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Abstract
One of the challenges with functional data is incorporating geometric structure, or local
correlation, into the analysis. This structure is inherent in the output from an increasing number of
biomedical technologies, and a functional linear model is often used to estimate the relationship
between the predictor functions and scalar responses. Common approaches to the problem of
estimating a coefficient function typically involve two stages: regularization and estimation.
Regularization is usually done via dimension reduction, projecting onto a predefined span of basis
functions or a reduced set of eigenvectors (principal components). In contrast, we present a unified
approach that directly incorporates geometric structure into the estimation process by exploiting
the joint eigenproperties of the predictors and a linear penalty operator. In this sense, the
components in the regression are ‘partially empirical’ and the framework is provided by the
generalized singular value decomposition (GSVD). The form of the penalized estimation is not
new, but the GSVD clarifies the process and informs the choice of penalty by making explicit the
joint influence of the penalty and predictors on the bias, variance and performance of the
estimated coefficient function. Laboratory spectroscopy data and simulations are used to illustrate
the concepts.
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1. Introduction
The coefficient function, β, in a functional linear model (fLM) represents the linear
relationship between responses, y, and predictors, x, either of which may appear as a
function. We consider the special case of scalar-on-function regression, formally written as
y = ∫I x(t)β(t) dt + ε, where x is a random function, square integrable on a closed interval I
⊂ , and ε a vector of random i.i.d. mean-zero errors. In many instances, one has an
approximate idea about the informative structure of the predictors, such as the extent to
which they are smooth, oscillatory, peaked, etc. Here we focus on analytical framework for
incorporating such information into the estimation of β.
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The analysis of data in this context involves a set of n responses  corresponding to a set
of predictor curves , each arising as a discretized sampling of an idealized function;
i.e., xi ≡ (xi(t1), …, xi(tp)), for some, t1 < · · · < tp, of I. In particular, the concept of
geometric or spatial structure implies an order relation among the index parameter values.
We assume the predictor functions have been sampled equally and densely enough to
capture geometric structure of the type typically attributed to functions in (subspaces of)
L2(I). For this, it will be assumed that p > n although this condition is not necessary for our
discussion.

Several methods for estimating β are based on the eigenfunctions associated with the auto-
covariance operator defined by the predictors [16, 32]. These eigenfunctions provide an
empirical basis for representing the estimate and are the basis for the usual ordinary least-
squares and principal-component estimates in multivariate analysis. The book by Ramsay
and Silverman [38] summarize a variety of estimation methods that involve some
combination of the empirical eigenfunctions and smoothing, using B-splines or other
technique, but none of these methods provide an analytically tractable way to incorporate
presumed structure directly into the estimation process. The approach presented here
achieves this by way of a penalty operator, , defined on the space of predictor functions.

The joint influence of the penalty and predictors on the estimated coefficient function is
made explicit by way of the generalized singular value decomposition (GSVD) for a matrix
pair. Just as the ordinary SVD provides the ingredients for an ordinary least squares estimate
(in terms of the empirical basis), the GSVD provides a natural way to express a penalized
least-squares estimate in terms of a basis derived from both the penalty and the predictors.
We describe this in terms of the n × p matrix of sampled predictors, X, and an m × p
discretized penalty operator, L. The general formulation is familiar as we consider estimates
of β that arise from a squared-error loss with quadratic penalty:

(1)

What distinguishes our presentation from others using this formulation is an emphasis on the
joint spectral properties of the pair (X, L), as arise from the GSVD. We investigate the
analytical role played by L in imposing structure on the estimate and focus on how the
structure of L’s least-dominant singular vectors should be commensurate with the
informative structure of β.

In a Bayesian view, one may think of L as implementing a prior that favors a coefficient
function lying near a particular subspace; this subspace is determined jointly by X and L.
We note, however, that informative priors must come from somewhere and while they may
come from expectations regarding smoothness, other information often exists—including
pilot data, scientific knowledge or laboratory and instrumental properties. Our presentation
aims to elucidate the role of L in providing a flexible means of implementing informative
priors, regardless of their origin.

The general concept of incorporating “structural information” into regularized estimation for
functional and image data is well established [2, 12, 36]. Methods for penalized regression
have adopted this by constraining high-dimensional problems in various “structured” ways
(sometimes with use of an L1 norm): locally-constant structure [49, 46], spatial smoothness
[20], correlation-based constraints [52], and network-dependence structure described via a
graph [26]. These general penalties have been motivated by a variety of heuristics: Huang et
al. [24] refer to the second-difference penalty as an “intuitive choice”; Hastie et al. [20] refer
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to a “structured penalty matrix [which] imposes smoothness with regard to an underlying
space, time or frequency domain”; Tibshirani and Taylor [50] note that the rows of L should
“reflect some believed structure or geometry in the signal”; and the penalties of Slawski et
al. [46] aim to capture “a priori association structure of the features in more generality than
the fused lasso.”

The most common penalty is a (discretized) derivative operator, motivated by the heuristic
of penalizing roughness (see [21, 38]). Our perspective on this is more analytical: since the
eigenfunctions of the second-derivative operator  =  (with zero boundary conditions on
[0, 1]) are of the form ϕ(t) = sin(kπt), with eigenvalues k2π2 (k = 1, 2, …),  implements
the assumption that the coefficient function is well represented by low-frequency
trigonometric functions. This is in contrast to ridge regression (L = I) which imposes no
geometric structure. Although not typically viewed this way, the choice of  = , or any
differential operator, implies a favored basis for expansion of the estimate.

A purely empirical basis comprised of a few dominant right singular vectors of X is a
common and theoretically tractable choice. This is the essence of principal component
regression (PCR) and these vectors also form the basis for a ridge estimate. Although this
empirical basis does not technically impose local spatial structure (no order relation among
the index parameter values is used), it may be justified by arguing that a few principal
component vectors capture the “greatest part” of a set of predictors [17]. Properties of this
approach for signal regression is the focus of [7] and [16]. The functional data analysis
framework of Ramsay and Silverman [38] provides two formulations of PCR. One in which
the predictor curves are themselves smoothed prior to construction of principal components
(chap. 8) and another that incorporates a roughness penalty into the construction of principal
components (chap. 9), as originally proposed in [45]. In a related presentation on signal
regression, Marx and Eilers [30] proposed a penalized B-spline approach in which predictors
are transformed using a basis external to the problem (B-splines) and the estimated
coefficient function is derived using the transform coefficients. Combining ideas from [30]
and [21], the “smooth principal components” method of [8] projects predictors onto the
dominant eigenfunctions to obtain an estimate then uses B-splines in a procedure that
smooths the estimate. Reiss and Ogden [40] provide a thorough study on several of these
methods and propose modifications that include two versions of PCR using B-splines and
second-derivative penalties: FPCRC applies the penalty to the construction of the principal
components (cf. [45]), while FPCRR incorporates the penalty into the regression (cf. [38]).

In the context of nonparametric regression (X = I) the formulation (1) plays a dominant role
for smoothing [54]. Related to this, Heckman and Ramsay [22] proposed a differential
equations model-based estimate of a function μ whose properties are determined by a linear
differential operator chosen from a parameterized family of differential equations, Lμ = 0.
In this context, however, the GSVD is irrelevant since X does not appear and the role of L is
relatively transparent.

Algebraic details on the GSVD as it relates to penalized least-squares are given in section 3
with analytic expressions for various properties of the estimation process are described in
section 3.2. Intuitively, smaller bias is obtained by an informed choice of L (the goal being
small Lβ). The affect of such a choice on the variance is described analytically. Section 4
describes several classes of structured penalties including two previously-proposed special
cases that were justified by numerical simulations. The targeted penalties of subsection 4.2
are studied in more detail in section 5 including an analysis of the mean squared error for a
family of penalized estimates which encompasses the ridge, principal-component and
James-Stein estimates.
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The assumptions on L here are increasingly restrictive to the point where the estimates are
only minor extensions of these well-studied estimates. The goal, however, is to analytically
describe the substantial gains achievable by even mild extensions of these established
methods.

In applications the selection of the tuning parameter, α in (1), is important and so Section 6
describes our application of REML-based estimation for this. Numerical illustrations are
provided in section 7: the simulation in subsection 7.1 is motivated by Reiss and Ogden’s
study of fLMs [40]; 7.2 presents a simulation using experimentally-derived Raman
spectroscopy curves in which the “true” β has naturally-occurring (laboratory) structure; and
section 7.3 presents an application based on experimentally collected spectroscopy curves
representing varied biochemical (nanoparticle) concentrations. An appendix looks at the
simulation studied by Hall and Horowitz [16]. We begin in section 2 with a brief setup for
notation and an introductory example. Note that for any L ≠ I, the estimated β is not given in
terms of the ordinary empirical singular vectors (of X), but rather in terms of a “partially
empirical” basis arising from a simultaneous diagonalization of X′X and L′L via the
GSVD. Hence, for brevity, we refer to β̃α,L as a PEER (partially empirical eigenvector for
regression) estimate whenever L ≠ I.

2. Background and simple example
Let β represent a linear functional on L2(I) defining a linear relationship y = ∫I x(t)β(t) dt +
ε (observed with error, ε) between a response, y, and random predictor function, x ∈ L2(I).
We assume a set of n scalar responses  corresponding to the set of n predictors, ,
each discretely sampled at common locations in I. Denote by X the n × p matrix whose ith
row is a p-dimensional vector, xi, of discretely sampled functions, and columns that are
centered to have mean 0. The notation 〈·, ·〉 will be used to denote the inner product on
either L2(I) or , depending on the context.

The empirical covariance operator is , but for functional predictors, typically p > n
or else K is ill-conditioned or rank deficient. In this case, there are either infinitely many
least-squares solutions, β̂ ≡ arg minβ||y − Xβ||2, or else any such solution is highly unstable
and of little use. The least-squares solution having minimum norm is unique, however, and it
can be obtained directly by the singular value decomposition (SVD): X = UDV′ where the
left and right singular vectors, uk and vk, are the columns of U and V, respectively, and D
=[D1 0], where , typically ordered as σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (r = rank(X)). In

terms of the SVD of X, the minimum-norm solution is , where
X† denotes the Moore-Penrose inverse of X: X† = VD†U′, where D† = diag{1/σk if σk ≠ 0;
0 if σk = 0}. The orthogonal vectors that form the columns of V are the eigenvectors of X′X
and sometimes referred to as a Karhunen-Lòeve (K-L) basis for the row space of X.

The solution β̂+ is Marquardt’s generalized inverse estimator whose properties are discussed
in [29]. For functional data, β̂+ is an unstable, meaningless solution. One obvious fix is to

truncate the sum to d < r terms so that  is bounded away from zero. This leads to the
truncated singular value or principal component regression (PCR) estimate:

 where here, and subsequently, we use the notation Ad ≡ col[a1, …,
ad] to denote the first d columns of a matrix A.

When L = I, the minimizer in (1) is the ridge penalty due to A. E. Hoerl [23]
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(2)

or, , where . The factor Fα acts to counterweight, rather than

truncate, the terms  as they get large. This is one of many possible filter factors which
address problems of ill-determined rank (for more, see [12, 19, 33]). Weighted (or
generalized) ridge regression replaces L = I with a diagonal matrix whose entries
downweight those terms corresponding to the most variation [23]. Other “generalized ridge”
estimates replace L = I by a discretized second-derivative operator, L = . Indeed, the
Tikhonov-Phillips form of regularization (1) has a long history in the context of differential
equations [51, 36] and image analysis [15, 33] with emphasis on numerical stability; see also
[28]. In a linear model context, the smoothing imposed by this penalty was mentioned by
Hastie and Mallows [21], discussed in Ramsay and Silverman [38], and used (on the space
of spline-transform coefficients) by Marx and Eilers [31], among others. The following
simple example illustrates basic behavior for some of these penalties alongside an idealized
PEER penalty.

2.1. A simple example
We consider a set of n = 50 bumpy predictor curves {xi} discretely sampled at p = 250
locations, as displayed in gray in the last panel of Figure 1. The true coefficient function, β,
is displayed in black in this same panel. The responses are defined as yi = 〈xi, β〉 + εi (εi
normal, uncorrelated mean-zero errors), and hence depend on the amplitudes of β’s three
bumps centered at locations t = 45, 110, 210.

A detailed simulation with complete results are provided in section 7.1. Here we simply
illustrate the estimation process for L = I, as in (2), in comparison with L =  and an
idealized PEER penalty. The latter is constructed using a visual inspection of the predictors
and lightly penalizes the subspace spanned by such structure, specifically, bumps centered at
all visible locations (approximately t = 15, 45, 80, 110, 160, 210, 240).

The first five panels serve to emphasize the role played by the structure of basis vectors that
comprise the series expansion in (2) (in terms of ordinary singular vectors) versus the
analogous expansion (see (7)) in terms of generalized singular vectors. In particular, Figure
1 shows several partial sums of (7) for these three penalties. The ridge process (gray) is,
naturally, dominated by the right singular vectors of X which become increasingly noisy in
successive partial sums. The second-derivative penalized estimate (dashed) is dominated by
low-frequency structure, while the targeted PEER estimate converges quickly to the
informative features.

In this toy example, visual structure (spatial location) is used to define a regularization
process that easily outperforms uninformed methods of penalization. Less visual examples
where the penalty is defined by a set of laboratory-derived structure (in Raman spectroscopy
curves) is given in sections 7.2 and 7.3; see Figure 2. In that setting, and in general, the role
played by L is appropriately viewed in terms of a preferred subspace in  determined by its
singular vectors. Algebraic details about how structure in the estimation process is
determined jointly by X and L ≠ I are described next.

3. Penalized least squares and the GSVD
Of the many methods for estimating a coefficient function discussed in the Introduction,
nearly are all aimed at imposing geometric or “functional” structure into the process via the
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use of basis functions in some manner. An alternative to choosing a basis outright is to
exploit the structure imposed by an informed choice of penalty operator. The basis,
determined by a pair (X, L), can be tailored toward structure of interest by the choice of L.
When this is carried out in the least-squares setting of (1), the algebraic properties of the
GSVD explicitly reveal how the structure of the estimate is inherited from the spectral
properties of (X, L).

3.1. The GSVD
For a given linear penalty L and parameter α > 0, the estimate in (1) takes the form

(3)

This cannot be expressed using the singular vectors of X alone, but the generalized singular
value decomposition of the pair (X, L) provides a tractable and interpretable series
expansion. The GSVD appears in the literature in a variety of forms and notational
conventions. Here we provide the necessary notation and properties of the GSVD for our
purposes (see, e.g., [19]) but refer to [4, 13, 35] for a complete discussion and details about
its computation. See also the comments of Bingham and Larntz [3].

Assume X is an n×p matrix (n ≤ p) of rank n, L is an m×p matrix (m ≤ p) of rank m. We also
assume that n ≤ m ≤ p ≤ m + n, and the rank of the (n + m) × p matrix Z: = [X′L′]′ is p. A
unique solution is guaranteed if the null spaces of X and L intersect trivially: Null(L) ∩
Null(X) = {0}. This is not necessary for implementation, but it is natural in our applications
and simplifies the notation. In addition, the condition p > n is not required, but rather than
develop notation for multiple cases, this will be assumed.

Given X and L, the following matrices exist and form the decomposition below: an n × n
matrix U and an m × m matrix V, each with orthonormal columns, U′U = I, V′V = I;
diagonal matrices S (n × n) and M (m × m); and a nonsingular p × p matrix W such that

(4)

Here, S and M are of the form  and , whose submatrices
S1 and M1 have l:= n + m − p diagonal entries ordered as

(5)

These matrices satisfy

(6)

with S′S + M′M = I.
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Denote the columns of U, V and W by uk, vk and wk, respectively. When L = I, the the
generalized singular vectors uk and vk are those in the ordinary SVD of X (as denoted in
Section 2) but their ordering is reversed. In this case, the corresponding ordinary singular
values are equal to γk:= σk/μk for μk > 0. When L ≠ I, however, the GSVD vectors and
values of the pair (X, L) differ from those in the SVD of X. By the convention for ordering
the GS values and vectors, the last few columns of W span the subspace Null(L) (or, if
Null(L) is empty, they correspond to the smallest GS values, μk). We set d = dim(Null(L))
and note that μk = 0 for k > n − d. In the special case that m = p and L is a p × p nonsingular
matrix, we have L = V MW−1 and XL−1 = U(S M†)V′, which connects the SVD of XL−1 to

the GSVD of (X, L). In general, we define the n × m matrix  and the l

× l diagonal matrix  with entries γk = σk/μk for μk > 0, and γk = 0 for μk = 0.

Now, equation (6) and some algebra gives (X′X + αL′L)−1 = W(S′S + αM′M)−1W′, and
so β̃α,L = W (S′S + αM′M)−1S′U′y. A consequence of the ordering adopted for the GS
values and vectors is that the first p−n columns of W don’t enter into the expression for
β̃α,L; see equation (4). Therefore, we will re-index the columns of W to reflect this and also
so that the indexing coincides with that established for the GS values and vectors in (5). That
is, denote the columns of W as follows: W:= col[w(1), …, w(p−n) | w1, …, wn−d | wn−d+1, …,
wn]. Therefore, the L-penalized estimate can be expressed as a series in terms of the GSVD
as

(7)

This GSV expansion corresponds to a new basis for the estimation process: the estimate is
expressed in terms of GS vectors {wk} determined jointly by X and L; cf. the ridge estimate
in (2).

For brevity, set o:= n − d and recall that Ao denotes the first n − d columns of a matrix A.
Now denote by Aφ the last d columns of A. In particular, the range of Wφ is Null(L). Using
this notation,

(8)

and equation (7) may be written concisely as

(9)

where .

In summary, the utility of a penalty L depends on whether the true coefficient function
shares structural properties with this GSVD basis, . With regard to this, the
importance of the parameter α may be reduced by a judicious choice of L since the terms in
(7) corresponding to the vectors {wk: μk = 0} are independent of the parameter α [53].

As we’ll see, bias enters the estimate to the extent that the vectors {wk: μk ≠ 0 } appear in
the expansion (7). The portion of β̃α,L that extends beyond the subspace Null(L) is
constrained by a sphere (of radius determined by α); this portion corresponds to bias. Hence,
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L may be chosen in such a way that the bias and variance of β̃α,L arises from a specific type
of structure, potentially decreasing bias without increasing complexity of the model. As a
common example, L =  introduces a bias toward smoothness with structure imposed by
the low-frequency trigonometric functions that correspond to its smallest eigenfunctions.

3.2. Bias and variance and the choice of penalty operator
Begin by observing that the penalized estimate β̃α,L in (3) is a linear transformation of any

solution to the normal equations. Indeed, define  and note that if β̂
denotes any solution to X′Xβ = X′y, then β̃α,L = X#X β̂ +X#ε. The resolution operator X#X
reflects the extent to which the estimate in (7) is linearly transformed relative to an exact
solution. In particular, E(β̃α,L) = X#Xβ. Additionally, we have bias(β̃α,L) = (I − X#X)β =
α(X′X + αL′L)−1L′Lβ, and so ||bias(β̃α,L)|| ≤ ||α(X′X + αL′L)−1L′||||Lβ||. Hence bias can
be controlled by the choice of L, with an estimate being unbiased whenever Lβ = 0. There is
a tradeoff, of course, and equation (11) below quantifies the effect on the variance as

determined by Wφ (i.e., ) if Null(L) is chosen to be too large.

More generally, the decompositions in (4) lead to an expression for the resolution matrix as
X#X = W(S′S + αM′M)−1S′SW−1, and

For notational convenience, define W̃:= W′−1 (note, W̃ plays a role analogous to V ≡ V′−1

in the SVD). The bias of β̃α,L can be expressed as

(10)

where w̃k is the kth column of W̃, and the w(j)’s come from the first p − n columns of W; see
(8).

A counterpart is an expression for the variance in terms of the GSVD. Let Σ denote the
covariance for ε. Then var(β̃α,L) = var(X#Xβ+X#ε) = X#Σ(X#)′. Assuming Σ = σεI, this
simplifies to

(11)

An interesting perspective of the bias-variance tradeoff is provided by the relationship
between the GS-values in (5) and their role in equations (10) and (11). Moreover, these lead
to an explicit expression for the mean squared error (MSE) of a PEER estimate. Since
E(β̃α,L) = X#Xβ,
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As a final remark, recall that one perspective on ridge estimation defines fictitious data from
an orthogonal “experiment,” represented by an L, and expresses I as I = L′L [29].
Regardless of orthogonality this applies to any penalized estimate and L may similarly be
viewed as augmenting the data, influencing the estimation process through its
eigenstructure; the response, y, is set to zero for these supplementary “data”. In this view,

equation (3) can be written as Zβ = y where  and . This formulation
proves useful in section 5.3 when assuring that the estimation process is stable with respect
to perturbations in X and the choice of L.

4. Structured penalties
A structured penalty refers to a second term in (1) that involves an operator chosen to
encourage certain functional properties in the estimate. A prototypical example is a
derivative operator which imposes smoothness via its eigenstructure. Here we describe
several examples of structured penalties, including two that were motivated heuristically and
implemented without regard to the spectral properties that define their performance.
Sections 3.2 and 5.3 provide a complete formulation of their properties as revealed by the
GSVD.

4.1. The penalty of C. Goutis
The concept of using a penalty operator whose eigenstructure is targeted toward specific
properties in the predictors appears implicitly in the work of C. Goutis [14]. This method
aimed to account for the “functional nature of the predictors” without oversmoothing and, in
essence, considered the inverse of a smoothing penalty. Specifically, if Δ denotes a
discretized second-derivative operator (with some specified boundary conditions), the

minimization in (1) was replaced by . Here, the term XΔ′
Δβ can be viewed as the product of XΔ′ (derivatives of the predictor curves) and Δβ
(derivative of β). Defining γ: = Δ′Δβ and seeking a penalized estimate of γ leads to

(12)

In [14], the properties of γ̃ were conjectured to result from the eigenproperties of (Δ′Δ)†.
This was explored by ignoring X and plotting some eigenvectors of (Δ′Δ)†. The properties
of this method become transparent, however, when formulated in terms of the GSVD. That
is, let L:= ((Δ′Δ)†)1/2 and note the functions that define γ̂ are influenced most by the highly
oscillatory eigenvectors of L which correspond to its smallest eigenvalues; see equations (5)
and (7).

This approach was applied in [14] only for prediction and has drawbacks in producing an
interpretable estimate, especially for non-smooth predictor curves. The general insight is
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valid, however, and modifications of this penalty can be used to produce more stable results.
The operator (Δ′Δ)† essentially reverses the frequency properties of the eigenvectors of Δ
and is an extreme alternative to this smoothing penalty. An eigenanalysis of the pair (X, L),
however, suggests penalties that may be more suited to the problem. This is illustrated in
Section 7.

4.2. Targeted penalties
Given some knowledge about the relevant structure, a penalty can be defined in terms of a

subspace containing this structure. For example, suppose  in L2(I). Set

 and consider the orthogonal projection  = QQ†. (Here, q ⊗ q denotes the
rank-one operator f ↦ 〈f, q〉q, for f ∈ L2(I).) For L = I − , then β ∈ Null(L) and β̃α,L is
unbiased. The problem may still be underdetermined so, more pragmatically, define a
decomposition-based penalty

(13)

for some a, b ≥ 0. Heuristically, when a > b > 0 the effect is to move the estimate towards Q
by preferentially penalizing components orthogonal to ; i.e., assign a prior favoring
structure contained in the subspace . To implement the tradeoff between the two subspaces,
we view a and b as inversely related, ab = const. The analytical properties of estimates that
arise from this are developed in the next section and illustrated numerically in Section 7. For
example, bias is substantially reduced when β ⊂ , and equation (18) quantifies the tradeoff
with respect to variance when the prior  is chosen poorly.

More generally, one may penalize each subspace differently by defining L = α1(I − ) (I
− ) + α2   , for some operators  and . This idea could be carried further: for any
orthogonal decomposition of L2(I) by subspaces , …, , let Pj be the projection onto .

Then the multi-space penalty  leads to the estimate

This concept was applied in the context of image recovery (where X represents a linear
distortion model for a degraded image y) by Belge et al. [1].

The examples here illustrate ways in which assumptions about the structure of a coefficient
function can be incorporated directly into the estimation process. In general, any estimation
of β imposes assumptions about its structure (either implicitly or explicitly) and section 3.2
shows that the bias-variance tradeoff involves a choice on the type of bias (spatial structure)
as well as the extent of bias (regularization parameter(s)).

5. Some analytical properties
Any direct comparison between estimates using different penalty operators is confounded by
the fact there is no simple connection between the generalized singular values/vectors and
the ordinary singular values/vectors. Therefore, we first consider the case of targeted or
projection-based penalties (13). Within this class, we introduce a parameterized family of
estimates that are comprised of ordinary singular values/vectors. Since the ridge and PCR
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estimates are contained in (or a limit of) this family, a comparison with some targeted PEER
estimates is possible. For more general penalized estimates, properties of perturbations
provide some less precise relationships; see proposition 5.6.

5.1. Transformation to standard form
We have reason to consider decomposition-based penalties (13) in which L is invertible. In
this case, an expression for the estimate does not involve the second term in (9), and
decomposing the first term into two parts will be useful. For this, we find it convenient to
use the standard-form transformation due to Elden [11] in which the penalty L is absorbed
into X. This transformation also provides a computational alternative to the GSVD which,
for projection-based penalties in particular, can be less computationally expensive; see, e.g.,
[25]. By this transformation of X, a general PEER estimate (L ≠ I) can be expressed via a
ridge-regression process.

Define the X-weighted generalized inverse of L and the corresponding transformed X as

see [11, 19]. In terms of the GSVD components (4), the transformed X is  = UΓV ′. In

particular, the diagonal elements of  are the ordinary singular values of , but in
reversed order.

Now define β̃φ:= [X(I − L†L)]†y, the component of the regularized solution β̃α,L that is in
Null(L). The PEER estimate can be obtained from a ridge-like penalization process with
respect to  as follows. Defining a ridge estimate in the transformed space as

(14)

then the PEER estimate is recovered as

Note that the transformed estimate as given in terms of the GSVD factors is:  = V FΓ†U′y,

where .

In what follows we consider invertible L in which case , [X(I − L†L)]† = 0, and  =
y. In particular, β̃α,L = L−1 . For the penalty (13) of the form L = a(I − ) + b , then

, and so . The regularization parameter, previously
denoted by α, can be absorbed into the values a and b, so we will denote this PEER estimate
β̃α,L simply as β̃a,b.
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Remark 5.1—When , this is simply a ridge estimate: β̃a,b = β̃α,I. Therefore, the
best performance among this family of estimates is as least as good as the performance of
ridge, regardless of the choice of .

5.2. SVD targeted penalties
Consider the special case in which  is the span of the d largest right singular vectors of an n

×p matrix X of rank n. Let  be an ordinary singular value decomposition
where D is a diagonal matrix of singular values. For consistency with the GSVD notation,
these will be ordered as 0 ≤ σ1 ≤ · · · ≤ σn. Hence the last d columns of V correspond to the d
largest singular values of X. For the rest of this section, we adopt the convention for
indexing the columns of V as use for W in (8). In particular, Q = Vφ.

We are interested interested in the penalty L = a(I − ) + b , where d = dim(Null(I − )).
Similar to before, set o = n − d and define o × o and d × d submatrices, Do and Dφ, of D as

(15)

Here,  = VφVφ′ and (I − ) = VoVo′ and so,

This decomposition implies that the ridge estimate in (14) in the transformed space is of the
following form: setting G = DΛ−1, denoting its diagonal entries by {γk}, and defining

 gives  = V FG†U′y. Now,

and so β̃a,b = L−1  = L−1(V FG†U′y) = VΛ−1FΛD−1U′y. By the decomposition (15),

This shows that the estimate decomposes as follows.

Theorem 5.2—Let  be the span of the largest d right singular vectors of X. Set L = a(I −
) + b . Then, in terms of the notation above, the estimate β̃a,b decomposes as

(16)
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where the left and right terms are independent of b and a, respectively.

Similar arguments can be used to decompose an estimate for arbitrary :

(17)

In this case, however, all terms are dependent on both a and b. Indeed, using notation as in

(9) one can decompose  and obtain = V FΓ†U′y. However, L−1V =
WM†, and the non-orthogonal terms provided by W do not decompose the estimate into
terms from the orthogonal sum ⊕ .

The following corollary, along with Remark 5.1, records the manner in which (16) is a
family of penalized estimates, parameterized by a, b ≥ 0 and d ∈ {1, …, n}, that extends
some standard estimates.

Corollary 5.3—Under the conditions in Theorem 5.2,

1. when a > b > 0, β̃a,b is a sum of weighted ridge estimates on  and ;

2. when a > 0 and b = 0, β̃a,0 is given by (9), which is a sum of PCR and ridge
estimates on  and , respectively;

3. for each d, the PCR estimate  is the limit of β̃a,0 as a → ∞.

In item 2, this estimate is similar to PCR except that a ridge penalty is placed on the least-
dominant singular vectors. Under the assumptions here, wk ≡ vk are the ordinary singular
vectors of X and the ordinary singular values appear as γk = σk/μk, for μk > 0. In the second
term of (9), the singular vectors are in the null space of L (since b = 0), and so μk = 0 and σk
= 1, for k = n − d + 1, …, p. Regarding item 3, although a PCR estimate is not obtained from
equation (3) for any L, it is a limit of such estimates.

Other decompositions may be obtained simply by using a permutation, such as Q = ΠV, for
some n × n permutation matrix Π. Stein’s estimate, β̃α,S, also fits into this framework as
follows. When X′X is nonsingular, then β̃α,S = (X′X+αX′X)−1X′y (see, e.g., the class
‘STEIN’ in [10]), and X′X = V D′DV ′. Hence this estimate arises from the penalty LS =
DV ′. This is a re-weighted version of L = a(I − ) where d = n, Q = V and the parameter a
is replaced by the matrix D. The result is a constant filter factor F = diag{1/(1 + α)}. Using
d < n and Q = Vd is a natural extension of this idea. More generally,  may be enriched with
functions that span a wider range of structure potentially relevant to the estimate. This
concept is illustrated in Section 7.3 where instead of Vd, we use a d-dimensional set of
experimentally-derived “template” spectra supplemented with their derivatives to define .

As an aside, we note that in a different approach to regularization one can define a general
family of estimates arising from the SVD by way of β̃h,ϕ = VΣhU ′y, where

, and ϕ:  →  is an arbitrary continuous function [33]. A ridge estimate
is obtained for ϕ(t) = 1/(1 + t), and PCR obtained for ϕ(t) = 1/t if t > 1, ϕ(t) = 0 if t ≤ 1 (an
L2-limit of continuous functions). This is similar to item 3 in Corollary 5.3, but the family of
estimates β̃h,ϕ is formulated in terms of functional filter factors rather than explicit penalty
operators. Related to this is the fact that the optimal (with respect to MSE) estimate using
SVD filter factors is, in the case C = σεI, expressed as β̃OH = V FD†V ′y, where

; see the “ideal filter” of O’Brien and Holt [34]. In fact, it’s easy
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to check that this optimal estimate can be obtained as β̃OH = β̃α,L for some L ≠ I. Since β̃OH
involves knowledge of β, it is not directly obtainable but it points to the optimality of a
PEER estimate.

5.3. The MSE of some penalized estimates
Theorem 5.2 is used here to show that β̃a,b can have smaller MSE than the ridge or PCR
estimates for a wide range of values of a and/or b. The MSE is potentially decreased further
when L is defined by a more general . In that case, a general statement is difficult to
formulate but Proposition 5.6 confirms that any improvement in MSE is robust to
perturbations in L (e.g., general ) and errors in x.

An immediate consequence of Theorem 5.2 is that the mean squared error for an estimate in
this family (16) decomposes into easily-identifiable terms for the bias and variance:

(18)

The influence of b = 0 on the estimate is now clear: when the numerical rank of X is small
relative to d, the σk’s in the last term decrease and the contribution to the variance from this
term increases—the estimate fails for the same reason that ordinary least-squares fails. Any
nonzero b stabilizes the estimate in the same way that a nonzero α stabilizes a standard ridge
estimate; the decomposition (16) merely re-focuses the penalty. This is illustrated in Section
7 (Table 1) and in the Appendix (Table 4). Although there are three parameters to consider,
the MSE of β̃a,b is relatively insensitive to b > 0 for sufficiently large d. This could be
optimized (similar to efforts to optimize the number of principal components) but here we
assume approximate knowledge regarding , hence d. Relationships between ridge, PCR
and PEER estimates in this family {β̃a,b}a,b>0 can be quantified more specifically as follows.

Proposition 5.4—Suppose β ∈  and fix α > 0. Then for any , the ridge estimate
satisfies

Proof: This follows from the fact that if β ∈ , then Vo′β = 0 and so the first term in (18) is
zero. Therefore, the contribution to the MSE by the fourth term is decreased whenever

.

If β is exactly a sum of the d dominant right singular vectors, A PCR estimate using d terms
may perform well, but in general it is not optimal:

Proposition 5.5—If β ∈ , a sufficient condition for the PCR estimate to satisfy

is
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(19)

Note that the left side of (19) increases without bound as σk → 0. Since

, and since the premise of PCR is that  decreases with
decreasing σk, this sufficient condition is entirely plausible.

Proof: If β ∈ , then the first and third terms in (18) are zero and the MSE of  consists
of the second and last terms of (18):

In particular, a sufficient condition for this to exceed MSE(β̃∞,b) is for the variance term to
exceed the second and last terms of (18):

One can check that this is satisfied when (19) holds.

A comment by Bingham and Larntz [3] on Dempster et al.’s intensive simulation study of
ridge regression in [10] notes that “it is not at all clear that ridge methods offer a clear-cut
improvement over [ordinary] least squares except for particular orientations of β relative to
the eigenvectors of X′X.” Equation (18) repeats this observation relating these two classical
methods as well as the minor extensions contained in (16). If, on the other hand, the
orientation of β relative to the vk’s is not favorable, i.e., if β is nowhere near the range of V,
then a PEER estimate as in (17) is more desirable than the estimate in (16) (assuming
sufficient information is available to form ).

In summary, the family of estimates {β̃a,b}a,b>0 in (16) represents a hybrid of ridge and PCR
estimation. This family—based on the ordinary singular vectors of X—is introduced here to
provide a framework within which these two familiar estimates can be compared to
(slightly) more general PEER estimates. Direct analytical comparison between general
PEER estimates is more difficult since there’s no simple relationship between the
generalized singular vectors for two different L (including L = I versus L ≠ I). However, it is
important that the estimation process be stable with respect to changes in L and/or X. I.e., in
going from an estimate in (16) to one in (17), the performance of the estimate should be
predictably altered. Given an estimate in Proposition 5.4, if  is modified and/or X is

observed with error, the MSE of the corresponding estimate, , should be controlled: for

sufficiently small perturbation E, the corresponding estimate  should be close to

MSE(β̃α,I). This “stability” is true in general. To see this recall , (of rank

p) and . Then another way to represent the estimate (3) is β̃α,L = Z†y. Let

 for some n×p and m×p matrices E1 and E2. Set ZE = Z + E and denote the

Randolph et al. Page 15

Electron J Stat. Author manuscript; available in PMC 2012 May 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



perturbed estimate by . By continuity of the generalized inverse (e.g., [4], Section

1.4),  if and only if lim||E||→0 rank(ZE) = rank(Z). Therefore, provided the
rank of Z is not changed by E,

and hence  as ||E|| → 0. A more specific bound on the difference of
estimates can be obtained under the condition ||Z†||||E||< 1 which implies that

. This can be used to obtain the following bound.

Proposition 5.6—Assume ||Z†||||E|| < 1 and let r = y − Zβ̃α,L. Then

See [4] and [18].

6. Tuning parameter selection
Despite our focus on the GSVD, the computation of a PEER estimate in (1) does not, of
course, require that this decomposition be computed. Rather, the role of the GSVD has been
to provide analytical insight into the role a penalty operator plays in the estimation process.
For computation, on the other hand, we have chosen to use a method in which the tuning
parameter, α, is estimated as part of the coefficient-function estimation process.

Because the choice of tuning parameter is so important, many selection criteria have been
proposed, including generalized cross-validation (GCV) [9], AIC and its finite sample
corrections [55]. As an alternative to GCV and AIC, a recently-proven equivalence between
the penalized least squares estimation and a linear mixed model (LMM) representation [6]
can be used. In particular, the best linear unbiased predictor (BLUP) of the response y is
composed of the best linear unbiased estimator of the fixed effects and BLUP of the random
effects for the given values of the random component variances (see [47] and [6]). Within
the LMM framework, restricted maximum likelihood (REML) can be used to estimate the
variance components and thus the choice of the tuning parameter, α, which is equal to the
ratio of the error variance and the random effects variance [42]. REML-based estimation of
the tuning parameter has been shown to perform at least as well as the other criteria and,
under certain conditions, it seen to be less variable than GCV-based estimation [41]. In our
case, the penalized least-squares criterion (1) is equivalent to

(20)
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where , the Xunp corresponds to the unpenalized part of the design matrix, and
Xpen to the penalized part.

For simplicity of presentation, we describe the transformation with an invertible L.
However, a generalized inverse can be used in case L is not of full rank; see equation (14).
Also, to facilitate a straightforward use of existing linear mixed model routines in widely
available software packages (e.g., R [37] or SAS software [43]), we transform the
coefficient vector β using the inverse of the matrix L. Let X★ = XL−1 and β★ = Lβ. Then
equation (20) can be modified as follows

This REML-based estimation of tuning parameters is used in the application of Section 7.3.

For estimation of the parameters a, b and α involved in the decomposition-based penalty of
equation (16), we view a and b as weights in a tradeoff between the subspaces and assume
ab = const. In the current implementation, we use REML to estimate α for a fixed value of a,
and do a grid search over the a values to jointly select the tuning parameters which
maximize the REML criterion.

7. Numerical examples
To illustrate algebraic properties given in Section 5, we consider PEER estimation alongside
some familiar methods in several numerical examples. Section 7.1 elaborates on the simple
example in Section 2.1. These mass spectrometry-like predictors are mathematically
synthesized in a manner similar to the study of Reiss and Ogden [40] (see also a numerical
study in [48]). Here, β is also synthesized to represent a spectrum, or specific set of bumps.
In contrast, Section 7.3 presents a real application to Raman spectroscopy data in which a set
of spectra {xi} and nanoparticle concentrations {yi} are obtained from sets of laboratory
mixtures. This laboratory-based application is preceded in section 7.2 by a simulation that
uses these same Raman spectra. In both Raman examples, targeted penalties (13) are defined

using discretized functions qj chosen to span specific subspaces, . As before,
let Q = col[q1, …, qd] and  = QQ†.

Each section displays the results from several methods, including derivative-based penalties.
Implementing these requires a choice of discretization scheme and boundary conditions
which define the operator. We use  where  = [di,j] is a square matrix with entries di,i = 1,
di,i+1 = −1 and di,j = 0 otherwise. In addition to some standard estimates, sections 7.3 and 7.2
also consider FPCRR, a functional PCR estimate described in [40]. This approach extends
the penalized B-spline estimates of [8] and assumes β = Bη where B is an p × K matrix
whose columns consist of K B-spline functions and η is a vector of B-spline coefficients.
The estimation process takes place in the coefficient space using the penalty L =  applied
to η. The FPCRR estimate further assumes β = BVd η (Vd as defined in section 2).

Estimation error is defined as mean squared error (MSE) ||β − β̃α,L||2, and the prediction
error defined similarly as Σi |yi − ỹi|2, where ỹi = 〈xi, β̃〉. Each simulation incorporates

response random errors, , added to the ith true response, . Letting 

denote the sample variance in the set , the response random errors, εi, are chosen

such that (the squared multiple correlation coefficient of the true model)
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takes values 0.6 and 0.8. In sections 7.1 and 7.2, tuning parameters are chosen by a grid
search. In section 7.3, tuning parameters are chosen using REML, as described in section 6.

7.1. Bumps simulation
Here we elaborate on the simple example of section 2.1. This simulation involves bumpy
predictor curves xi(t) with a response yi that depends on the amplitudes xi(t) at some of the
bump locations, t = ck, via the regression function β. In particular,

for t ∈ [0, 1], where JX = {2, 6, 10, 14, 20, 26, 30} and Jβ = {6, 14, 26}; a★ are magnitudes,
b★ are spreads, and c★ are the locations of the bumps. In the first simulation, we set bj =
10000 and cj = 0.004(8j − 1), the same for each curve xi. This mimics, for instance, curves
seen in mass spectrometry data. The assumption Jβ ⊂ JX simulates a setting in which the
response is associated with a subset of metabolite or protein features in a collection of
spectra. The aij’s are from a uniform distribution, and aj = 3, 5, 2 for j = 6, 14, 24,
respectively. We consider discretized curves, xi(t), evaluated at p = 250 points, tj, j = 1, …,
p. The sample size is fixed at n = 50 in each case.

Penalties—We consider a variety of estimation procedures: ridge (L = I), second-
derivative ( ), a more general derivative operator (  + a I) and PCR. We also define two
decomposition-based penalties (13) formed by specific sub-spaces  = span{qj}j∈J for qj of
the form qj(t) = aj exp[bj(t−cj)], with cj at all locations seen in the predictors, JV = {2, 6, 10,
14, 20, 26, 30}, or at uniformly-spaced locations, JU = {2, 4, …, 30}; denote these penalties
by LV and LU, respectively.

Simulation results—The simulation incorporates two sources of noise: (i) response

random errors, , added to the ith true response so that R2 = 0.6, 0.8; (ii)

measurement error, , added to the ith predictor, xi. To define a signal-to-noise

ratio, S/N, set , where μi is the mean value of xi, and set

. The ei are chosen so that S/N: = SX/σe = 2, 5, 10.

Figure 1 shows a few partial sums of (7) for estimates arising from three penalties: , L = I
and LV, when R2 = 0.8 and S/N = 2. Table 1 gives a summary of estimation errors. The
penalty LV, exploiting known structure, performs well in terms of estimation error. Not
surprisingly, a penalty that encourages low-frequency singular vectors, , is a poor choice
although  + a I easily improves on  since the GSVs are more compatible with the
relevant structure. PCR performs well with estimation errors that can be several times
smaller than those of ridge. The number of terms used in PCR ranges here from 8 (S/N = 10)
to 25 (S/N = 2).

Predictably, PCR performance degrades with decreasing S/N, a property that is less
pronounced, or not shared, by other estimates. Performances of LV and LU illustrate
properties described in Section 5.3. As S/N → 0, the ordinary singular vectors of X (on
which ridge and PCR rely) decreasingly represent the structure in β. The GS vectors of (X,
LV) and (X, LU), however, retain structure relevant for representing β.

Randolph et al. Page 18

Electron J Stat. Author manuscript; available in PMC 2012 May 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 2 summarizes prediction errors. When S/N is large, performance of PCR is
comparable with LV and LU, but degrades for low S/N. Here, even  +a I provides smaller
prediction errors, in most cases, than ridge,  or PCR. This illustrates the GS vectors role in
(12) and reiterates observations in [14].

7.2. Raman simulation
We consider Raman spectroscopy curves which represent a vibrational response of laser-
excited co-organic/inorganic nanoparticles (COINs). Each COIN has a unique signature
spectrum and serves as a sensitive nanotag for immunoassays; see [27, 44]. Each spectrum
consists of absorbance values measured at p = 600 wavenumbers. By the Beer-Lambert law,
light absorbance increases linearly with a COIN’s concentration and so a spectrum from a
mixture of COINs is reasonably modeled by a linear combination of pure COIN spectra. The
data here come from experiments that were designed to establish the ability of these COINs
to measure the existence and abundance of antigens in single-cell assays.

Let P1, …, P10 denote spectra from nine pure COINs and one “blank” (no biochemical
material), each normalized to norm one. We form in-silico mixtures as follows:

, i = 1, …, n, with coefficients {ci,k} generated from a uniform
distribution. Figure 2 shows representative spectra from all nine COINs superimposed on a

collection of mixture spectra, . Included in Figure 2 is the β (dashed curve) used to
defined the simulation: yi = 〈xi, β〉 + ε, ε ~ N(0, σ2).

In this simulation, we have created a coefficient function which, instead of being modeled
mathematically, is a curve that exhibits structure of the type found in Raman spectra. Details
on the construction of this β are in Appendix 9.1 so here we simply note that it arises as a
ridge estimate from a set of in-silico mixtures of Raman spectra in which one COIN, P9, is
varied prominently relative to the others. See Figure 2. Motivation for defining β in this way
is based on a view that it seems implausible for us to predict the structure of realistic signal
in these data and recreate it using polynomials, Gaussians or other analytic functions.

Regardless of its construction, β defines signal that allows us to compute estimation and
prediction error. The performances of five methods are summarized in Table 3. Note that
although β was constructed as a ridge estimate (using a different set of in-silico mixtures;
see Appendix 9.1), the ridge penalty is not necessarily optimal for recovering β. This is
because the strictly empirical eigenvectors associated with the new spectra may contain
structure not informative regarding y. Also, in these data, the performance of FPCRR is
adversely affected by a tendency for the estimate to be smooth; cf., Figure 3. The PEER
penalty used here is defined by a decomposition-based operator (16) in which  is spanned
by a 10-dimensional set of pure-COIN spectra (including a blank). The success of such an
estimate obviously depends on an informed formation of , but as long as the parameter-
selection procedure allows for a = b, then the set of possible estimates includes ridge as well
as estimates with potentially lower MSE than ridge; see Proposition 5.4.

We note that this simulation may be viewed as inherently unfair since the PEER estimate
uses knowledge about the relevant structure. However, this is a point worth reemphasizing:
when prior knowledge about the structure of the data is available, it can be incorporated
naturally into the regression problem.

7.3. Raman application
We now consider spectra representing true antibody-conjugated COINs from nine laboratory
mixtures. These mixtures contain various concentrations of eight COINs (of the nine shown
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in Figure 2). Spectra from four technical replicates in each mixture are included to create a
set of n = 36 spectra . We designate P1 as the COIN whose concentration within each
mixture defines y. Assuming a linear relationship between the spectra, {xi}, and the P1-
concentrations, {yi}, we estimate P1. More precisely, we estimate the structure in P1 that
correlates most with its concentrations, as manifest in this set of mixtures. The fLM is a
simplistic model of this relationship between the concentration of P1 and its functional
structure, but the physics of this technology imply it is a reasonable starting point.

We present the results of three estimation methods: ridge, FPCRR and PEER. In
constructing a PEER penalty, we note that the informative structure in Raman spectra is not
that of low-frequency or other easily modeled features, but it may be obtainable
experimentally. Therefore, we define L as in (13) in which  contains the span of COIN

template spectra: . However, since a single set of templates may not
faithfully represent signal in subsequent experiments (with new measurement errors,
background and baseline noise etc), we enlarge  by adding additional structure related to

these templates. For this, set , where  denotes the derivative of
spectrum Pk. (Note, to form , scale-based approximations to these derivatives are used
since raw differencing of non-smooth spectra introduces noise.) Then set  = span{  ∪ }
and define L = a(I − ) + b .

The regularization parameters in the PEER and ridge estimation processes were chosen
using REML, as described in Section 6. For the FPCRR estimate, we used the R-package
refund [39] as implemented in [40].

Since β is not known (the model y = Xβ +ε is only approximate), we cannot report MSEs
for these three methods. However, the structure of P1 is qualitatively known and by
experimental design, y is directly associated with P1. The goal here is that of extracting
structure of the constituent spectral components as manifest in a linear model. This
application is similar to the classic problem of multivariate calibration [5, 31] which
essentially leads to a regression model using an experimentally-designed set of spectra from
laboratory mixes.

The structure in the estimate here is expected to reflect the structure in P1 that is correlated
with P1’s concentrations, y. The estimate is not, however, expected to precisely reconstruct
P1 since P1 shares structure with the other COIN spectra not associated with y. See Figure 2
where P1 is plotted alongside the other COIN spectra. Now, Figure 3 shows plots of the
PEER, FPCRR and ridge estimates of the fLM coefficient function. The PEER estimate, β̃Q,
provides an interpretable compromise between ridge, which involves no smoothing, and
FPCRR, which appears to oversmooth. For reference, the P1 spectrum is also plotted along
with a mean-adjusted version of β̃Q, β̃Q + μ (dashed line), where μ(t) = (1/36) Σi xi(t), t ∈
[400, 1800].

Finally, we consider prediction for these methods by forming a new set of spectra from
different mixture compositions (different concentrations of each COIN) and, additionally,
taken from different batches. This “test” set consists of spectra from four technical replicates

in each of 15 mixtures forming a set of n = 60 spectra, . As before, P1 is the COIN

whose concentration within each mixture defines the values . For the estimates from
each of the three methods (shown in Figure 3) we compute the prediction error:

. The errors for PEER, ridge, and FPCRR estimates are 0.770,
0.752, 2.139, respectively. The ridge estimate here illustrates how low prediction error is not
necessarily accompanied by interpretable structure in the estimate (or low MSE) [7].
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8. Discussion
As high-dimensional regression problems become more common, methods that exploit a
priori information are increasingly popular. In this regard, many approaches to penalized
regression are now founded on the idea of “structured” penalties which impose constraints
based on prior knowledge about the problem’s scientific setting. There are many ways in
which such constraints may be imposed, and we have focused on the algebraic aspects of a
penalization process that imposes spatial structure directly into a regularized estimation.
This approach fits into the classic framework of L2-penalized regression but with an
emphasis on the algebraic role that a penalty operator plays to impart structure on the
estimate.

The interplay between a structured regularization term and the coefficient-function estimate
may not be well understood in part because it is not typically viewed in terms of the
generalized singular vectors/values, which is fundamental to this investigation. In particular,
any penalized estimate of the form (1) with L ≠ I is intrinsically based on GSVD factors in
the same way that many common regression methods (such as PCR, ridge, James-Stein, or
partial least squares) are intrinsically based on SVD factors. Just as the basics of the
ubiquitous SVD are important to understanding these methods, we have aspired to
established the basics of the GSVD as it applies to a this general penalized regression setting
and to illustrate how the theory underlying this approach can be used inform the choice of
penalty operator.

Toward this goal the presentation emphasizes the transparency provided by the partially-
empirical eigenvector expansion (7). Properties of the estimate’s variance and bias are
determined explicitly by the generalized singular vectors whose structure is determined by
the penalty operator. We have restricted attention to additive constraints defined by penalty
operators on L2 in order to retain the direct algebraic connection between the eigenproperties
of the operator pair (X, L) and the spatial structure of β̃α,L. Intuitively, the structure of the
penalty’s least-dominant singular vectors should be commensurate with the informative
structure of β. The actual effect a penalty has on the properties of the estimate can be
quantified in terms of the GSVD vectors/values.

This perspective differs from popular two-stage signal regression methods in which
estimation is either preceded by fitting the predictors to a set of (external) basis functions or
is followed by a step that smooths the estimate [8, 21, 30, 38, 40]. Instead, structure
(smoothness or otherwise) is imposed directly into the estimation process. The
implementation of a penalty that incorporates structure less generic than smoothness (or
sparseness) requires some qualitative knowledge about spatial structure that is informative.
Clearly this is not possible in all situations, but our presentation has focused on how a
functional linear model may provide a rigorous and analytically tractable way to take
advantage of such knowledge when it exists.
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9. Appendix

9.1. Defining β for the simulation in Section 7.2
This simulation is motivated by an interest in constructing a plausibly realistic β whose
structure is naturally derived by the scientific setting involving Raman signatures of
nanoparticles. Although one could model a β mathematically using, say, polynomials or
Gaussian bumps (cf., Appendix A.2), such a simulation would be detached from the physical
nature of this problem. Instead, we construct a coefficient function that genuinely comes
from a functional linear model with Raman spectra as predictors.

We first generate in-silico mixtures of COIN spectra as , where
ci,k ~ unif[0, 1]. Designating P9 as the COIN of interest, we define response values that
correspond to the “concentration” of P9 by setting , i = 1, …, n. The factor of 3
imposes a strong association between P9 and the response.

Now, the example in section 7.2 aims to estimate a coefficient function that truly comes
from a solution to a linear model. However, the equation yo = Xoβ has infinitely many
solutions (where Xo is the matrix whose ith row is ), so we must we must regularize the
problem to obtain a specific β. For this, we simply use a ridge penalty and designate the
resulting solution to be β. This is shown by the dotted curve in Figure 2 and is qualitatively
similar to P9.

We note that the simulation in section 7.2 uses the same set of COINs, but a new set of in-
silico mixture spectra (i.e., a new set of {ci,k} ~ Unif[0, 1]). In addition, a small amount of
measurement error was added, as in section 7.1, to each spectrum during the simulation.

9.2. Frequency domain simulation
We display results from a study that mimics the scenario of simulations studied by Hall and
Horowitz [16]. We illustrate, in particular, properties of the MSE discussed following
equation (18) in section 5.3 relating to b = 0. In fact, we consider the more general scenario
in which  is not constructed from empirical eigenvectors (as in PCR and ridge), but is
defined by a prespecified envelope of frequencies.

In this simulation both β and xi, i = 1, …, n, are generated as sums of the cosine functions
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t ∈ [0, 1]; here γj = (−1)j+1j−0.75, Zij is uniformly distributed on [−31/2, 31/2] (E(Zij) = 0 and

var(Zij) = 1), φ1 ≡ 1 and φj(t) = 21/2 cos(jπt) for j ≥ 1, and , and cov(ei(t), ei′
(t′)) = 0 for either i ≠ i′ or t ≠ t′. The response yi is defined as yi = 〈β, xi〉 + εi, where εi ~ N
(0σ2), i.i.d.. The simulations involve discretizations of these curves evaluated at p = 100
equally spaced time points, tj, j = 1, …, p, that are common to all curves.

Penalties
We consider properties of estimates from a variety of penalties: ridge (L = I), ,  + aI,
and PCR1. In addition, targeted penalties of the form L = I − , are defined by the specified
subspaces  = span{φj}j∈J, for φj defined above. Specifically, we use J = JF = {j = 5, …, 17}
(a tight envelope of frequencies) to define LF, and J = JG = {j = 4, …, 20} (a less focused
span of frequencies) to define LG. The operator  + aI simply serves to illustrate the role of
higher-frequency singular vectors as discussed in Section 4.1. In the simulations, the
coefficient a in  + aI was chosen simultaneously with α via a two-dimensional grid search.

Simulation results
Table 4 summarizes estimation results for all six penalties and two sample sizes, n = 50,
200. The prediction results for these estimates are in Table 5. These are reported for S/N =
10, 5 and R2 = 0.8, 0.6. The number of terms in the PCR estimate was optimized and ranged
from 19 to 25 when R2 = 0.8 and decreased with decreasing R2. Analogously, one could
optimize over the dimension of  (to implement a truncated GSVD), but the purpose here is
illustrative while in practice a more robust approach would emply a penalty of the form (13).

Errors obtained with ridge and PCR are small, as expected, since the structure of β in this
example is consistent with the structure represented in the singular vectors, vk. Therefore,
even though the relationship between the yi and xi degrades (indeed, even as R2 → 0), these
estimates are comprised of vectors that generally capture structure in β since it is strongly
represented by the dominant eigenstructure of X. The second-derivative penalty, ,
produces the worst estimate in each of the scenarios due to oversmoothing. Note  + a I
improves on , yet it is still not optimal for the range of frequencies in β.

Regarding LG, the MSE gets worse as S/N increases. Indeed, here  is fixed and relatively
large and since the σk decay faster when S/N is big, this leads to rank deficiency and large
variance; see equation (18) (note, this only applies approximately since  does not consist of
ordinary SVs). In our previous examples, this is stabilized by a b > 0.

The problems of estimation and prediction have different properties [7]; good prediction
may be obtained even with a poor estimate, as seen in Table 5. The estimate from LDa is
generally poor relative to others (as measured by the L2-norm), but its prediction error is
comparable with other methods and is best among the non-targeted penalization methods.
This is consistent with the outcome described by C. Goutis [14] where (derivatives of) the
predictor curves contain sharp features and so standard least-squares regularization (OLS,
PCR, ridge, etc.) perform worse than a PEER estimate which imposes a greater emphasis on
“regularly oscillatory but not smooth components”; see section 4.1.

1PCR is not obtained explicitly from a penalty operator, but see Corollary 5.3.
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Fig 1. Partial sums of penalized estimates
The first five odd-numbered partial sums from (7) for three penalties: 2nd-derivative
(dashed), ridge (gray), targeted PEER (black; see text in sections 2.1 and 7.1). The last panel
displays β (black) and 15 predictors, xi (gray), from the simulation.
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Fig 2.
Nine pure COIN spectra, P1, …, P9, and a coefficient function, β (each shifted for display).
β arises as a solution to the fLM in which y denotes concentrations of P9 in an in silico
mixture of 50 COIN spectra, xi (light gray). This β is used in the simulation study of Section
7.2.
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Fig 3.
Three estimates for a coefficient function that relates concentrations of P1 to its signal in 8-
COIN laboratory mixtures. Estimates shown: ridge (β̃ridge; gray), FPCRR (β̃FPCRR; black)
and PEER (β̃Q; blue). For perspective, P1 is plotted (in red) and the mean-adjusted PEER

estimate, β̃Q + μ (dashed blue); μ is the mean of the mixture spectra  (not shown).
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