,Aip',j= J(p.s-p))>0 [20]

and As - Ap > 0, we also have J > 0 (i.e., the net flux is in
the direction of the force). Further, since JAi'ij (ij = 12, 23,
31) > 0 (see above), we deduce that AMi'1 (ij = 12, 23, 31) >
0. Thus, at steady state, the gross free energy level must de-
crease (Fig. 2c) and the net flux must be positive (and equal)
for each step in the direction of the force (S -- P).

For the model in Fig. 2a (or any single-cycle model), AMi'q
and J.} are both positive in every step in the direction of the
force, at steady state. This is true irrespective of the arrange-
ment of the basic free energy levels (of course there is the
restraint 2AA'iq = us - ,lp > 0, around the cycle). Thus it
would seem that, say, even an up-hill sequence of basic free
energy levels (AA'12 and AA'23 negative; A'31 positive)
would provide a workable model. It is true that such a model
would work in principle, but in practice the flux would be
very small if As - Ap is large and the up-hill steps are signif-
icant.

There is no fundamental complication when a single cycle
contains more than one chemical force (e.g., ,ls - Ap above
plus the force IAA-B from the concentration gradient of a
ligand, where A and B refer to the two sides of a mem-
brane). Examples are included in ref. 4. The net force deter-
mines the direction of positive flux.
Numerical Example. Let us use the particular set of rate

constants in Fig. 2d. These have been chosen to be consistent
with Fig. 2b, which, therefore, shows the basic free energy
levels for this case. We have K12 = 100, K2s3 = 0.1, K31 =
100, and us - ,Ap = kTln 1000. Given the rate constants, we
can easily calculate the steady-state probabilities: pi =
0.01855, P2 = 0.97244, and p3 = 0.00901. Most of the en-
zyme accumulates in state 2 (= ES) because of the relatively
small rate constants for transitions out of state 2. From Eq.
12, the mean flux in each step of the cycle is J/N =
0.08823a. The gross free energy levels (Fig. 2c) are obtained
from the basic levels (Fig. 2b) by subtraction of -kTln pi in
each case. The gross level drops in each counterclockwise
step, as required. The rate of entropy production, J(us -
fAp), is 0.6095 NakT.

Multi-cycle diagram at steady state: An example
As we have just seen, it is possible to be explicit about direc-
tional properties of individual transitions in steady-state
ensembles with single-cycle diagrams. Multi-cycle diagrams,
especially those with two or more chemical forces, present a

1 2

3 4 J

(a) (b) (c)

FIG. 3. (a) Diagram in a multi-cycle case with one thermody-
namic force (X1). (b) Cycles belonging to this diagram. Assigned
direction of positive cycle fluxes is indicated by arrows. (c) Same
diagram as (a) but with two forces.

variety of possibilities. For many of these the ability to make
categorical statements on steady-state directional properties
is reduced to some extent. Rather than attempting a general
analysis, we confine ourselves to a few examples, especially
Fig. 1 (studied in ref. 6). These models may represent the ki-
netics of either immobilized or free macromolecules E.

As a prerequisite to further discussion, we need to recall
that the steady-state net mean flux for any transition i -- j
of a diagram can be written as a sum of contributions (cycle
fluxes) from each of the cycles of the diagram that include
the transition ij (4, 10, 11). For example, the diagram in Fig.
3a has three cycles, a, b, and c, shown in Fig. 3b, with posi-
tive cycle fluxes arbitrarily assigned the directions indicated.
Then we have, at steady state,

J42= J1 J 13 J, + Jc

J35= J56 =J64=b + Jc [21]
J31 = Jo - Jb-

In turn, each cycle flux (for any diagram) can be expressed
in terms of all the a's of the diagram in the form (10, 11)

J. = N (Ha+-lHa-)2a/ [221

where I is the sum of directional diagrams for all states,
H1a+ (Ha-) is the product of rate constants around cycle a in
the + (-) direction, and (lla+ - Ha-) la is the sum of
cycle a flux diagrams (this defines la).

If a thermodynamic force (e.g., As - Ap) is included in a
cycle, this will be reflected in the a's of the cycle. For exam-
ple, with the single positive force XI as indicated in Fig. 3a
(we need not be more explicit about the model than this),

HI_+/aH_ = eXl/kT,
flc+/nt =-e=ex/kT.

Hb+/Hb = 1,
[23]

Correspondingly, in Fig. 3a, in view of Eq. 22,

Ja > ° Jb = 0, J, > 0. [24]

Eqs. 23 are of the same form as Eq. 19 for a single-cycle di-
agram, and they follow from both Eqs. 13 and 17 (as does
Eq. 19).

For the model with two positive forces, as shown in Fig.
3c,

la+Jnaa= exikT, Hb4/Hlb_ = eX2/kT,

C+/HC - e(Xi+X2)/kT [25]

and

Ja >O, Jb >0, Jc > 0. [261

Proc. Nat. Acad. Sci. USA 73 (1976)
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Continuing with these steady-state examples, what can we
say about the sign of Jqj and Ag'ij (they necessarily have the
same sign) for the seven separate transitions? In the case of
Fig. 3a, it follows from Eqs. 21 and 24 that all seven of the
J'j (and A1.'0j) in Eq. 21 must be positive. But for Fig. Sc,
from Eqs. 21 and 26, although the first six J'j are surely posi-
tive, the sign of Ja4 (and AAL's4) is uncertain (it depends on
the particular set of a's). Note that if Xi > X2 in Fig. Sc, we
do not necessarily have J34 > 0, because the rate constants
for the pairs of transitions 42, 21, 13 could be relatively
small, leading to Ja < Jb. This is possible because the fluxes
are proportional to the differences El.+ - 11, and 11b+ -

Ilb- while the forces are related to the corresponding ratios
(Eqs. 25).
A further comment on Fig. Sc: since the rate of cycle

completions in a given direction is given by (4, 5)

J= Nnla+2a/2, Ja = NHa-la/2, etc, [Z7]

we can conclude that the force alone (i.e., for any allowed
set of a's) determines the ratio of the opposed cycle fluxes:

Ja+/Ja- eXl OkT, +/Jb- = eX2IkT, etc. [28]

Cycle fluxes are not experimentally observable (except in
the case of single-cycle diagrams); the operational combina-
tions of cycle fluxes for the present example are given in
Eqs. 21.

It is easy to show, for Fig. Sc, using Eqs. 21, that the total
rate of entropy production is

d=S
T = EJJJ.Am' I=j J21X1 + J56X2, [29]

dt
ii

where the ij sum is over the seven transitions in the diagram.
The other sum is the phenomenological one.

Finally, we note that Eq. 29 can also be written as

diST- = JaX +JbX2 + J,(XI +X2-).dt [30]

This is a special case of a general result (easy to prove) for an
arbitrary diagram at steady state:

d=S
T =JaXa+JbXb+ .O ,dt [31]

where Xa is the total (net) thermodynamic force in cycle a
in the direction of Ja, etc. That is, the total rate of entropy
production may be considered to be a sum of contributions
from the separate cycles. Each term in the sum is 20 (see,
for example, Eq. 23).
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