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Neurophysiology is increasingly focused on identifying coincident
activity among neurons. Strong inferences about neural computa-
tion are made from the results of such studies, so it is important
that these results be accurate. However, the preliminary step in
the analysis of such data, the assignment of spike waveforms to
individual neurons (“spike-sorting”), makes a critical assumption
which undermines the analysis: that spikes, and hence neurons,
are independent. We show that this assumption guarantees that
coincident spiking estimates such as correlation coefficients are
biased. We also show how to eliminate this bias. Our solution
involves sorting spikes jointly, which contrasts with the current
practice of sorting spikes independently of other spikes. This
new “ensemble sorting” yields unbiased estimates of coincident
spiking, and permits more data to be analyzed with confidence,
improving the quality and quantity of neurophysiological infer-
ences. These results should be of interest outside the context of
neuronal correlations studies. Indeed, simultaneous recording of
many neurons has become the rule rather than the exception in
experiments, so it is essential to spike sort correctly if we are to
make valid inferences about any properties of, and relationships
between, neurons.
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The behavior of neural systems is frequently explored by exam-
ining the temporal activity of the constituent neuronal cells.

Individual cells are characterized by their spike times, descriptive
statistics of which are used to characterize responses to stimuli,
motor output, and other cognitive states related to memory, emo-
tion, and planning (1). Neuron ensembles are also characterized
by temporal relationships between cells, as measured by correla-
tions between cell pairs. Understanding these relationships may
be key to deciphering the ensemble neural code of the brain in
vivo. For example, cells with correlated activities may be involved
in perception (2) and memory formation (3). The correlation
structure of cell ensembles also dictates how much information
is passed to downstream brain areas (4, 5), and the probability
of activating those areas (6). Measurements of correlation struc-
ture can also be used to decode subsequent activity (7, 8).

Measuring neuronal correlations requires simultaneously re-
cording multiple cells, and technological developments have
made this ensemble approach routine (9). Spike sorting, the as-
signment of spikes’ waveforms to each cell that emitted them
(10), is challenging. When waveforms do not cluster perfectly,
some spikes will be incorrectly assigned to the wrong cell. And
as the number of cells increases, or the signal-to-noise ratio of
the recording decreases, assignments become increasingly ambig-
uous. Conventionally, a measure of “isolation quality,” the discri-
minability of a cell’s spike waveforms from those of other cells,
determines which cells are worthy of further analysis (11). Cells of
inferior isolation quality are typically discarded to preserve the
integrity of subsequent analyses.

This results in an unfortunate trade-off. Accepting only the
best isolated cells ensures the integrity of analyses but wastes
data. For example, if half of recorded cells are excluded then

the number of pairs available for computing correlations is
reduced by 3

4
. Alternatively, we can retain poorly isolated cells

at the risk of corrupting subsequent analyses and undermining
the biological interpretation of the data. Ref. 12 previously
showed that poor isolation yields biased firing rate estimates.
Here, we show that neuronal correlation estimates are biased,
unless isolation quality is perfect, or cells are Poisson, indepen-
dent, and have equal firing rates. Hence, the trade-off between
wasted data and mistaken inference may seem unavoidable. And
as we move to the study of even higher-order relationships in neu-
ronal networks (13), this trade-off worsens exponentially.

We are at an impasse because the “traditional” analytical fra-
mework treats spike sorting and data analysis serially: First,
spikes are assigned to cells using waveform information, without
regard for correlations between cells; second, these assignments
are used to compute those same previously ignored correlations.
However, we show that associations between cells contain infor-
mation about spike identities, and that ignoring this information
for spike sorting induces bias in correlation estimates. Refs. 12
and 14 had made a related point: When the firing rates of poorly
isolated cells are modulated by covariates, these covariates con-
tain spike identity information, and ignoring it for spike sorting
induces bias in firing rate estimates. The solution is to sort spikes
using all available information about spike identities, not just wa-
veform information. Refs. 12 and 14 showed how to embed the
spiking rates of independent cells into spike sorting. Here we
show how to embed the joint spiking probabilities of dependent
cells. This results in “ensemble sorting,” whereby spikes are
sorted jointly rather than one at a time. We show that ensemble
sorting yields unbiased correlation estimates, even for poorly iso-
lated cells. This enables a more efficient use of data, since more
cells can be included in correlation analyses, without corrupting
scientific interpretations.

Even though the scientific focus of this paper is the estimation
of coincidence rates and correlations, it should be of interest to all
areas of systems neuroscience. Indeed, ensemble analysis of many
cells has become the rule rather than the exception in experimen-
tal neuroscience (15), making it essential to sort spikes with these
analyses in mind if we are to correctly infer both the individual
and the ensemble properties of cells.

Background and Results
Traditional spike-sorting algorithms sort spikes one at a time, so
they ignore dependencies between spikes, and therefore between
cells. This systematically biases subsequent estimates of neuronal
correlation. We propose an “ensemble” approach to sort spikes
jointly, which takes into account dependencies between spikes
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and cells. We show that subsequent correlation analyses are un-
biased, and we illustrate our results on simulated data.

Spikes are Sorted One at a Time in Traditional Spike Sorting. This sec-
tion presents a synopsis of spike sorting. Additional details can be
found in the Supporting Information, Sec. S1. Consider an elec-
trode that records I cells. When its bandpassed voltage exceeds
a threshold, we record a snippet of data a around the threshold
crossing. All spike-sorting methods assume implicitly or explicitly
that suprathreshold waveform measurements a originate from a
mixture distribution

f ðaÞ ¼ ∑
I

i¼1

πif iðaÞ; [1]

which simply states that, given a suprathreshold event, the prob-
ability that it originated from cell i is πi, and if so, its measurement
a arises from a distribution f i centered around the true waveform
of cell i. Eq. 1 is often visualized by overlaying the raw waveforms
or by plotting their principal components against one another,
which aims to reveal clusters that each corresponds to a different
cell. Spike sorting consists of separating these clusters.

Many methods exist to separate clusters (10, 16). We focus on
model-based clustering because it is optimal when the correct
model is used (ref. 17, p. 350], and it can be extended to correct
the deficiencies identified herein. Model-based clustering starts
with applying Bayes rule to Eq. 1 to obtain the posterior prob-
ability that a spike with waveform a was emitted by cell i

PðX ¼ ijaÞ ¼ πif iðaÞ
f ðaÞ ; [2]

where the denominator is Eq. 1 and the numerator is one of its
summands. The spike is then assigned to the cell with identity x
that maximizes PðX ¼ ijaÞ,

x ¼ argmax
i¼1;…;I

PðX ¼ ijaÞ: [3]

The most important feature of traditional spike sorting, with
respect to our claims, is that spikes are sorted one at a time; i.e.,
independently of other spikes.

Spikes Should be Sorted Jointly: Ensemble Sorting.A standard prob-
ability result states that only Poisson spike trains are memoryless
(18). In that case, spikes are independent, which means that the
probability of a spike occurring at a particular time does not de-
pend on the past—i.e., does not depend on the times of previous
spikes or on which cells emitted these spikes. Conversely, this im-
plies that if an electrode spike train is not Poisson, then the prob-
ability of a spike occurring at a particular time does depend on
the times of previous spikes and on which cells emitted them.
That is, the history of a non-Poisson spike train contains spike iden-
tity information. Current spike-sorting methods ignore that infor-
mation since they sort spikes independently of other spikes. In
Theorem 1.1, we show that this induces bias in estimates of neu-
ronal correlations between cells.

This is of concern because electrode spike trains are seldom
Poisson. Indeed, because only Poisson spike trains are memory-
less, spikes are independent if and only if all cells are Poisson and are
mutually independent. But phenomena such as refractory periods
imply that spike timings are not independent; they depend on
when and which cells spiked in the past. Refs. 19 and 20 handled
this by prohibiting adjacent spikes from being assigned to the
same cell. But more crucially in the context of studying neural
correlations, the combined spike train of two or more dependent
cells cannot be Poisson, even when individual cells are Poisson,
since their spikes are dependent. Below, we develop the statisti-

cally optimal spike-sorter for non-Poisson electrode spike trains,
and in Theorem 1.2, we show that this sorter yields unbiased es-
timates of neuronal correlations.

Assume that we want to sort jointly n spikes. We denote by
X ¼ ðX1;…; XnÞ the vector of their unknown identities; Xj can
take values in f1; 2;…; Ig, whereXj ¼ imeans that cell i emitted
spike j. Spike identity information is contained in the waveform
features vector a ¼ ða1;…; anÞ, and, as argued above, in the his-
tory of the electrode’s spike train. This history is fully summarized
by the vector of interspike intervals (ISIs), s ¼ ðs1;…; sn; snþ1Þ,
where sj is the time elapsed between spikes ðj − 1Þ and j. Spike
sorting aims to estimate X1;…; Xn. The optimal approach relies
on calculating the I n joint posterior probabilities of possible spike
identities, given the variables that contain identity information:

PðX1 ¼ i1;…; Xn ¼ inja; sÞ: [4]

Then the equivalent of single spike assignments in Eq. 3 consists
of assigning the n spikes to the cells with identities

ðx1; x2;…; xnÞ ¼ argmax
ði1;…;inÞ

PðX1 ¼ i1;…; Xn ¼ inja; sÞ: [5]

Notice that Eqs. 4 and 2, and 5 and 3, have parallel structures.
Eqs. 2 and 3 apply to a single spike, while Eqs. 4 and 5 apply
jointly to n spikes, and are further conditioned on the spike
train’s history s. To illustrate Eqs. 4 and 5, consider an electrode
that records I ¼ 3 cells (A, B, and C), and imagine that n ¼ 5
spikes were observed. The spikes’ joint identities can be one
of I n ¼ 35 possibilities, with joint posterior probabilities
(Eq. 4) listed in Fig. 1. The largest is PððX1; X2; X3; X4; X5Þ ¼
ðA; A; B; A; AÞja; sÞ ¼ 0.4, so joint spike sorting (Eq. 5) assigns
the third spike to cell B and all others to cell A.

Ensemble sorting is fully determined by the joint posterior
probability in Eq. 4. To evaluate it, we use Bayes rule to rewrite

PðX1 ¼ i1;…; Xn ¼ inja; sÞ ¼
πiðsÞf iðajsÞ

f ðajsÞ ; [6]

where the denominator is the sum of the numerator over all pos-
sible identities i. Eq. 6 is the multivariate equivalent of the spike-
sorting rule for a single spike in Eq. 2, but with all quantities now
functions of the spike train history s. To use Eq. 6, we need to
specify f iðajsÞ and πiðsÞ. The first term, f iðajsÞ, is the joint distri-

Fig. 1. Hypothetical joint posterior probabilities (Eq. 4) of the identities of
five spikes observed on an electrode that records three cells, A, B, and C. For
example, the probability that these spikes were emitted successively by cells
B, A, B, B, and C is 0.10. Spikes are allotted by time into bins for the computa-
tion of coincidence measures.
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bution of n observed waveforms a emitted by cells i, and with ISIs
s. If waveforms are stationary, they do not depend on the ISIs, so
f iðajsÞ ¼ f iðaÞ reduces to the product of the marginals,Q

n
j¼1 f ijðajÞ, where f i is the waveform distribution of cell i that

appeared in Eqs. 1 and 2. Otherwise, a dependent waveform
model must be used, e.g., ref. 20 to model waveform attenuations;
this is described in Supporting Information, Sec. S2.2. The second
term, πiðsÞ ¼ PðX1 ¼ i1;…; Xn ¼ injsÞ, is the probability that
the n spikes were emitted by cells i ¼ ði1; i2;…; inÞ, given the his-
tory s of the electrode spike train. If the cells are independent and
Poisson, spikes do not depend on the past, so πiðsÞ ¼ πi ¼Q

n
j¼1 πij , where πi is the proportion of spikes from cell i that

appeared in Eqs. 1 and 2. Otherwise, πiðsÞ requires models for
the cells firing rates, conditional on the activity of the cell ensem-
ble, and the implied distribution of the ISIs. We discuss this
further in the Supporting Information, Sec. S2.2, where we also
derive the analytic expression for πiðsÞ for the example of the
illustration section.

Neuronal Correlation Estimates are Biased. Several measures of
correlated neuronal activity exist: For example, spike count cor-
relations, coincidence rates, joint surprise (21), or information-
theoretic measures capturing nonlinear associations; e.g., mutual
information. To streamline the presentation, we focus in this sec-
tion on coincidence rates, where by coincidence we mean co-
occurrence within a time bin of width γ, not simultaneity. Results
generalize to other measures, as shown in the illustration section,
since coincidence rates are related arithmetically to correlations
and, under certain assumptions, to other measures.

Let θ denote the true coincidence rate for a pair of cells. The
usual estimate for θ is the proportion of bins in which both cells
emitted at least 1 spike each; we call it T⊥, where the “indepen-
dent” subscript ⊥ serves as a reminder that spikes were sorted one
at a time. We call T∪ the same estimator calculated from spikes
sorted jointly per Eq. 5; the “union” sign ∪ symbolizes that spikes
were sorted together. We do not however advocate the use T∪,
but that of a related estimator, ~T∪, which is shown to have desir-
able properties in Thm.1.2: ~T∪ is the average over bins of the joint
posterior probabilities that both cells spiked in these bins; ~T∪
preserves the uncertainty in determining spike identities when
waveform clusters overlap, in contrast to the current practice
of considering that the largest posterior probability (Eqs. 3, 5)
provides the correct spike assignments. This is discussed further
in Supporting Information, Sec. S3.

We illustrate the calculations of T∪ and ~T∪ using the data in
Fig. 1. Imagine that we cut the spike train in two bins of width γ so
that the first two spikes belong to the first bin, and the last three
to the other bin. We want to estimate the coincidence rate θ of
cells A and B in bins of such duration. We determined earlier that
joint sorting assigns spike 3 (in bin 2) to cell B and all other spikes
to cell A. Only the second bin contains spikes from cells A and B,
so the estimate of θ is T∪ ¼ 1∕2. To calculate ~T∪, we need the
posterior probabilities that cells A and B spiked in each bin. Stan-
dard probability theory obtains these by summing the full joint
posterior in Eq. 4 over the identities of all spikes outside of that
bin. Hence, the posterior probability that cells A and B both
spiked in the first bin is PððX1; X2Þ ¼ ðA; BÞ or ðB; AÞja; sÞ ¼
0.13þ 0.1 ¼ 0.23. The posterior probability that cells A and
B both spiked in the second bin is PððX3; X4; X5Þ ¼ any
permutation ofðA; B; kÞ; k ¼ A; B; Cja; sÞ ¼ 0.4þ 0.13þ 0.07þ
0.06þ 0.04 ¼ 0.7. This gives ~T∪ ¼ ð0.7þ 0.23Þ∕2 ¼ 0.465.

We now state properties of traditional and ensemble coinci-
dence rate estimates, T⊥ and ~T∪.

Theorem 1.1. T⊥ is a biased and inconsistent estimate of θ, i.e.,
EðT⊥Þ ≠ θ even in large samples, unless spikes can be classified with
perfect confidence, or cells are Poisson, independent, and have the
same firing rates.

Proofs are in the Supporting Information, Sec. S4. Although we
proved Theorem 1.1 only for coincidence rates, any statistic com-
puted from spike trains of two or more cells will also suffer from
estimation bias under traditional spike sorting, if the distribution
of that statistic depends on whether the spikes are in fact inde-
pendent. This applies to all the common measures of association:
correlation, coincidence rate, mutual information, and joint sur-
prise (21), since they all depend on (and try to address) whether
or not cells are independent. In practice, the bias will be greater
the more waveform clusters overlap, the more cells deviate from
Poisson, and the greater the cells’ dependence, as illustrated in
Figs. 2 and 3. Importantly, the bias does not disappear in large
samples—i.e., T⊥ is not consistent for θ—so recording more data
does not help.

There are two cases when T⊥ is unbiased. When waveform
clusters do not overlap, spikes can be classified with no errors
and subsequent analyses are valid. Otherwise T⊥ is biased unless
(i) cells are independent and Poisson, and their waveforms are
independent, and (ii) cells have identical firing rates. Under
(i), spikes and waveforms do not depend on the spike train his-
tory, so ignoring it for spike sorting, as traditional sorters do, is
the correct assumption. But if (ii) is not met, T⊥ suffers from an-
other, unrelated, source of bias: When waveform clusters overlap,
one can never be perfectly confident that a spike was emitted by a
particular cell; we know that some spikes will be misclassified.
Therefore, assigning each spike fully (Eq. 3) to a neuron ignores
our uncertainty about spike assignments. Ref. 12 showed that this
biases firing rate estimates, unless cells have equal rates. Here, we
also show that this biases estimates of neuronal correlations such
as T⊥; see Fig. 3. Note that T∪ also suffers from that source of
bias, since it is calculated from spikes assigned fully (Eq. 5). But
~T∪ uses the full posterior distribution of spike identities (Eq. 4),
which removes that source of bias, as shown below.

Theorem 1.2. ~T∪ is unbiased; i.e., Eð ~T∪Þ ¼ θ, and under weak con-
ditions stated in the proof, its variability can be reduced arbitrarily by
increasing the sample size, so ~T∪ is consistent for θ.

Theorem 1.2 is valid regardless of howmuch waveform clusters
overlap. In practice, if the overlap is substantial or if the sample is
small, ~T∪ will be relatively variable so it may not match θ closely.
However it matches in expectation, i.e., Eð ~T∪Þ ¼ θ, and record-
ing more data will help reduce its variability.

Illustrations: Correlation and Coincidence Rate Estimates for Two
Dependent Cells. To understand the magnitude of the problem
for experimental neuroscience, we estimate the spike count cor-
relation ρ and coincidence rate θ between independent and de-
pendent pairs of simulated Poisson and non-Poisson cells.

A simulation requires (i) a spiking model for individual cells,
(ii) a dependence model for cell pairs, and (iii) a model for the
waveforms. (i) We consider cells that deviate from Poisson ac-
cording to parameters found empirically by ref. 22. They observed
that the ISIs of cortical cells were well fit by gamma distributions
with shape parameters k, and corresponding coefficient of varia-
tion CV ¼ 1∕

ffiffiffi
k

p
; k ¼ CV ¼ 1 corresponds to Poisson spike

trains, while k > 1 (CV < 1) models periodicity, and k < 1
(CV > 1) “burstiness.” Ref. 22 found that k varied widely within
cortical areas, with some cells having k < 1 and others k > 1; and
across areas, with median values k ¼ 1.23, 1.95, and 2.70 for MT/
MST, LIP, and Area 5, respectively. In Fig. 1, we used k ¼ 0.5, 1
and 2 to investigate a relevant range. (ii) Cells are correlated for
various reasons, including common synaptic input, and reciprocal
or directed connectivity. Here we consider directed connectivity;
results are qualitatively similar under other models. We assume
that cell A spikes at constant rate λA and cell B at rate λB, unless
cell A spikes, in which case the rate of cell B is multiplied by β for
the next 10 msec. The magnitude of β dictates the cells’ degree of
association; β ¼ 1 models independence, β > 1 models an exci-
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tatory effect, and β < 1 an inhibitory one. For Fig. 2, we selected
values of β to generate pairs of uncorrelated cells (ρ ¼ 0, β ¼ 1),
and pairs of positively and negatively correlated cells, with true
correlations ρ ¼ 0.1 and −0.05. (iii) We assume that waveforms
are independent, which is warranted when cells have low firing
rates. Without loss of generality, we use one-dimensional wave-
form features that have Gaussian distributions with means 0 and
μ for cells A and B, respectively, and unit variances (f 1 and f 2 in
Eq. 1). The overlap between f 1 and f 2 depends on μ, which de-
termines the probability of spike misclassifications. (In the limit
μ ¼ 0, clusters overlap completely, so waveforms contain no in-
formation that can be used to assign spikes.) In the two cell case, a
spike misassignment is a type 1 error for one cell and a type 2
error for the other, so we define the spike misclassification rate
to be the average of the rates of these two error types. For ex-
ample, when λA ¼ 4 Hz, λB ¼ 12 Hz, and β ¼ 2, then μ ¼ 2 in-
duces a spike misclassification rate of 17.3%. In Fig. 2, we varied
μ so that the spike misclassification rate would range from 0
to 25%.

We used this model to simulate the spike trains and waveform
features of cell pairs, which we combined to produce electrode
spike trains. We then sorted the spikes using traditional spike
sorting (Supporting Information, Sec. S5.2), and estimated the cor-
relation R between pairs of cells’ spike counts in bins of length γ.
Fig. 2 shows R against the spike misclassification rate, for λA ¼
λB ¼ 10 Hz and bin size γ ¼ 25 ms; we vary these parameters in
Fig. 3. The various curves correspond to various degrees of reg-
ularity: Poisson (k ¼ 1), bursty (k ¼ 2), and periodic (k ¼ 0.5),
and values of β that correspond to true correlations ρ ¼ 0 (inde-
pendent cells), 0.1 and −0.05. Fig. 2 shows that R is biased, unless
cells are independent and Poisson (ρ ¼ 0, k ¼ 1), or perfectly iso-
lated (zero misclassification rate). Otherwise, the bias increases
with the rate of misclassified spikes. When cells are Poisson, R
shrinks towards zero regardless of the sign and magnitude of the

true correlation ρ; this is consistent with ref. 23; and also with
ref. 24, who observed the same with their measure of association,
the joint surprise. In the bursty (k < 1) and periodic (k > 1)
cases, R has positive and negative bias, respectively. This is con-
sistent with the findings of refs. 25 and 26 who show that misclas-
sification of spikes from non-Poisson spike trains can lead to
misestimation of correlations. Hence the sign and magnitude
of the bias depend on the ISI distribution, and thus on the brain
area the cells are recorded from. It is also possible to identify
correlation when it does not exist; i.e., ρ ¼ 0 but R ≠ 0, and fail
to identify it when it does exist; i.e., ρ ≠ 0 but R ¼ 0. Importantly,
the bias is sufficiently large that sets of cell pairs whose true cor-
relations ρ are very different from one another, may have the
same estimated correlations R once the rate of misclassification
reaches 5–10% (Fig. 2, triangles). Since a misclassification rate of
5% or more is not rare (11) (also see Supporting Information,
Sec. 5.1), our results cast some doubts on the correlation values
reported in the neuroscience literature.

Our next simulation serves several purposes. We use the same
simulation model, but (i) we consider only Poisson cells to inves-
tigate more specifically the bias induced by true neuronal corre-
lation rather than by non-Poisson spiking. (ii) We investigate
the effects of more model parameters. (iii) We estimate the co-
incidence rate θ of cell pairs rather than their correlation ρ, to
illustrate that all association measures are biased under tradi-
tional spike sorting. (iv) We implement ensemble sorting to con-
firm that ~T∪ is indeed unbiased for θ, as proved in Thm.1.2.
Detailed descriptions of the traditional and ensemble sorters
are in the Supporting Information, Sec. 5.

Fig. 3 shows plots of the relative biases of T⊥ and ~T∪ against
the spike misclassification rate, the degree of dependence be-
tween cells via β, the spike rate of cell A, and the relative spike
rate of cell B compared with cell A. A y axis value of 0 implies an
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Fig. 3. Relative biases of coincidence rate estimates from traditional and en-
semble sorting, ðT⊥ − θÞ∕θ (black) and ð ~T∪ − θÞ∕θ (gray), as functions of (A) the
spike misclassification rate due to overlapping waveform clusters, (B) the cou-
pling strength β, (C) the spike rate λA, and (D) the rate ratio λB∕λA. The x axes
of B andD are on a logarithmic scale. In each panel, parameters held constant
are μ ¼ 2 (17.3% misclassified spikes), λA ¼ 4 Hz, λB∕λA ¼ 3, and β ¼ 2. En-
semble sorting (gray) always yields unbiased estimates. Traditional sorting
(black) never does, except when cells are independent and have equal rates
(Theorem 1.1), or when waveform clusters are fully separated (Theorem 1.1
and Fig. 3A, zero error rate). Otherwise, the bias of T⊥ increases as the wave-
form clusters overlap (Fig. 3A), the coupling strength increases (Fig. 3B), and
the firing rates differ (Fig. 3D).
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tions of the rate of misclassified spikes. Pairs of spike trains were simulated
according to three different gamma interval processes: k ¼ 1 (Poisson, solid
lines); k ¼ 0.5 (more bursty, dashed); and k ¼ 2 (more periodic, dotted). These
processes mimic the inter-spike-interval (ISI) distributions seen in experimental
data (22), classically characterized by the coefficient of variation CV ¼ k−1∕2.
For each of the three cases, we simulated three different values of true corre-
lation between spike trains: 0.1, 0, and−0.05, marked by the open circles along
the y axis. Across the x axis we vary the rate at which a traditional spike-sorting
procedure misclassifies spikes, the arithmetic mean of type 1 and type 2 errors.
As this error rate increases, the estimation of correlation diverges from its true
value. In the Poisson case, the bias is always towards an estimate of zero cor-
relation. In the bursty case, it is always positive, and in the periodic case it is
always negative. Also indicated are the rates of misclassification at which an
uncorrelated (ρ ¼ 0), bursty (k ¼ 0.5), pair of cells has estimated correlation
indistinguishable from a correlated (ρ ¼ 0.1), periodic (k ¼ 2), pair of cells (tri-
angle); and themisclassification rate at which an uncorrelated (ρ ¼ 0), periodic
pair of cells becomes indistinguishable from an anticorrelated (ρ ¼ −0.05),
bursty pair of cells (inverted triangle).
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unbiased coincidence rate estimate; -1 means that all coinci-
dences are missed; 1 means that the estimate is twofold too large.
Fig. 3 shows that the ensemble coincidence rate estimate ~T∪ is
unbiased for all configurations of the model parameters. The tra-
ditional estimate T⊥ never is, and its bias appears to be a complex
function of the model parameters. Fig. 3B displays clearly the two
sources of bias—full spike assignments (Eq. 3) and independent
sorting – that plague T⊥. The cells are independent when β ¼ 1,
yet T⊥ underestimates θ; this is the effect of full spike assign-
ments, which we know (12) becomes more severe as the cells’ fir-
ing rates diverge from one another (here λB∕λA ¼ 3). As jβ − 1j
increases, which strengthens the association between cells, the
bias arising from independently sorting correlated spikes com-
bines with the first source of bias. Consider also Fig. 3D, which
plots relative bias versus λB∕λA for a fixed degree of association
β ¼ 2. When firing rates are equal (λB∕λA ¼ 1), and when, as
here, the waveform feature distributions are identical apart from
a shift in their mean, it is easy to show that traditional spike sort-
ing misclassifies the same average number of spikes for both cells.
In that case, full assignments (Eq. 3) do not bias the coincidence
rate estimate, so that the negative bias of T⊥ at λB∕λA ¼ 1 must
be due to ignoring the dependence between cells when spike sort-
ing. Then as jλB∕λA − 1j increases, that bias is compounded with
an increasingly large bias from full spike assignments. Consider-
ing Fig. 3 overall, we see that the bias of T⊥ is largest when the
cells have overlapping waveform clusters, have very different fir-
ing rates, and are strongly correlated.

Next, we illustrate that biased estimates not only corrupt scien-
tific inference and interpretation, they also degrade our ability to
detect correlations. We consider again the many datasets we si-
mulated to produce Fig. 3B, and for each, we test the null hypoth-
esis that the cells are independent at the 0.05 significance level.
This consists of comparing the observed coincidence rate against
the rate expected under independence, and calculating a p-value.
We then estimate the power of the test—i.e., the probability that
it detects correlated activity—by the proportion of times that a
significant p-value (<0.05) is obtained.

Fig. 4A shows the power functions of the two tests based on
T⊥ and ~T∪ as functions of β ≥ 1, the degree of positive as-
sociation between the cells, for λA ¼ 4 Hz, λB∕λA ¼ 3, and
μ ¼ 2 (17.3% misclassified spikes). Results are similar for other
model settings. We see that ensemble sorting provides uni-
formly more power. For example, when β ¼ 2, the power to
detect that the cells are dependent is approximately 35% using
T⊥ and 90% using ~T∪.

Note that when the null hypothesis of independence is true
(β ¼ 1), both tests reject the null hypothesis approximately 5%
of the time. Hence, while the test based on T⊥ lacks power to
detect existing associations, it does have the correct rate of false

positive (spurious) detections. This should not be surprising here:
Traditional spike sorting assumes that spikes are independent,
which matches the data in this illustration at β ¼ 1, since we
simulated Poisson cells. When cells are not Poisson, we know
from Thm.1.1 and Fig. 2 that T⊥ is biased even when cells are
independent, which necessarily biases the rate of spurious detec-
tions. In contrast, the test based on ~T∪ retains the correct detec-
tion rate since ~T∪ is unbiased.

Another common summary of the power of a test is the recei-
ver-operating characteristic (ROC) curve, which plots power
(sensitivity, the probability of rejecting a null hypothesis when
it is false) versus significance level (1—specificity, the probability
of rejecting a null hypothesis when it is true). A desirable test has
high sensitivity for all specificity. Fig. 4B shows the ROC curves of
the two tests based on T⊥ and ~T∪. The vertical dashed line is at
the commonly used significance level of 5%. Again, the test based
on ~T∪ has uniformly better power.

Discussion
Several authors have reported that spike misclassifications lead to
misestimation of associations between cells. For example, refs. 23
and 24 found that positive correlations were underestimated by
both overly liberal and overly conservative spike-sorting proce-
dures, refs. 25 and 26 noted that cells deviating from Poisson also
impacted correlation estimates. In this paper, we proved that cor-
relation estimates calculated from spike trains sorted using cur-
rent methods are biased, unless cells are isolated, or they are
Poisson, independent, and have equal rates. Here and previously
(12, 14) we argued that this bias occurs because the standard
paradigm—spike sorting first, statistical analyses second—ex-
ploits the information that spike sorting provides about the quan-
tities of interest (e.g., correlations here, tuning curves in refs. 12
and 14), but ignores the reverse that these quantities also provide
information about spike identities. The correct approach is to
consider these relationships simultaneously rather than sequen-
tially. Our solution is “ensemble sorting,” which consists of sort-
ing spikes using waveforms as usual, while also accounting for the
interdependent spiking of the cell ensemble. We proved that re-
sulting correlation estimates are unbiased, even when spikes can-
not be sorted with perfect confidence.

Ensemble sorting involves significant conceptual and practical
shifts for spike sorting: Spikes must be sorted jointly, and wave-
forms must be retained in case some later analysis requires resort-
ing spikes under a different joint spiking model. This is more
cumbersome than the current practice of spike sorting once
and never considering the waveforms again. But our simulations
motivate a serious consideration of ensemble sorting. Indeed,
unless the analyst retains only perfectly sorted cells, the size of
the biases can be scientifically significant and corrupt inferences
about coincident spiking. Bias can also translate into a sizable loss
of power to detect existing correlations in data. In contrast, en-
semble sorting yields unbiased estimates even for poorly isolated
cells, which permits the analysts to retain more cells for analysis.
(One might still exclude some poorly isolated cells when the var-
iances of estimates are too high.) Therefore, experimental inves-
tigations will be more efficient: Fewer experiments are needed to
accurately infer the degree of correlated activity in a neural sys-
tem; and when the number of experiments is fixed, these infer-
ences are more accurate.

We stress that the bias discussed in this paper is unrelated to
the biases that can arise from implementation issues such as
choosing poor models for waveform features, having difficulties
estimating the spike sorter from data, and determining the num-
ber of cells recorded by electrodes. Our results prove that if spikes
are sorted independently of other spikes, the bias will not vanish
even if an otherwise optimal spike sorter is applied with the true
models. But if the correct models are used with ensemble sorting,
correlation estimates will be unbiased. The bias discussed in this
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Fig. 4. Bias in coincident spike rate estimates translates into loss of power to
detect correlated cells. (A) Sensitivity (power) of tests for coincident spiking
as function of coupling strength β. Other model parameters are held at μ ¼ 2,
λA ¼ 4 Hz, and λB∕λA ¼ 3. The light and dark curves correspond respectively
to the tests based on ensemble and traditional estimates, ~T∪ and T⊥, of the
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when using ensemble sorting. The vertical dashed line is at the most com-
monly used significance level of 5%.
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paper arises because current spike sorters ignore some informa-
tion about spike identities. Our results should therefore be of
interest to all experimentalists, since simultaneous recording of
many cells has become the rule rather than the exception in
experiments (15). Ref. 12 showed that firing rate estimates are
biased. Here we showed that coincident spiking estimates are
biased. Estimates of other statistical quantities are also presum-
ably biased, and it would be worth investigating when these biases
are scientifically significant.

In this paper, we formulated the concept and framework for
ensemble sorting, which relies on the posterior probabilities of
spike identities in Eq. 6. To obtain Eq. 6, one must specify a model
for potentially nonstationary waveforms, and a model for the
cells’ firing rates, conditional on the previous activity of the cell
ensemble—i.e., conditional on when past spikes were emitted and
on which cells emitted them. Such conditional rate models are
routinely used in the analysis of neural data (27). Finally, one
must also determine the ISI distribution induced by the condi-
tional rate model. When spikes are independent, this distribution
is exponential. Otherwise it must be derived analytically based on
the properties of the assumed joint spiking model. The Supporting
Information, Sec. S5.3 contains that derivation for the unidirec-
tional coupling two-cell model application in Figs. 3 and 4,
and shows that the ISI distribution involves mixtures of truncated
and shifted exponential distributions. We have not provided the
form of the ISI distribution for a network involving an arbitrary
number of cells, but we are confident we can do this in future
work using the same framework.

Once all its components are specified, Eq. 6must also be fitted
to data. This requires that models for waveforms and for ensem-
ble spiking be specified together. The traditional approach re-
quires the same components, but they are used separately:
The waveform model is used for spike sorting first, the joint spik-
ing model for statistical analyses second. The important point is
that ensemble sorting requires no more model assumptions than
the traditional approach. Moreover, ensemble sorting makes con-
sistent assumptions across spike sorting and data analysis—the
traditional approach does not—which is why the former alone
yields unbiased analyses. Since Eq. 6 is a mixture distribution,
we are confident that estimation can be done by maximum like-
lihood via an expectation-maximization (EM) algorithm. We im-

plemented a related algorithm (14), as well as the algorithm
needed to estimate the ensemble sorter for the connectivity mod-
el of the illustration section; the detailed implementation will be
reported elsewhere.

We have not addressed any computational issues in this paper.
They include choosing appropriate waveform and spiking models,
choosing initial values of the EM algorithm, and determining the
number of neurons. The same issues arise in traditional spike
sorting and analyses. The methods proposed here are conceptual;
they are not designed to resolve implementation issues. When we
implement the proposed procedures to data in future work, we
will choose currently available models for waveforms and joint
spiking, we will fit the joint spike-sorting rule (Eq. 6) using an
EM algorithm, we will determine the number of cells using pe-
nalized likelihood, and test the goodness of model fits by pena-
lized likelihood or likelihood ratio tests (14).

Finally, the results in this paper concern cells recorded on the
same electrode. But if cells recorded on different electrodes do
not behave independently, these electrodes may contain informa-
tion about the spike identities on other electrodes, and ignoring
that information will bias correlation estimates. To see this, as-
sume that cells A and B are recorded on an electrode, cell C
on another, that A is independent of B and C, but that B and
C always spike together. Assume that A and B fire at equal rates
and have the same spike waveforms. If we sort the electrodes se-
parately, we will assign spikes to A and B at random, with spike
misclassification 50%; then estimates of correlation between A
and C, and between B and C, are inflated and deflated, respec-
tively. But if we sort the electrodes jointly, we will (correctly) as-
sign to B all the spikes that occur concurrently with a spike from
C, and to A all the other spikes, with spike misclassification rate
0%; then correlation estimates are unbiased. This is related to
refs. 28 and 23, who report that for imperfect spike classification,
the degree of true correlation of cells recorded on different elec-
trodes will influence estimates of the degree of correlation of cells
recorded on the same electrode.
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