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ABSTRACT

Simple total tag count normalization is inadequate for microRNA sequencing data generated from the next generation
sequencing technology. However, so far systematic evaluation of normalization methods on microRNA sequencing data is
lacking. We comprehensively evaluate seven commonly used normalization methods including global normalization, Lowess
normalization, Trimmed Mean Method (TMM), quantile normalization, scaling normalization, variance stabilization, and
invariant method. We assess these methods on two individual experimental data sets with the empirical statistical metrics of
mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Additionally, we evaluate the methods with results from
quantitative PCR validation. Our results consistently show that Lowess normalization and quantile normalization perform the
best, whereas TMM, a method applied to the RNA-Sequencing normalization, performs the worst. The poor performance of
TMM normalization is further evidenced by abnormal results from the test of differential expression (DE) of microRNA-Seq data.
Comparing with the models used for DE, the choice of normalization method is the primary factor that affects the results of DE.
In summary, Lowess normalization and quantile normalization are recommended for normalizing microRNA-Seq data, whereas
the TMM method should be used with caution.
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INTRODUCTION

The next generation sequencing (NGS) technology has
been widely used recently to study a variety of biological
problems, such as quantifying the mRNA transcripts expres-
sion (RNA-Seq), chromosome DNA–DNA bound protein
interactions (CHIP-Seq), and small microRNA expression.
It has been shown that NGS provides higher reproduc-
ibility, wider range, and better quality of data, compared
with the microarray method. Moreover, the open-platform
of NGS enables discoveries of new mRNA transcripts and
new microRNA strands.

Mammalian microRNAs are small RNAs of z22 nt in
length (Bartel 2004). They are regarded to destabilize target
mRNAs or inhibit translation machinery by binding to
specific regions of mRNA transcripts such as 39 UTRs (Baek
et al. 2008). Though new microRNAs are being discovered
continuously, the total number of known microRNAs is

much smaller than mRNAs. For example, so far there are
<1000 annotated microRNAs in human that are expected to
regulate z30% of genes. It has been shown that microRNAs
act as ‘‘micro-regulators’’ to fine-tune gene expression, and
are involved in various diseases such as cancers and immune-
related diseases (Fabbri et al. 2007; O’Connell et al. 2010).
microRNA-Seq profiling can directly yield information of
the abundance of microRNAs under certain conditions, and
thus infer the regulatory outcome of the microRNAsome
(Creighton et al. 2009; Lu et al. 2009; Ramsingh et al. 2010;
Schulte et al. 2010).

It is critical to normalize the different libraries of
microRNA-Seq data due to the fact that different total
tag counts are generated in different microRNA-Seq libraries.
One could expect microRNA-Seq normalization methods
could be adapted from the mRNA-Seq normalization
methods. However, currently there are only a few software
packages that are designed to normalize mRNA-Seq data
prior to the test of differential expression (DE), such as the
Trimmed Mean Method in edgeR (Robinson et al. 2010)
and DEseq that uses a negative binomial model (Robinson
and Oshlack 2010), and there are only a few statistical
studies evaluating normalization methods in mRNA-Seq
data (Bullard et al. 2010; Srivastava and Chen 2010). Contrary
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to mRNA-Seq, there has been no unbiased evaluation of
normalization methods on microRNA-Seq data. Moreover,
it remains questionable whether the normalization method
used for mRNA-Seq data can be adequately adapted to
process microRNA-Seq data, given the fact that the total
number of mRNA transcripts is magnitudes larger than the
total number of microRNA strands.

To answer these questions, we systematically evaluated seven
commonly used normalization methods for high-through-
put data, namely global normalization, Lowess normalization,
Trimmed Mean Method (TMM), quantile normalization,
scaling normalization, variance stabilization (VSN), and in-
variant method (INV). These methods make different assump-
tions about the true biological difference and the random noise
in order to be able to estimate the systematic variation. They
can be classified into two categories, according to the applica-
tion of linear scaling or not. (1) The first category includes
scaling, global, Lowess, and TMM. Scaling normalization
assumes the ranges of data are the same and that the noise
and the stochastic variations of microRNAs are proportional to
the signal intensity (Smyth et al. 2003). Global normalization is
another linear scaling approach that scales all the data of the
experimental condition against the control condition by a
factor of the difference in the means of two data (Smyth et al.
2003). Lowess normalization does not use a global scaling
factor; instead, it calculates local scaling factors within a certain
window size (Smyth et al. 2003). TMM, a more recent normal-
ization method applied to mRNA-Seq data, also assumes the
majority of the mRNAs in NGS output are similar, except the
data points that lie within the extreme M-value and A-value
ranges. It derives a simple scaling factor after trimming the
data points located in extreme M-value and A-value ranges
(Robinson et al. 2010). (2) The second category includes
quantile, VSN, and INV. Quantile normalization is nonscaling
and assumes that the overall distribution of signal intensity
does not change (Bolstad et al. 2003). VSN assumes that most
microRNAs do not change and transform the data such that
the transformed variance is constant among different expres-
sion levels. Therefore, it allows better precision in low ex-
pression regions, which generally suffer from greater variance

(Huber et al. 2002). INV assumes that a subpopulation of
expressed microRNAs does not change, and it learns a set of
‘‘invariants’’ through algorithms, instead of assigning ‘‘house-
keeping genes’’ subjectively (Perkins et al. 2007; Pradervand
et al. 2009).

We carried out the pairwise comparisons on two publicly
available microRNA-Seq profiling data sets. One is the com-
parison between activated versus inactivated natural killer cells
(abbreviated as F-data) (Fehniger et al. 2010), and the other is
the comparison between pro-B cells and pre-B cells (abbreviated
as K-data) (Kuchen et al. 2010). These data sets are chosen
because of the availability of quantitative PCR results for the
assessment of sensitivity and specificity. We used a combi-
nation of criteria to evaluate the performance of each
normalization method, including metrics such as mean
square error (MSE) and Kolmogorov-Smirnov (K-S) statis-
tic, validation from quantitative PCR data, and the abnor-
mality diagnosis based on the results of DE test.

RESULTS

Necessity of normalization beyond simple tag
count normalization

MA-plot is a plot of log-intensity ratios (M-values) versus
log-intensity averages (A-values). It is commonly used to
illustrate the dependency on intensities in the high-through-
put data. Currently, most studies use a simple scaling factor,
which is equal to the ratio of summed tag counts between
two conditions, to normalize the experimental lane to the
control lane. Using MA-plots, we evaluated such normaliza-
tion on the two public data sets (see Materials and Methods),
denoted as F-data (Fehniger et al. 2010) and K-data (Kuchen
et al. 2010). Figure 1 shows the distribution of M-values
between two comparison samples after the standard normal-
ization procedure of accounting for the total tag counts
among known, detectable microRNAs. The centers of the
distributions of M-values are significantly deviated from zero,
with a median of 0.57 for F-data, and �0.47 for K-data,
indicating that additional normalization procedure is needed.

FIGURE 1. MA-plots after simple tag count normalization. MA-plots show the distribution of microRNAs in paired samples of comparison after
the simple total tag count normalization among the known, detectable microRNAs. The horizontal lines denote the mean of the M-values, which
are significantly deviated from zero in both data sets, with a median of 0.57 for F-data (left) and �0.47 for K-data (right).
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In the following sections, we systematically evaluate seven
normalization methods, namely global normalization, Lowess
normalization, TMM, quantile normalization, scaling normal-
ization, VSN, and INV. These methods were previously applied
to high-throughput data, such as microarray and mRNA-Seq
data.

Effect of normalization on data distribution

We first examined the effects of different normalization on
the distribution of data using the MA-plots that are com-
monly done in microarray analysis, exemplified by F-data. As
shown in Figure 2A, the greatest change among MA data
occurs in global normalization, Lowess normalization, scaling,
quantile, and VSN. Global normalization shifts the center of
M-values of data to 0, and thus the observed changes on all
levels of A-values are expected. Similarly, the scaling method
enforces equal median absolute deviations in both M- and
A-values. Lowess, quantile, and VSN present bigger changes
in normalized log2 tag counts in the lower A-value range (Fig.
2A,B). Lowess takes account of local weighting to adjust the
data points, and quantile normalization assumes the quantile
distribution of data in two conditions is the same. They both
redistribute normalized M-values around M-values prior to
normalization, especially at the lower level of A-values. On
the other hand, VSN aims to have uniform variance across
different expression levels, and shifts M-values at lower levels
of A-values toward a higher A-value region (Fig. 2B). Although
less obvious, a similar pattern was observed in the K-data
(Supplemental Fig. 1), except that many normalization meth-
ods pull the M-values toward more positive directions due to
the fact that the control condition has larger mean M-value
(Fig. 1B).

Evaluation of normalization based
on empirical statistics

MSE is a comparison criterion that is widely used to
measure statistical models, such as the alternative normal-
ization methods in this study and others (Xiong et al.
2008). MSE can be decomposed into the summation of
variance and the square of bias. Small MSE indicates better
normalization overall, within which variance is a metric for
precision and bias is a measurement of accuracy. In this
report, we use MSE to calculate the difference between
M-values and the center of M-values. We present the results
using this metric to compare all normalization methods on
both F-data and K-data (Fig. 3). As mentioned before, the
average of M-values in the data without normalization is
deviated from 0, resulting in bias in MSE. Expectedly,
global normalization eliminates the bias of M, resulting in
smaller MSE. Using the MSE of global normalization as the
reference point, Lowess, quantile, and VSN normalizations
consistently produce smaller MSE. These smaller MSEs can

be decomposed into smaller variances and smaller biases
comparing with those of unnormalized data. On the other
hand, TMM, a method that trims data strongly affected by
treatment conditions, and INV are worse than global
normalization as evidenced by even greater MSEs than no
normalization. TMM also produces the largest biases
among all, most likely because it throws away valuable
data information through trimming M-values by 30%
and A-values by 5% by default (Robinson et al. 2010).
Although this approach could be beneficial while dealing
with thousands of mRNAs in the mRNA-Seq normaliza-
tion, it can be harmful among the small body of hundreds
of microRNAs.

The K-S test is a goodness-of-fit test to measure similar-
ities between two distributions by counting the largest devi-
ation between the two accumulative distributions. Based on
the rationale that an effective normalization method would
generate two similar distributions and thus a small K-S
statistic, we also measured the K-S statistics that were calcu-
lated from the M-values before and after different normali-
zations on both data sets and show the results in Figure 3.
Similar results to the MSEs are observed. Global normaliza-
tion does decrease the K-S statistic compared with no normal-
ization. Lowess and quantile normalization produce smaller
or equal K-S statistics relative to the global normalization.
Both VSN and scaling methods give similar K-S values to the
global normalization. On the other hand, TMM and INVs
consistently generate larger K-S statistics relative to the global
normalization. Similar to the largest MSE from TMM, K-S
statistics from TMM is also the largest.

Evaluation of normalization with quantitative
PCR results

Quantitative PCR (QPCR) is an effective alternative
method to assess the expression profile of microRNAs.
Over 100 QPCR experiments were conducted in parallel
with the microRNA-Seq results from F-data, making them
an ideal set to evaluate gains in sensitivity and specificity
after normalization. The ‘‘true positives’’ from QPCR
results were assigned to microRNAs with at least twofold
changes in the activated versus inactivated states. We found
there is more noise in the miRs that are of low tag counts in
the microRNA-Seq data, when comparing microRNA-Seq
DE data (twofold cutoff) with the assumed ‘‘truth’’ of
QPCR DE data (twofold cutoff). Both false positive and
false negative microRNAs have lower tag counts (data not
shown). To compare the sensitivity and specificity of the
different methods, we obtained standard receiver operating
characteristic (ROC) plots where the area under the curves
can be used for evaluations (Fig. 4A). Some normalization
methods improved the sensitivity and specificity compared
with no normalization, whereas others did not. Consistent
with the results of MSE and K-S statistics, quantile and
Lowess normalization perform the best, followed by VSN,
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global, and scaling normalization, all of which are better
than no normalization. INV appears to have a similar ROC
curve to that of no normalization. Clearly, TMM has the

worst under-curve coverage even when compared with no
normalization. This result is consistent with the conclu-
sions based on MSE and K-S statistics.

FIGURE 2. Effect of normalization on F-data distribution. (A, top) MA-plots before and after applying different normalization schemes to F-data
described in the text (Fehniger et al. 2010). Except the raw data plot, in all the other MA-plots, black circles are data before normalization, and red
circles are after normalization. (B, bottom) Box plots list the transformed log2 counts in the treatment condition after normalization (except raw
data) separated by quartiles: Q1, Q2, Q3, and Q4. Q1 is the lowest quartile and Q4 is the highest quartile. The color codes for box plots from left
to right are as follows: black (raw data), blue (global normalization), purple (Lowess normalization), brown (TMM normalization), orange
(scaling normalization), gray (quantile normalization), green (VSN normalization), and red (INV normalization).
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The QPCR results are available for 12 microRNAs in
the K-data. Though the ROC plot is not possible, correla-
tion study of microRNA-Seq data versus QPCR of the 12
microRNAs is achievable, as shown in Figure 4B. As ex-
pected, global normalization performs slightly better than
no normalization. It has better correlation coefficient (CC)
and better R-square (R^2) value from a linear regression
between log2 transformed microRNA-Seq data and log2
transformed QPCR data. Lowess normalization has the best
correlation among all, with a CC = 0.677 and R^2 = 0.459
from the linear regression, closely followed by quantile
normalization which has a CC of 0.652 and R^2 of 0.426.
VSN produces slightly better CC and R^2, compared with
global normalization. TMM and INVs do not show much
difference in correlation from no normalization, whereas
scaling had the worst correlations among all methods.
Overall, the correlation results of K-data are also consistent
with the previous conclusions based on MSE and K-S
statistics, in the sense that Lowess and quantile normaliza-
tion have the highest correspondence to the QPCR results.

Test of differential expression

It was shown in mRNA-Seq studies that normalization is
a primary factor affecting the test of DE (Taslim et al. 2009;
Anders and Huber 2010; Bullard et al. 2010; Robinson and
Oshlack 2010). We therefore also used the results in DE to

reflect the performance of the normalization methods.
Based on previous studies (Taslim et al. 2009; Bullard
et al. 2010; Robinson and Oshlack 2010), we used three
different tests of DE, namely x2 test, Poisson distribution,
and binomial distribution. We define significantly changed
microRNAs as those that have P-values <0.05 after Bonferroni
corrections, and we present the DE test results in Figure 5.
Comparing with all other methods, TMM has an abnormally
large amount of up-regulated microRNAs versus an ab-
normally small amount of down-regulated microRNAs in
F-data, and the least amount of up-regulated microRNAs
versus the most amount of down-regulated microRNAs
in K-data, reflecting the distortion of tags in sample pairs
with the scaling method (Fig. 5A). Global normalization
and scaling normalization have similar total numbers of
differentially expressed genes, as expected. Both Poisson
distribution and binomial distribution have assumptions
that there is an equal probability of individual microRNAs
within normalized, paired samples, therefore the DE
counts from Poisson test and binomial test are similar
to each other, compared with those from the x2 test (Fig.
5A). Perhaps most importantly, heat maps reveal that
different DE results under the same normalization method
tend to cluster closer, suggesting that variations within
the same normalization method but different DE tests
are smaller than variations within the same DE test but
different normalization methods (Fig. 5B). This result

FIGURE 3. Evaluation of normalization methods with empirical statistics. (Top) Comparison of mean squared errors (or MSE, black bar), as well
as the two decomposed forms of MSE, variance (empty bar) and bias (gray bar), in various normalization methods. (Bottom) Comparison of K-S
statistics calculated from the M-values before and after different normalization methods. The left plot is based on F-data and the right plot is based
on K-data.
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confirms that the normalization method, rather than the
model of DE, is a primary factor affecting the results of DE.

DISCUSSION

Analyzing microRNA profiles with NGS is becoming
a new trend of microRNA-related discoveries in many

different organisms. The high volume and digitized in-
formation make microRNA-Seq highly competitive to the
probe-based microRNA-array method. It is generally be-
lieved that statistical normalization is beneficial compared
with no normalization. So far, most normalizations for RNAs
generated by NGS use simple total tag count normalization
to remove differences in sequencing depths between li-

FIGURE 4. Evaluation of normalization methods with QPCR results. (A) ROC plot of sensitivity and specificity of the various normalization
methods, based on F-data. The color codes of ROC curves for the normalization methods are the same as those in Figure 2. A ‘‘true difference’’ of
value 1 is assigned to the microRNAs whose QPCR expression ratios are at least twofold different between activated and inactivated state, but
0 otherwise. A ‘‘predicted difference’’ is the absolute value of the normalized M-value of microRNA-Seq tag counts. Note: the ROC curves of the
scaling and global normalization methods are identical and the global normalization (blue) is superimposed on the scaling method (orange). (B)
Linear regression of microRNA-Seq log2 fold change results versus QPCR log2 fold change results based on K-data, over various normalization
methods. The correlation coefficient (CC) and R-square (R^2) are two metrics to measure the correlation between the two types of data. The lines
are the best linear regression fits to the data. For comparison, all x- and y-axes are uniformized to the same scales.
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FIGURE 5. Test of differential expression based on different normalizations. (A) Bar graphs show the results of DE based on x2/Fisher’s test (chi-
square), Poisson model (poisson), and binomial model (binomial) for different normalization schemes. The color codes for the tests of DE are as
follows: black bar (x2), gray bar (Poisson), and empty bar (binominal). The normalization methods upon which the DE tests are performed are
listed above the bars. ‘‘Up-regulated’’ microRNAs are plotted above y = 0 and ‘‘down-regulated’’ microRNAs below y = 0. The top plot is from
F-data, and the bottom plot from K-data. (B) Heat maps show the hierarchical clustering results of all significant microRNAs that are defined in A.
The values are transformed from P-values of specific microRNAs. Blue color represents down-regulation whereas brown color represents up-
regulation. pois, Poisson model; bi, binomial model; and chi, x2/Fisher’s test.



braries. There is an urgent need to propose more sophisti-
cated normalization methods. However, currently most
microRNA-Seq experiments do not use biological repli-
cates, thus impeding the estimation of true biological vari-
ations. This problem will likely disappear in a year or two
due to the competition of lowering the cost of deep se-
quencing. Nevertheless, the library normalization issue still
needs to be addressed before any test of DE. It seems rea-
sonable to assume that the majority body of the microRNAs
are expressed similarly, on the closely related biological sam-
ples, such as the activated versus inactivated natural killer
cells and pro-B cells versus pre-B cells that are exemplified
in this study. Normalization could remove the technical
artifacts arising from unintended noise; however, it main-
tains the true differences between the samples.

These above normalization methods and their assumptions
were evaluated by multiple independent data sets on several
levels. Although each level of evaluation was based on some
specific assumptions, the consensus of multiple levels of
evaluations helps to draw unbiased conclusions. First, we used
the generic, empirical statistics MSE and K-S statistics to
measure the fitness of normalization methods. The MSE
metric is based on the rationale that better normalization
methods should create small variations and trivial bias within
the data. And K-S statistics is based on the assumption that
good normalization methods could maximize the distribution
similarities between two data sets. Due to these reasons, the
MSE and K-S statistics may bias toward the normalization
methods whose assumptions favor to minimize them (such as
quantile normalization), as observed and discussed by others
(Xiong et al. 2008). These empirical metrics need to be used
together with other evaluation criteria to draw unbiased
conclusions. We did so using two other approaches: QPCR
validation and results from test of DE. QPCR is an orthogonal,
quantitative method to RNA-Seq. We assumed that a better
normalization method for the microRNA-Seq data should
yield better correlations between the QPCR and microRNA-
Seq, and evaluated the methods with ROC plots and linear
regression. We found that Lowess and quantile normalizations
are consistently superior to other methods, whereas TMM
normalization performs the poorest. Lastly, we also compared
results of DE, as ways to reveal the consequences of normal-
ization and diagnose abnormalities in the normalized data.
These evaluations gave consistent results over all. Lowess and
quantile normalizations are the best among tested methods,
whereas TMM behaved abnormally and extremely. Similar to
our results, Bullard and colleagues also found that, in mRNA-
Seq experiments, the quantile-based method yields better
concordance with qRT-PCR methods than the linear total
scaling method. Our study supports the speculation on the
advantage of quantile normalization over scaling in small
RNA-Seq (Bullard et al. 2010), while discouraging the usage of
TMM application to microRNA-Seq as recently proposed
(McCormick et al. 2011). More broadly speaking, microRNA-
Seq data are a portion of the bigger data set that is generated

from the small RNA (<30 nt in length) sequencing. Small
RNA libraries also include other RNAs, such as siRNA and
piRNA. We speculate that Lowess and quantile normaliza-
tion are also suitable for other small RNA deep sequencing
data, conditional on that the total species in the small RNA
library are within thousands, instead of tens of thousands
(the range that TMM method is good for). It will be of
interest to test this once in the future.

Due to the high-cost of NGS, most experiments are
done without replicates currently, thus we limit this study to
between-library normalization under no replicate condition.
We intend to evaluate normalizations under multiple bi-
ological and technical replicates in the future. Additionally,
mRNA-Seq is known to have gene-length bias toward genes of
larger lengths, and the within-library normalization to nor-
malize individual genes within the same libarary was pro-
posed (Oshlack and Wakefield 2009). However, we found this
length-variation effect was trivial in microRNA-Seq due to
the small variation of mature microRNA lengths (data not
shown). More sophisticated models such as mixed-effect
models and multiple-step normalization will also be valuable
to explore when the appropriate experimental designs are
made prior to the microRNA-Seq and when the cost yield
ratio of NGS is sufficiently economical.

MATERIALS AND METHODS

microRNA-Seq data

Raw tag count and relevant data are obtained from their online
sources (Fehniger et al. 2010; Kuchen et al. 2010). The inactivated
versus activated natural killer cell data, including the microRNA-
Seq and microarray data, are downloaded from: http://genome.cshlp.
org/content/20/11/1590/suppl/DC1. The pro-B cells versus pre-B
cells data are downloaded from the record GSE21630 in the Gene
Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE21630. Additional QPCR data were cour-
tesy from authors.

Normalization methods used in the study

Existing normalization methods were implemented in R through
installing the appropriate R and Bioconductor libraries. Limma
package was used for MAD-scaling, quantile, and VSN normaliza-
tion (Smyth 2005). LPE package was used for Lowess normalization
(Jain et al. 2003). An implementation of invariant normalization
was modified from the original R script (Pradervand et al. 2009) at
http://www.unil.ch/dafl/page58744.html, which selects invariants
and normalizes arrays with robust regression. The edgeR package
was used for TMM normalization (Robinson and Oshlack 2010;
Robinson et al. 2010). MSE was defined as the averaged sum
square of M-values on all nonzero data points, and variance is the
averaged, squared deviation of M-values from the mean M-values,
on all nonzero data points.

ROCR package in R was used to generate ROC plots. The ‘‘true
differences’’ based on QPCR results are assigned to the microRNAs
whose QPCR expression ratios are at least twofold different be-
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tween activated and inactivated state. And the ‘‘predicted difference’’
is actually the absolute value of the normalized M-value (or, an
absolute value of the Z-score calculated from the M-value) of
microRNA-Seq tag counts.

Test of differential expression

Test of DE was modeled by x2/Fisher’s exact test, binomial test,
and Poisson tests, similar to others (Taslim et al. 2009; Bullard
et al. 2010; Robinson and Oshlack 2010). Briefly, in the x2/Fisher’s
exact test, each microRNA is associated with a 2 3 2 contingency
table, with the tag counts of specific microRNAs in control versus
treatment condition, as well as with the summed tag counts of all
other microRNAs in the population. If all tag counts are above
five, x2 test was applied. Otherwise, Fisher’s exact test was applied
for accuracy. A microRNA is called ‘‘up-regulated’’ (or ‘‘down-
regulated’’) when the observed tag counts are greater (or less) than
the expected tag counts, with a Bonferroni-corrected P-value
<0.05. The binomial test was carried out by assuming each
microRNA is independent from each other, and follows the
binomial distribution bin (p = 0.5, n = [n_con + n_treat]), where
p is the expected probability of tags appearing in either the control
sample or the treatment sample, and n is the summation of tag
counts for that microRNA in the control sample (n_con) and
treatment sample (n_treat). The same P-value criteria were applied
as the x2/Fisher’s exact test. Poisson test was done similarly to the
binomial test.

To visualize the overlapping microRNAs that were called
‘‘differentially expressed’’ in all the above three DE tests, over
the seven different normalization methods, a perl script was
written to take the union microRNAs in all conditions. Hierar-
chical clustering and the heat map visualization were then done by
Cluster (http://rana.lbl.gov/EisenSoftware.htm; Eisen et al. 1998),
based on the transformed P-values. For simplicity, a significant
Bonferroni-corrected P-value is assigned a value of �3/+3 (down/
up-regulated); a nonsignificant P-value is �1.5/+1.5 (down/up-
regulated); and a Bonferroni-corrected P-value of 1 is assigned
�0.5/+0.5 in the color coding.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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