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It is well-known that the curvature tensor is an isometric invariant
of C 2 Riemannian manifolds. This invariant is at the origin of the
rigidity observed in Riemannian geometry. In the mid 1950s, Nash
amazed the world mathematical community by showing that this
rigidity breaks down in regularity C 1. This unexpected flexibility
has many paradoxical consequences, one of them is the existence
of C 1 isometric embeddings of flat tori into Euclidean three-dimen-
sional space. In the 1970s and 1980s, M. Gromov, revisiting Nash’s
results introduced convex integration theory offering a general
framework to solve this type of geometric problems. In this re-
search, we convert convex integration theory into an algorithm
that produces isometric maps of flat tori. We provide an implemen-
tation of a convex integration process leading to images of an em-
bedding of a flat torus. The resulting surface reveals a C 1 fractal
structure: Although the tangent plane is defined everywhere,
the normal vector exhibits a fractal behavior. Isometric embeddings
of flat tori may thus appear as a geometric occurrence of a structure
that is simultaneously C 1 and fractal. Beyond these results, our
implementation demonstrates that convex integration, a theory
still confined to specialists, can produce computationally tractable
solutions of partial differential relations.

A geometric torus is a surface of revolution generated by
revolving a circle in three-dimensional space about an axis

coplanar with the circle. The standard parametrization of a geo-
metric torus maps horizontal and vertical lines of a unit square to
latitudes and meridians of the image surface. This unit square can
also be seen as a torus; the top line is abstractly identified with the
bottom line and so are the left and right sides. Because of its local
Euclidean geometry, it is called a square flat torus. The standard
parametrization now appears as a map from a square flat torus
into the three-dimensional space having as its image a geometric
torus. Although natural, this map distorts the distances: The
lengths of latitudes vary whereas the lengths of the corresponding
horizontal lines on the square remain constant.

It was a long-held belief that this defect could not be fixed.
In other words, it was presumed that no isometric embedding
of the square flat torus—a differentiable injective map that pre-
serves distances—could exist into three-dimensional space. In the
mid 1950s Nash (1) and Kuiper (2) amazed the world mathema-
tical community by showing that such an embedding actually
exists. However, their proof relies on an intricated construction
that makes it difficult to analyze the properties of the isometric
embedding. In particular, these atypical embeddings have never
been visualized. One strong motivation for such a visualization is
the unusual regularity of the embedding: A continuously differ-
entiable map that cannot be enhanced to be twice continuously
differentiable. As a consequence, the image surface is smooth
enough to have a tangent plane everywhere, but not sufficient to
admit extrinsic curvatures.

In the 1970s and 1980s, Gromov, revisiting the results of Nash
and others such as Phillips, Smale, or Hirsch, extracted the under-
lying notion of their works: the h-principle (3, 4). This principle
states that many partial differential relation problems reduce to
purely topological questions. The raison d’être of this counterin-
tuitive phenomenon was later brought to light by Eliashberg

and Mishachev (5). To prove that the h-principle holds in many
situations, Gromov introduced several powerful methods for
solving partial differential relations. One of which, convex inte-
gration theory (5–7), provides a quasi-constructive way to build
sequences of embeddings converging toward isometric embed-
dings. Nevertheless, because of its broad purpose, this theory
remains far too generic to allow for a precise description of the
resulting map.

In this article, we convert convex integration theory into an
explicit algorithm. We then provide an implementation leading
to images of an embedded square flat torus in three-dimensional
space. This visualization has led us in turn to discover a unique
geometric structure. This structure, described in the corrugation
theorem below, reveals a remarkable property: The normal vec-
tor exhibits a fractal behavior.

General Strategy
The general strategy (1) starts with a strictly short embedding, i.e.,
an embedding of the square torus that strictly shrinks distances.
To build an isometric embedding, this initial map is corrugated
along the meridians with the purpose of increasing their length
(Fig. 1). This corrugation is performed while keeping a strictly
short map, achieving a smaller isometric default in the vertical
direction. The isometric perturbation in the horizontal direction
is also kept under control by choosing the number of oscillations
sufficiently large. Corrugations are then applied repeatedly in
various directions to produce a sequence of maps, reducing step-
by-step the isometric default. Most importantly, the sequence of
oscillation numbers can be chosen so that the limit map achieves
a continuously differentiable isometry onto its image.

One-Dimensional Convex Integration. The above general strategy
leaves a considerable latitude in generating the corrugations. This
great flexibility is one of the surprises of the Nash–Kuiper result
because it produces a plethora of solutions to the isometric em-
bedding problem. It is a remarkable fact that Gromov’s convex
integration theory provides both the deep reason of the presence
of corrugations and the analytic recipe to produce them. Never-
theless, this theory does not give preference to any particular
corrugation and is not constructive in that respect. Here we refine
the traditional analytic approach of corrugations, adding a geo-
metric point of view.

A corrugation is primarily a one-dimensional process. It aims
to produce, from an initial regular smooth curve f 0 : ½0; 1� → E3

(as usual E3 denotes the three-dimensional Euclidean space),
a new curve f whose speed is equal to a given function
r : ½0; 1� → Rþ with r > ‖f 0

0‖E3 . In the general framework of con-
vex integration (5, 7), one starts with a one-parameter family of
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loops h : ½0; 1� × R∕Z → E3 satisfying the isometric condition
‖hðt; uÞ‖E3 ¼ rðtÞ, for all ðt; uÞ ∈ ½0; 1� × R∕Z, and the bary-
centric condition

∀t ∈ ½0; 1�; f 0
0ðtÞ ¼

Z
1

0

hðt; uÞdu: [1]

This last condition expresses the derivative f 0
0ðtÞ as the barycenter

of the loop hðt; ·Þ. One then chooses the numberN of oscillations
of the corrugated map f and set

f ðtÞ ≔ f 0ð0Þ þ
Z

t

0

hðu; NuÞdu: [2]

Here, Nu must be considered modulo Z. It appears that not only
‖f 0ðtÞ‖E3 ¼ ‖hðt; NtÞ‖E3 ¼ rðtÞ as desired, but f can also be made
arbitrarily close to the initial curve f 0, see Fig. 2.

Lemma 1. We have

‖f − f 0‖C0 ≤
1

N

�
2‖h‖C0 þ ‖

∂h
∂t

‖C0

�
;

where ‖g‖C0 ¼ supp∈D‖gðpÞ‖E3 denotes the C0 norm of a function
g : D → E3.

Proof: Let t ∈ ½0; 1�. We put n ≔ ½Nt� (the integer part of Nt) and
set Ij ¼ ½ jN ; jþ1

N � for 0 ≤ j ≤ n − 1 and In ¼ ½nN ; t�. We write

f ðtÞ − f ð0Þ ¼ ∑
n

j¼0

Sj and f 0ðtÞ − f 0ð0Þ ¼ ∑
n

j¼0

sj

with Sj ≔ ∫ Ij
hðv; NvÞdv and sj ≔ ∫ Ij

∫ 1
0hðx; uÞdudx. By the

change of variables u ¼ Nv − j, we get for each j ∈ ½0; n − 1�

Sj ¼
1

N

Z
1

0

h
�
uþ j
N

; u
�
du ¼

Z
Ij

Z
1

0

h
�
uþ j
N

; u
�
dudx:

It ensues that ‖Sj − sj‖E3 ≤ 1
N 2 ‖

∂h
∂t ‖C 0 . The lemma then follows

from the obvious inequalities ‖Sn − sn‖E3 ≤ 2
N ‖h‖C0 and

‖f ðtÞ − f 0ðtÞ‖E3 ≤ ∑n
j¼0 ‖Sj − sj‖E3 .

Here we set

hðt; uÞ ≔ rðtÞeiαðtÞ cos 2πu; [3]

where eiθ ≔ cos θ tþ sin θ n with t ≔ f 0
0

‖f 0
0
‖E 3

, n : ½0; 1� → E3 is a
smooth unit vector field normal to the initial curve and the
function α is determined by the barycentric condition [1]. We
claim that our convex integration formula captures the natural
geometric notion of a corrugation. Indeed, if the initial curve
f 0 is planar then the signed curvature measure

μ ≔ kds ¼ kðtÞ‖f 0ðtÞ‖E3dt

of the resulting curve is connected to the signed curvature mea-
sure μ0 ≔ k0ds of the initial curve by the following simple formula

μ ≔ μ0 þ ½α 0 cosð2πNtÞ − 2πNα sinð2πNtÞ�dt:
Our corrugation thus modifies the curvature in the simplest way
by sine and cosine terms with frequency N.

Two-Dimensional Convex Integration. The classical extension of
convex integration to the two-dimensional case consists in apply-
ing the one-dimensional process to a one-parameter family of
curves that foliates a two-dimensional domain. Given a strictly
short smooth embedding f 0 : E2∕Z2 → E3 of the square flat
torus, a nowhere vanishing vector field W : E2∕Z2 → E2, and
a function r ≔ E2∕Z2 → Rþ, the aim is to produce a smooth
map f : E2∕Z2 → E3 whose derivative in the direction W has
the target norm r. The natural generalization of our one-dimen-
sional process leads to the following formula:

f ðφðt; sÞÞ ≔ f 0ðtV Þ þ
Z

s

0

rðφðt; uÞÞeiθðφðt;uÞ;uÞdu; [4]

where φðt; sÞ denotes the point reached at time s by the flow ofW
issuing from tV . The vector V is chosen so that the line of initial
conditionsRV ⊂ E2∕Z2 is a simple closed curve transverse to the
flow. We also use the notation eiθ ¼ cos θ tþ sin θ n, where t is
the normalized derivative of f 0 alongW and n is a unit normal to
the embedding f 0. Similarly as above, θðq; uÞ ≔ αðqÞ cos 2πNu, α
is determined by the barycentric condition [1] and q ∈ E2∕Z2.
The resulting map f is formally defined over a cylinder. In general
f does not descend to the flat square torus E2∕Z2. This defect is
rectified by adding a term that smoothly spreads out the gap pre-
venting the map to be doubly periodic.

Basis of the Embeddings Sequence. The iterated process leading to
an isometric embedding requires to start with a strictly short em-
bedding of the square flat torus

f init : E2∕Z2 → E3:

The metric distortion induced by f init is measured by a field of
bilinear forms Δ : E2∕Z2 → ðE2 ⊗ E2Þ� obtained as the point-
wise difference:

Δð·; ·Þ ≔ h·; ·iE2 − f �inith·; ·iE3 :

As usual, f �inith·; ·iE3 ¼ hdf initð·Þ; df initð·ÞiE3 denotes the pullback
of the Euclidean inner product by f init. Notice that f init is strictly
short if and only if the isometric default Δ is a metric, i.e., a map

Fig. 1. The first four corrugations.

Fig. 2. The black curve is corrugated with nine oscillations. Note that the
right endpoints of the curves do not coincide. The corrugated gray curve
can be made arbitrarily close to the black curve by increasing the number
of oscillations.
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from the square flat torus into the positive cone of inner products
of the plane. The convexity of this cone implies the existence of
linear forms of the plane ℓ1;…; ℓS, S ≥ 3, such that

Δ ¼ ∑
S

j¼1

ρjℓj ⊗ ℓj

for nonnegative functions ρj. By a convenient choice of the initial
map f init and of the ℓjs, the number S can be set to three. In prac-
tice we set the linear forms ℓjð·Þ ≔ hUðjÞ∕‖UðjÞ‖; ·iE2 to the nor-
malized duals of the following constant vector fields:

Uð1Þ ≔ e1; Uð2Þ ≔ 1

5
ðe1 þ 2e2Þ; Uð3Þ ≔ 1

5
ðe1 − 2e2Þ;

where ðe1; e2Þ is the canonical basis of E2. For later use, we set

V ð1Þ ≔ e2; V ð2Þ ≔ −2e1 þ e2; V ð3Þ ≔ 2e1 þ e2:

Note that the parallelogram spanned by UðjÞ and V ðjÞ is a fun-
damental domain for the Z2 action over E2. As an initial map we
choose the standard parametrization of a geometric torus. It is
easy to check that the range of the isometric default Δ lies inside
the positive cone

C ¼
�
∑
3

j¼1

ρjℓj ⊗ ℓjjρ1 > 0; ρ2 > 0; ρ3 > 0

�

spanned by the ℓj ⊗ ℓjs, j ∈ f1; 2; 3g, whenever the sum of the
minor and major radii of this geometric torus is strictly less than
one (Fig. S1).

We define a sequence of metrics ðgkÞk∈N� converging toward
the Euclidean inner product,

gk ≔ f �inith·; ·iE3 þ δkΔ; [5]

with δk ¼ 1 − e−γk for some fixed γ > 0. We then construct a se-
quence of maps ðf kÞk∈N� such that every f k is quasi-isometric for
gk, i.e., f �k h·; ·iE3 ≈ gk. In other words, each f k, seen as a map from
the square flat torus to Euclidean three space, has an isometric
default approximately equal to e−γkΔ.

The map f k is obtained from f k−1 by a succession of corruga-
tions. Precisely, if Sk linear forms ℓk;1;…ℓk;Sk

are needed for the
convex decomposition of the difference

gk − f �k−1h·; ·iE3 ¼ ∑
Sk

j¼1

ρk;jℓk;j ⊗ ℓk;j;

then Sk convex integrations will also be needed to (approxi-
mately) cancel every coefficient ρk;j, j ∈ f1;…; Skg. As a key
point of our implementation, we manage to set each number
Sk to three and to keep unchanged our initial set of linear forms
fℓk;1; ℓk;2; ℓk;3g ¼ fℓ1; ℓ2; ℓ3g. We therefore generate a se-
quence

f init; f 1;1; f 1;2; f 1;3; f 2;1; f 2;2; f 2;3; …

with an infinite succession of three terms blocks. Each map is the
result of a two-dimensional convex integration process applied to
the preceding term of the sequence. We eventually obtain the de-
sired sequence of maps, setting f k ≔ f k;3 for k ∈ N�.

Reduction of the Isometric Default. The aim of each convex integra-
tion process is to reduce one of the coefficients ρk;1, ρk;2, or ρk;3
without increasing the two others. This goal is achieved with a
careful choice for the field of directions along which we apply
the corrugations. Suppose we are given a map f k;0 ≔ f k−1;3 whose
isometric default with respect to gk lies inside the cone C:

gk − f �k;0h·; ·iE3 ¼ ρk;1ℓ1 ⊗ ℓ1 þ ρk;2ℓ2 ⊗ ℓ2 þ ρk;3ℓ3 ⊗ ℓ3

[6]

(the ρk;js being positive functions). We would like to build a map
f k;1 with the requirement that its isometric default gk − f �k;1h·; ·iE3

is roughly equal to the sum of the last two terms
ρk;2ℓ2 ⊗ ℓ2 þ ρk;3ℓ3 ⊗ ℓ3. To this end we introduce the inter-
mediary metric

μk;1 ≔ f �k;0h·; ·iE3 þ ρk;1ℓ1 ⊗ ℓ1; [7]

and observe that the above requirement amounts to ask that f k;1
is quasi-isometric for μk;1. Although natural, it turns out that per-
forming a two-dimensional convex integration along the constant
vector fieldUð1Þ does not produce a quasi-isometric map for μk;1.
Instead, we consider the following nonconstant vector field:

Wk;1 ≔ Uð1Þ þ ζk;1V ð1Þ;

where the scalar ζk;1 is such that the field Wk;1 is orthogonal to
V ð1Þ for the metric μk;1. With this choice the integral curves
φðt; :Þ of Wk;1 issuing from the line RV ð1Þ of E2∕Z2 define a
diffeomorphism φ : R∕Z × ½0; 1� → ðR∕ZÞV ð1Þ × ½0; 1�Uð1Þ.
We now build a new map Fk;1 by applying to f k;0 a two-dimen-
sional convex integration (see Eq. 4) along the integral curves
φðt; :Þ, i.e.,

Fk;1ðφðt; sÞÞ ≔ f k;0ðtV ð1ÞÞ þ
Z

s

0

rðφðt; uÞÞeiθðφðt;uÞ;uÞdu: [8]

The isometric condition in the direction Wk;1 for the metric μk;1
is ‖dFk;1ðWk;1Þ‖2

E3 ¼ μk;1ðWk;1; Wk;1Þ. By differentiating [8]
with respect to s we get ‖dFk;1ðWk;1Þ‖2

E3 ¼ r2, hence we must
choose r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μk;1ðWk;1; Wk;1Þ
p

. Furthermore, the map f k;0 is
strictly short for μk;1 because

r2 ¼ ‖df k;0ðWk;1Þ‖2
E3 þ ρk;1‖ℓ1ðUð1ÞÞ‖2

E2 > ‖df k;0ðWk;1Þ‖2
E3 :

We finally set θðq; uÞ ≔ αðqÞ cos 2πNk;1u, where Nk;1 is the fre-
quency of our corrugations.

Note that the map Fk;1 is properly defined over a cylinder, but
does not descend to the torus in general. We eventually glue the
two cylinder boundaries with the following formula, leading to a
map f k;1 defined over E2∕Z2,

f k;1 ∘ φðt; sÞ ≔ Fk;1 ∘ φðt; sÞ − wðsÞ · ðFk;1 − f k;0Þ ∘ φðt; 1Þ; [9]

where w : ½0; 1� → ½0; 1� is a smooth S-shaped function satisfying
wð0Þ ¼ 0, wð1Þ ¼ 1, and wðkÞð0Þ ¼ wðkÞð1Þ ¼ 0 for all k ∈ N�.

To cancel the last two terms in [6], we apply two more corruga-
tions in a similar way. For every j, the intermediary metric μk;j
involves f k;j−1 and the jth coefficient of the isometric default
Dk;j ≔ gk − f �k;j−1h·; ·iE3 . Notice that the three resulting maps
f k;1, f k;2, and f k;3 are completely determined by their numbers
of corrugations Nk;1, Nk;2, and Nk;3.

Theorem 1.For j ∈ f1; 2; 3g, there exists a constantCk;j independent
of Nk;j (but depending on f k;j−1 and its derivatives) such that

i. ‖f k;j − f k;j−1‖C0 ≤ Ck;j

Nk;j

ii. ‖df k;j − df k;j−1‖C0 ≤ Ck;j

Nk;j
þ ffiffiffi

7
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‖ρk;j‖C0

p

iii. ‖μk;j − f �k;jh·; ·iE3‖C0 ≤
Ck;j

Nk;j
:
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The first point ensures that f k;j is C0 close to f k;j−1, whereas
the second point keeps the increase of the differentials under
control and the last point guarantees that f k;j is quasi-isometric
for μk;j.

Main arguments of the proof: We deduce from [9] that

‖f k;j − f k;j−1‖C0 ≤ 2‖Fk;j ∘ φ − f k;j−1 ∘ φ‖C0 :

We then apply Lemma 1 to the right-hand side with f ≔ Fk;j ∘
φðt; ·Þ and f 0 ≔ f k;j−1 ∘ φðt; ·Þ to obtain (i). For (ii), it is sufficient
to bound ‖df k;jðXÞ − df k;j−1ðXÞ‖C0 forX ¼ V ðjÞ andX ¼ Wk;j.
Because ∂φ

∂t ¼ cφV ðjÞ for some nonvanishing function cφ, the

norm ‖df k;jðV ðjÞÞ − df k;j−1ðV ðjÞÞ‖C0 is bounded by ‖
∂ðf k;j∘φÞ

∂t −
∂ðf k;j−1∘φÞ

∂t ‖C0 , up to a multiplicative constant. It is readily seen that
∂ðf k;j∘φÞ

∂t results from a convex integration process applied to
∂ðf k;j−1∘φÞ

∂t and Lemma 1 shows that ‖
∂ðf k;j∘φÞ

∂t − ∂ðf k;j−1∘φÞ
∂t ‖C0 ¼

Oð 1
Nk;j

Þ. For X ¼ Wk;j, we differentiate [9] with respect to s

and obtain

‖df k;jðWk;jÞ − df k;j−1ðWk;jÞ‖C0 ≤ ‖dΨðWk;jÞ‖C0 þ jw 0jC0‖Ψ‖C0

with Ψ ≔ Fk;j − f k;j−1. We bound the second term of the right-
hand side as for (i). Let J0ðαÞ ≔ ∫ 1

0 cosðα cos 2πuÞdu be the
Bessel function of 0 order. On the one hand, for every nonnega-
tive α lower than the first positive root of J0 we have: 1þ J0ðαÞ−
2J0ðαÞ cosðαÞ≤ 7½1− J0ðαÞ�. On the other hand, ‖dΨðWk;jÞ‖2

E3 ¼
r2þ r20 −2rr0 cosðαcosð2πNk;jsÞÞ, where r0 ≔ ‖df k;j−1ðWk;jÞ‖E3 .
Because df k;j−1ðWk;jÞ ¼ rJ0ðαÞt we obtain

‖dΨðWk;jÞ‖2
E3 ≤ r2½1þ J0ðαÞ2 − 2J0ðαÞ cosðαÞ�

≤ 7r2½1 − J0ðαÞ2� ¼ 7ðr2 − r20 Þ:

From [7], we deduce ‖dΨðWk;jÞ‖C0 ≤
ffiffiffi
7

p
‖UðjÞ‖E2‖ρk;j‖

1∕2
C0 ,

hence (ii). Once the differential of Ψ is under control, (iii) re-
duces to a meticulous computation of the coefficients of
μk;j − f �k;jh·; ·iE3 in the basis ðWk;j; V ðjÞÞ.

Corrugation Numbers
We make a repeated use of Theorem 1 to show that the map f k;3
is quasi-isometric for gk and strictly short for gkþ1. Thereby, the
whole process can be iterated. Moreover, the C0 control of the
maps and the differentials, as provided by Theorem 1, allows in
turn to control the C0 and C1 convergences of the sequence
ðf k;3Þk∈N� . With a suitable choice of the Nk;js, this sequence can
be madeC1 converging, thus producing aC1 isometric map f∞ in
the limit. By the C0 control of the sequence we also obtain a C0

density property: Given ϵ > 0, the Nk;js can be chosen so that

‖f∞ − f init‖C0 ≤ ϵ:

Our Isometric Constraint.Compared to Nash’s and Kuiper’s proofs,
we have an extra constraint. For each integer k the isometric de-
fault gkþ1 − f �k;3h·; ·iE3 must lie inside the convex hull C spanned
by the ℓj ⊗ ℓj, j ∈ f1; 2; 3g. The reason for this constraint is to
avoid the numerous local gluings required by Nash’s and Kuiper’s
proofs. Using a single chart substantially simplifies the implemen-
tation. More importantly, keeping the same linear forms ℓj all
through the process enlightens the recursive structure of the
solution that was hidden in the previous methods. To deal with

this constraint, we introduce some more notations. Let

ρminðΔÞ ≔ min
p∈E2∕Z 2

fρ1ðpÞ; ρ2ðpÞ; ρ3ðpÞg;

where the ρjs are, as above, the coefficients of the decomposition
of Δ over the ℓj ⊗ ℓjs. We also denote by errk;j the norm
‖μk;j − f �k;jh:; :iR3‖C0 of the isometric default of f k;j. By Theorem
1, this number can be made as small as we want provided that the
number of corrugations Nk;j is chosen large enough.

Lemma 2. If

15
ffiffiffi
3

p

8
ðerrk;1 þ errk;2 þ errk;3Þ < ðδkþ1 − δkÞρminðΔÞ;

then D ≔ gkþ1 − f �k;3h:; :iR3 lies inside C.

Proof: We want to show that ρjðDÞ > 0 for j ∈ f1; 2; 3g. Let
B ≔ gk − f �k;3h:; :iR3 . Because D ¼ ðδkþ1 − δkÞΔþ B, we have
by linearity of the decomposition coefficient ρj:

ρjðDÞ ¼ ρjððδkþ1 − δkÞΔÞ þ ρjðBÞ ≥ ðδkþ1 − δkÞρminðΔÞ þ ρjðBÞ:
[10]

In particular, the condition ‖ρjðBÞ‖ < ðδkþ1 − δkÞρminðΔÞ implies
ρjðDÞ > 0. Now, it follows by some easy linear algebra that

maxf‖ρ1ðBÞ‖C 0 ; ‖ρ2ðBÞ‖C 0 ; ‖ρ3ðBÞ‖C 0g ≤ 5
ffiffiffi
3

p

8
‖B‖C 0

and a computation shows that ‖B‖C0 ≤ 3ðerr1 þ err2 þ err3Þ.
We are now in position to choose the corrugation numbers,

and doing so, to settle a complete description of the sequence
ðf k;jÞk∈N� ;j∈f1;2;3g.

Choice of the Corrugation Numbers. Let ϵ > 0. At each step, we
choose the corrugation number Nk;j large enough so that the fol-
lowing three conditions hold (j ∈ f1; 2; 3g):
i. ‖f k;j − f k;j−1‖C0 ≤ ϵ

3.2k

ii. ‖df k;j − df k;j−1‖C0 ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δk − δk−1

p
‖Δ‖

1
2

C 0 þ
ffiffiffiffiffi
35

p
‖ρjðDk;jÞ‖

1
2

C 0

iii. errk;j < 4

45
ffiffi
3

p ðδkþ1 − δkÞρminðΔÞ:
Here we have put, similarly as above, Dk;j ¼ gk − f �k;j−1h·; ·iE3 .

The first condition ensures the C0 closeness of f∞ to f init. Thanks
to Lemma 2, the third condition implies that the isometric default
gkþ1 − f �k;3h·; ·iE3 lies inside the cone C. It can be shown to also
imply that the intermediary bilinear forms μk;2 and μk;3 are me-
trics, an essential property to apply the convex integration process
to f k;1 and f k;2. Finally, we can prove the C1 convergence of the
resulting sequence with the help of the second condition.

Note that at each step, the map f k;j is ensured to be a C1 em-
bedding if Nk;j is chosen large enough. This property follows
from the two conditions (i) and (ii), because a C1 immersion,
which is C1 close to a C1 embedding, must be an embedding.

C1 Fractal Structure
The recursive definition of the sequence paves the way for a geo-
metric understanding of its limit. Because the resulting embed-
ding is C1 and not C2, this geometry consists merely of the
behavior of its tangent planes or, equivalently, of the properties
of its Gauss map. We denote by vk;j the normalized derivative
of f k;j in the direction V ðjÞ and by nk;j the unit normal to f k;j.
We also set v⊥k;j ≔ vk;j × nk;j. Obviously, there exists a matrix
Ck;j ∈ SOð3Þ such that
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ðv⊥k;j vk;j nk;jÞ t ¼ Ck;j · ðv⊥k;j−1 vk;j−1 nk;j−1Þ t:

Here, ða b cÞ t stands for the transpose of the matrix with column
vectors a, b, and c. We call Ck;j a corrugation matrix because it
encodes the effect of one corrugation on the map f k;j−1. Despite
its natural and simple definition, the corrugation matrix has
intricate coefficients with integro-differential expressions. The si-
tuation is further complicated by some technicalities such as the
elaborated direction field of the corrugation or the final stitching
of the map used to descend to the torus. Remarkably, all these
difficulties vanish when considering the dominant terms of the
two parts of a specific splitting of Ck;j.

Theorem 2. [Corrugation Theorem] The matrix Ck;j ∈ SOð3Þ
can be expressed as the product of two orthogonal matrices
Lk;j · Rk;j−1 where

Lk;j ¼
cos θk;j 0 sin θk;j

0 1 0

− sin θk;j 0 cos θk;j

0
@

1
AþO

�
1

Nk;j

�

and

Rk;j ¼
cosβj sin βj 0

− sin βj cos βj 0

0 0 1

0
@

1
AþOðεk;jÞ

and where εk;j ≔ ‖h:; :iE2 − f �k;jh:; :iE3‖E2 is the norm of the iso-
metric default, βj is the angle between V ðjÞ and V ðjþ 1Þ, and,
as above, θk;jðp; uÞ ¼ αk;jðpÞ cos 2πNk;ju.

Main arguments of the proof: The matrix Rk;j−1 maps ðv⊥k;j−1
vk;j−1 nk;j−1Þ t o ðtk;j−1 nk;j−1 × tk;j−1 nk;j−1Þ whe r e tk;j−1
is the normalized derivative of f k;j−1 in the direction Wk;j

(Fig. S2). This last vector field converges toward UðjÞ when the
isometric default tends to zero. Hence, Rk;j−1 reduces to a rota-
tion matrix of the tangent plane that maps V ðj − 1Þ to V ðjÞ. The
matrix Lk;j accounts for the corrugation along the flow lines.
From the proof of Theorem 1 (ii) we have ‖df k;jðV ðjÞÞ−
df k;j−1ðV ðjÞÞ‖E3 ¼ Oð 1

Nk;j
Þ. Therefore, moduloOð 1

Nk;j
Þ, the trans-

versal effect of a corrugation is not visible. In other words, a cor-
rugation reduces at this scale to a purely one-dimensional
phenomenon. Hence the simple expression of the dominant part
of this matrix. Notice also that Theorem 1 (i) implies that the
perturbations induced by the stitching are not visible as well.

The Gauss map n∞ of the limit embedding f∞ ≔ lim
k→∞

f k;3 can

be expressed very simply by means of the corrugation matrices:

∀k ∈ N�;

n t
∞ ¼ ð0 0 1Þ ·

Y∞
ℓ¼k

�Y3
j¼1

Cℓ;j

�
· ðv⊥k;0 vk;0 nk;0Þ t:

The Corrugation Theorem gives the key to understand this
infinite product. It shows that asymptotically the terms of this
product resemble each other, only the amplitudes αk;j, the fre-
quencies Nk;j, and the directions are changing. In particular,
the Gauss map n∞ shows an asymptotic self-similarity: The accu-
mulation of corrugations creates a fractal structure.

It should be noted that there is a clear formal similarity be-
tween the infinite product defining n∞ and, in a one-dimensional
setting, the well-known Riesz products,

nðxÞ ≔
Y∞
k¼1

½1þ αk cosð2πNkxÞ�;

where ðαkÞk∈N � and ðNkÞk∈N� are two given sequences. It is a fact
(8) that an exponential growth of Nk, known as Hadamard’s la-
cunary condition, results in a fractional Hausdorff dimension of
the Riesz measure nðxÞdx. A similar result for the normal n∞ of
the embedding of the flat square torus seems hard to obtain. It is
likely that the graph of the Gauss map n∞ has Hausdorff dimen-
sion strictly larger than two. Yet, because the limit map is
a continuously differentiable isometry onto its image, the em-
bedded flat torus has Hausdorff dimension two.

Implementation of the Convex Integration Theory
The above convex integration process provides us with an algo-
rithmic solution to the isometric embedding problem for square
flat tori. This algorithm has for initial data three numbers
K ∈ N�, ϵ > 0, γ > 0, and a map f init : E2∕Z2 → E3 for which
the isometric default Δ is lying inside the cone C. From f init a
finite sequence of maps ðf k;jÞk∈f1;:::;Kg;j∈f1;2;3g is iteratively con-
structed. Each map f k;j is built from the map f k;j−1 by first apply-
ing the convex integration formula [8] to obtain an intermediary
map Fk;j. The gluing formula [9] is further applied to Fk;j result-
ing in the composition f k;j ∘ φ, where φ is the flow of the vector
field Wk;j. We finally get f k;j by composing with the inverse map
of the flow. The number γ rules the amplitude of the isometric
default of each f k;3 via the formula [5]. Formulas [8] and [9] are
completely explicit except for the corrugation numberNk;j which
is to be determined so that f k;j fulfills the postconditions ex-
pressed in the above choice of the corrugation numbers. Because
there is no available formula, we obtain by binary search the smal-
lest integerNk;j that satisfies these postconditions. The algorithm
stops when the map fK;3 is constructed. Note that Theorem 1 in-
sures that the algorithm terminates. The map fK;3 satisfies
‖fK;3 − f init‖C0 ≤ ϵ and its isometric default is less than
3
2
e−Kγ‖Δ‖C0 . Moreover, the limit f∞ of the fK;3s is aC1 isometric

map and ‖f∞ − fK;3‖C0 ≤ ϵ
2K . Therefore, the algorithm produces

an approximation fK;3 of a solution of the underdetermined par-
tial differential system for isometric maps,�

∂f
∂x

;
∂f
∂x

�
¼ 1;

�
∂f
∂x

;
∂f
∂y

�
¼ 0 and

�
∂f
∂y

;
∂f
∂y

�
¼ 1;

and this approximation is C0 close to the initial map f init.
We have implemented the above algorithm to obtain a visua-

lization of a flat torus shown in Fig. 3. The initial map f init is the
standard parametrization of the torus of revolution with minor
and major radii, respectively, 1

10π and 1
4π. Each map of the se-

quence ðf k;jÞk∈f1;:::;Kg;j∈f1;2;3g is encoded by a n × n grid whose
node i1, i2 contains the coordinates of f k;jði1∕n; i2∕nÞ. Flows
and integrals are common numerical operations for which we
have used Hairer’s solver (9) based on DOPRI5 for nonstiff dif-
ferential equations. To invert the flow φ of Wk;j we take advan-
tage of the fact that the UðjÞ component ofWk;j is constant. The
line RV ðjÞ of initial conditions is thus carried parallel to itself
along the flow. It follows that the points φði1n V ðjÞ; i2nÞ of a uniform
sampling of the flow are covered by n lines running parallel to the
initial conditions. We now observe that the same set of lines also
covers the nodes of the n × n uniform grid over E2∕Z2. This last
observation leads to a simple linear time algorithm for inverting
the flow. It is worth noting that the integrand in Eq. 8 essentially
depends upon the first order derivatives of f k;j−1 and upon the
corrugation frequency Nk;j. The derivatives are accurately esti-
mated with a finite difference formula of order four. Regarding
the corrugation frequency, we have observed a rapid growth as
from the four first values of Nk;j. For instance, for γ ¼ 0.1, we
have obtained the following:
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N1;1 ¼ 611; N1;2 ¼ 69;311; N1;3 ¼ 20;914;595;

N2;1 ¼ 6;572;411;478.

In fact, computing these values is already a challenge because a
reasonable resolution of 10 grid samples per period of corrugation
would require a grid with ð10 × 6;572;411;478Þ2 ≈ 4.3 1019

nodes. We have restricted the computations to a small neighbor-
hood of the origin ð0; 0Þ ∈ E2∕Z2 to obtain the above values.
These values are therefore lower bounds with respect to the post-
conditions for the choice of Nk;j. However, these postconditions
are only sufficient and we were able to reduce these numbers for
the four first steps to, respectively, 12, 80, 500, and 9,000 after a
number of trials over the entire grid mesh (see Figs. 1 and 3). The
pointwise displacement between the last map f 2;1 and the limit iso-
metric map could hardly be detected as the amplitudes of the next
corrugations decrease dramatically. Further corrugations would

thus not be visible to the naked eye. To illustrate the metric im-
provement we have compared the lengths of a collection of mer-
idians, parallels, and diagonals on the flat torus with the lengths
of their images by f 2;1. The length of any curve in the collection
differs by at most 10.2% with the length of its image. By contrast,
the deviation reaches 80% when the standard torus f init is taken in
place of f 2;1.

In practice, calculations were performed on a 8-core cpu
(3.16 GHz) with 32 GB of RAM and parallelized C++ code.
We used a 10;0002 grid mesh (n ¼ 10;000) for the three first cor-
rugations and refined the grid to 2 milliards nodes for the last
corrugation. Because of memory limitations, the last mesh was
divided into 33 pieces. We then had to render each piece with
a ray tracer software and to combine the resulting images into
a single one as in Fig. 3. The computation of the final mesh took
approximately 2 h. Two extra days were needed for the final im-
age rendering with the ray tracer software Yafaray (10).

Conclusion and Perspective
Convex integration is a major theoretical tool for solving under-
determined systems (4). After a substantial simplification, we
obtained the implementation of a convex integration process,
providing images of a flat torus. This visualization led us in turn
to discover a geometric structure that combines the usual differ-
entiability found in Riemannian geometry with the self-similarity
of fractal objects. This C1 fractal structure is captured by an
infinite product of corrugation matrices. In some way, these cor-
rugations constitute an efficient and natural answer to the curva-
ture obstruction (11) observed in the introduction, leading to an
atypical solution. A similar process occurs in weak solutions of
the Euler equation (12) and could be present in other natural
phenomena (13, 14).

Despite its high power, convex integration theory remains
relatively unknown to nonspecialists (15). We hope that our im-
plementation will help to popularize this technique and will open
a door to applications ranging from other isometric immersions,
such as hyperbolic compact spaces, to solutions of underdeter-
mined systems of nonlinear partial differential equations. Convex
integration theory could emerge in a near future as a major op-
erating tool in a very large spectrum of applied sciences.

ACKNOWLEDGMENTS. We thank Jean-Pierre Kahane for pointing out Riesz
products, Thierry Dumont for helpful discussions on mathematical softwares,
Damien Rohmer for valuable advice on graphics rendering and the Calcul In-
tensif/Modélisation/Expérimentation Numérique et Technologique (CIMENT)
project for providing access to their computing platform. Research partially
supported by Région Rhône-Alpes [Projet Blanc-Créativité-Innovation
(CIBLE)] and Centre National de la Recherche Scientifique [Projet Exploratoire
Premier Soutien (PEPS)].

1. Nash J (1954) C 1-isometric imbeddings. Ann Math 60:383–396.
2. Kuiper N (1955) On C 1-isometric imbeddings. Indag Math 17:545–556.
3. Gromov M (1970) A topological technique for the construction of solutions of differ-

ential equations and inequalities. Proc Intl Cong Math 2:221–225.
4. Gromov M (1986) Partial Differential Relations (Springer, Berlin).
5. Eliashberg Y, Mishachev N (2002) Introduction to the h-Principle, Graduate Studies in

Mathematics (Am Math Soc, Providence, RI), 48.
6. Geiges H (2003) h-Principle and Flexibility in Geometry, Memoirs of the American

Mathematical Society (Am Math Soc, Providence, RI), 164.
7. Spring D (1998) Convex Integration Theory, Monographs in Mathematics (Birkhäuser,

Basel), 92.
8. Kahane JP (2010) Jacques Peyrière et les produits de Riesz., http://arXiv.org/abs/1003.

4600v1.

9. Hairer E, Norsett SP, Wanner G (1993) Solving Ordinary Differential Equations I, Non-
stiff Problems, Series in Computational Mathematics (Springer, Berlin), 2nd Ed., 8.

10. Yafaray (2010) Yet Another Free RAYtracer, http://www.yafaray.org, Version
0.1.2 beta.

11. Han Q, Hong JX (2006) Isometric Embedding of Riemannian Manifolds in Euclidean
Spaces, Mathematical Surveys and Monographs (Am Math Soc, Providence, RI), 130.

12. Villani C (2010) Le paradoxe de Scheffer–Shnirelman revu sous l’angle de l’intégration
convexe. Séminaire Bourbaki 332:101–134.

13. Griffin LD (1994) The intrisic geometry of the cerebral cortex. J Theor Biol 166:261–273.
14. Liang H, Mahadevan L (2009) The shape of a long leaf. Proc Natl Acad Sci USA

106:22049–22054.
15. Berger M (2000) Encounter with a geometer, part I. Not Am Math Soc 47:183–194.

Fig. 3. The image of a square flat torus by a C 1 isometric map. Views are
from the outside and from the inside.
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