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Abstract
We consider the problem of dichotomizing a continuous covariate when performing a regression
analysis based on a generalized estimation approach. The problem involves estimation of the
cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the
continuous covariate has a significant impact on the outcome. Due to the multiple testing used to
find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve
the type-I error rates. We illustrate the techniques on one data set of patients given unrelated
hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to
patient affects the outcome of the transplant and what is the smallest cell dose which is needed for
good outcomes.

Keywords
Dichotomized outcomes; Generalized estimating equations; Generalized linear model; Pseudo-
values; Survival analysis

1. Introduction
In many medical studies it is of interest to investigate the relationship between explanatory
variables, such as prognostic factors, treatment factors or patient characteristics, and the
outcome. The outcome may be continuous, such as the time to some event or the level of
some assayed enzyme, or it may be a discrete outcome, such as an indicator of relapse or
death. We may also be interested in state occupation probabilities in multistate processes
modeled via a pseudo-observation approach applied to censored data as discussed in, for
example, Andersen et al. (2003). In any case, regression models based on generalized
estimating equations (GEEs) (McCullagh and Nelder, 1989; Liang and Zeger, 1986) can be
applied to examine the effects of covariates on the outcome.

In many cases the covariates of interest are continuous in nature. While they could be
modeled as such, many clinicians find the interpretation of such covariates difficult and they
prefer to model these effects as categorical or binary covariates reflecting different
prognostic groups of patients based on the measured value of the continuous covariate. In
other cases, the covariate may represent the dose of some drug or some other therapeutic
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agent, and the clinician is interested in identification of a therapeutic threshold. Even though
evaluation of a variable’s prognostic value is best done with the variable in its continuous
form and there is a possible loss of information when categorizing a continuous covariate,
the need for thresholds for clinical use and treatment decisions justifies the development of
appropriate statistical methods for finding optimal cutpoints. Methodologies for finding
optimal cutpoints are also needed and used in various tree building algorithms (Lausen et al.,
2004).

When discretizing a continuous covariate and then testing for the covariate effect, a number
of techniques can be used. One group of techniques relies on the investigator to provide
cutpoints based on historical data or it uses cutpoints based on a split into groups at a
predetermined percentile of the continuous covariate. Another approach is to let the data
decide on the cutpoint and then perform the test of the covariate effect on the two resulting
groups. In most cases the continuous covariate in this approach is split into groups based on
either the largest value of the likelihood or the largest value of some two-sample test statistic
after a search of possible cutpoints. This selection of the largest likelihood or test statistic
leads to an inflated type-I error due to multiple testing, so some correction needs to be
applied to obtain the correct type-I error.

A data-dependent cutpoint selection and test adjustment has been proposed for survival data
by a number of authors. The approach is based on a Cox proportional hazards model with a
single covariate defined as 1 or 0 depending on the value of the continuous covariate.
Jespersen (1986) based an adjusted test on the maximum value of the score statistic from the
Cox model which suitably standardized converges to a Brownian bridge under the null
hypothesis. Contal and O’Quigley (1999) modify the log rank test statistic and show that the
process consisting of the score statistic using cutpoints at the order statistics of the
continuous covariates converges to a Brownian bridge process. Lausen and Schumacher
(1992, 1996) showed that for any standardized test statistic C (δ) for the two-sample
problem with groups defined by a threshold parameter, δ, the following convergence result
holds:

Here X(m) is the mth-order statistic of the continuous covariate and W0 is a standard
Brownian bridge process. Klein and Wu (2004) compare these estimators and extend the
Contal and O’Quigley approach to the accelerated failure time model and the Cox model
with additional covariates.

In this note we examine these data-driven methods in a generalized linear model framework.
We are particularly interested in using these techniques in pseudo-observation regression
problems. The pseudo-observation approach has been suggested as a method for direct
censored data regression modeling for the survival function (Logan et al., 2008), for the
cumulative incidence function (Klein and Andersen, 2005), for the mean survival time
(Andersen et al., 2004), for multistate probabilities (Andersen et al., 2003) and for mean
quality of life (Andrei and Murray, 2007). In this approach, pseudo-observations are formed
as the difference between the full sample and leave-one-out estimator based on an
approximately unbiased estimator of the parameter of interest. These pseudo-observations
are then used in a GEE model.

The methods we developed will be illustrated using data from a study from the Center for
Blood and Marrow Transplantation Registry. In this study 709 patients with Acute Myeloid
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Leukemia (n = 395) or Acute Lymphocytic Leukemia (n = 397) in first (n = 204) or second
(n = 488) complete remission were given a Bone Marrow Transplant (BMT) from an
unrelated donor transplant. The cell source for all the transplants was bone marrow. The
research question of interest was: “What level of CD34 cells in the graft is needed to lower
the death in remission rates and is there a threshold dose of CD34 cells to affect the relapse
rates?”. The questions require an estimation of the threshold dose level of CD34 cells and a
comparison of the “high” and “low” CD34 dose groups for death in remission and relapse
cumulative incidence probabilities.

2. Techniques for the generalized linear model and generalized estimating
equations with a single covariate

In this section we show two approaches to discretizing a continuous covariate and testing for
its significance based on the generalized estimating equation approach. Here we assume that
the response for individual i, i = 1, …, n, is possibly multivariate and is denoted by Yi =
(Yi1, …, YiJ)t. We allow for the Y to be continuous or discrete outcomes. Let μi = E[Yi] =
(μi1, …, μiJ)t be the mean vector for individual i. We assume a generalized linear model
(GLM) framework, so that the distribution of the Yij belongs to the same family with mean
μij and common dispersion parameter ϕ (Liang and Zeger, 1986). Also, let Xi be the
continuous covariate associated with individual i. We assume that the mean and the
dichotomized covariate, Zδ, are related by

where g(·) is a known link function, αj for j = 1, …,J, δ and γ are unknown parameters and

 is the dichotomized covariate obtained from X, namely

(1)

We are interested in estimating the threshold parameter δ as well as the inference on the
parameter γ. For a given δ, estimates of parameters can be based on the generalized
estimating equations (GEEs) suggested by Liang and Zeger (1986):

(2)

where β = (γ, α1, …, αj)T and Vi is a working covariance matrix. GEE estimates of β, β̂ are
found by solving Eq. (2). A sandwich estimator can be used to estimate the covariance
matrix of β:

where
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and

Standard packages such as GEESE in R or PROC GENMOD in SAS can be used to obtain
estimates and their variances for a given δ.

In our setup, we are interested on the hypothesis H0 : γ = 0. One test that can be used is the

Wald test given by , which has a standard normal distribution when H0 is
true and δ is known a priori. A second test is the generalized score test (Boos, 1992). For the
two-sample problem with no covariates, Liu et al. (2008) show that the score statistic for the
test H0 : γ = 0 is given by

where n0 is the number of observations with , n1 is the number of observations with

 is the estimator of αj under the null hypothesis,

. Under the null hypothesis,  has a chi-square distribution with
one degree of freedom when δ is known a priori.

In order to estimate δ, one common approach is to compute either  for values of δ in

some range and pick up the value that maximizes . This procedure is appropriate
for estimating δ, but an adjustment must be made in order to make an inference for γ and
preserve the type-I error rate.

The first adjustment that can be made is a GEE version of the approach in Lausen and
Schumacher (1992, 1996). Both the generalized score statistic and the Wald statistic can be
used. In order to apply this approach, the possible range of threshold values must be
restricted to [X(nε); X(n(1−ε))], where X(k) is the kth-order statistic of the continuous variable
and 0 < ε < 0.5. Let C (δ) be the test statistic for the two-sample problem with groups
defined by δ. It can be shown that

as n → ∞, where W0 is a Brownian bridge. Details of the proof can be found in Lausen and
Schumacher (1992) and Billingsley (1968, chap. 4). Miller and Siegmund (1982) show that,
for b > 0,
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where φ(·) is the standard normal density function. This result motivates the following
approximation for a corrected p-value:

where z = Φ−1(1 − p/2), Φ(·) is the standard normal cumulative distribution function and p is
the unadjusted p-value computed at the maximum of the test statistic. Notice that the
approximation is valid for p < 0.5. Inferences for γ can be made by computing the corrected
p-value for the maximum value of the test statistic.

The second approach considered here is a modification of the method in Contal and
O’Quigley (1999). To construct the test statistic, recall that, for the two-sample problem
without covariates, assuming that the working covariance matrix is the identity matrix, the
score function can be written as

where  is the linear predictor and μij = g−1(ηij). Let

(3)

 be the score evaluated under the null hypothesis.

Billingsley (1999, pg. 196) proved the following theorem.

Theorem 1. Let {ξ1, ξ2, …} be a stationary and ergodic process for which its conditional
expected value E(ξi|ξ1, …, ξi−1) is equal to zero with probability 1 and for which the

expected value  is positive and finite. Define

If

Tunes-da-Silva and Klein Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2012 May 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for p ∈ [0, 1]; then Sn(p) ⇒ W(p) as n → ∞, where W(p) is a Brownian motion process.

In our setup, in order to apply this result, we must first put the data in increasing order with
respect to the continuous covariate X. Now, with the ordered data, define

and assume that Yi⊥Yi′. With this assumption, we can then see that the condition E(ξi|ξ1,
…, ξi−1) = 0 is verified. It is important to notice that we are assuming that individuals are
independent, but observations within the same individual may be correlated. Also, under the
null hypothesis H0 : γ = 0, recalling that we are assuming a common dispersion parameter
for distribution of the responses, we have that the Yi are independent and identically
distributed (i.i.d.), so the ξi are also independent and identically distributed. Therefore, the
ξi are stationary and ergodic. Finally, under the null hypothesis, we have

where VY is the covariance matrix of Yi and ġ is the vector of elements , which is

finite. With the ordered data, it is clear that there is a value δp for which . In

fact, any value of δp between X([np]) and X([np]+1) satisfies , so the midpoint
can be used. If we define

we have Sn(p) ⇒ W(p) as n → ∞. Also, the process defined by Sn(p) − pSn(1) converges to
a Brownian bridge (O’Quigley, 2008, pg. 245).

In practice, we replace the unknown quantities in the ξi by consistent estimators under the
null, so we work with Ŝn(p). Following O’Quigley (2008, pg. 236), also based on Slutsky’s
theorem, the large sample properties of the resulting test statistic will not be affected. Also,
in general, the values of αj and υ2 are not known and we substitute by their estimators. The
parameters αj can be estimated using the estimating equations under the null hypothesis, and

for υ2 we can use the sample variance . Hence
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(4)

Therefore, because Ŝn(1) = 0, we have that Ŝn(p) = Ŝn(p) − pŜn(1) (Klein and Wu, 2004) and,
finally, Ŝn(p) ⇒ W0(p) as n → ∞, where W0(p) is a Brownian bridge. It has been shown
that the distribution of the extreme value of the Brownian bridge (Billingsley, 1999, pg. 103)
is given by

(5)

If we order the ξ by the continuous covariate for which we want to find a cutpoint, under the
null hypothesis this sequence is formed by i.i.d. observations and the sequence of Ŝn(p)
constructed with the ξ ordered converges to a Brownian bridge. We can then use as test
statistic the maximum of Ŝn(p), p ∈ [0, 1]. If the null hypothesis is rejected, we estimate as
cutpoint any value between X(m) and X(m+1), where X(m) is the mth value of the ordered Z
and m = np*, where p* is the value of p for which |Ŝn(p)| is maximum. An important remark
that should be made here is regarding the use of pseudo-observations. Although the pseudo-
observations are computed based on a jackknife technique (and, therefore, they are
computed based on (n − 1) observations), it can be shown that under some conditions they
can be approximated by independent and identically distributed variables (Graw et al.,
2009), so the results for the ξ remain valid.

3. The multiple covariate case
In the previous section, we considered the situation with only a single covariate in the
model. However, in most practical applications there are other covariates, and we now
discuss the extension to allow for many covariates in the model. The test statistic remains
the same, so we discuss it here briefly.

As before, assume that Yij is the outcome for the jth observation on individual i, j = 1, …,J
and i = 1, …, n. Also, let Xi be the continuous covariate associated with individual i and 
be a vector of other covariates. We assume that the mean and the covariates are related by

where g(·) is a known link function, αj for j = 1, …,J, γ and β* are the unknown parameters

and  is the categorized covariate given by (1).

As before, we are interested in finding the cutpoint δ and testing the hypothesis about γ. For
a given δ, denote by β = (γ, α1, α2, …, αJ, β*T)T the vector of all unknown parameters. The
estimating equations are given by (2) and the variance of estimates can be estimated by the
sandwich estimator.

In order to test the hypothesis H0 : γ = 0, the usual Wald test or the generalized score test
(Boos, 1992) can be used. The Wald test can be obtained easily using any standard package
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for GEEs. In order to derive an expression for the generalized score test, using an
independence working covariance matrix Vi = I, we rewrite the score Eq. (2) as

where Zi is the (J × p) matrix of covariates (design matrix) of the ith observation, i.e., it is

the augmented matrix given by , p is the number of rows of the
parameter vector β, 1J is the vector with J rows of 1s, IJ×J is the identity matrix and Ġi =

diag(ġ(ηij)) is the diagonal matrix of derivatives . The score test for H0 : γ =
0 is based on the first element of U(β) and the expression is exactly the same as that
obtained for the single covariate case. As before, we must order the data increasing on the

continuous covariate X and let  be defined as in (3). We assume that the Yi are
independent random variables with mean μi and the same covariance matrix Σ, so the (Yi −
μi) are also independent with mean zero and common covariance matrix Σ. Now suppose we

have covariates  which constitute an i.i.d. sample from a distribution P(·). The
random vectors Ġi(Yi − μi) are, therefore, i.i.d. with zero mean and variance EP(ĠiΣĠi).
This allows us to apply the same results as in the situation without any covariates. Therefore,
we can compute the sequence of Ŝn(p) given by (4) and the test statistic is given by
supp∈[0, 1] |Ŝn(p)|, with distribution given by (5).

4. Monte Carlo study
A simulation study was designed to compare the performance of the different test
procedures in terms of their type-I error rate and power. We constructed the simulation for
correlated observations, and J-variate normal random variables were generated for each
subject, J = 2 or 4. We took the means to be

(6)

for i = 1, …, n, j = 1, …, J. Here the J variables had a common correlation of ρ = 0, 0.25, or
0.5. The z-values used in generating the T-values were obtained by dichotomizing a
continuous covariate X taken to be uniform [−1, 1]. Under the alternative hypothesis we
used cutpoints of zero and 0.2. Total samples of size n = 50, 100, 200 and 400 were
examined. Ten thousand samples were generated for each combination of γ, δ, ρ, J and n.

We computed the Wald and score test statistics along with both uncorrected and corrected P-
values, and the sup score test statistic. We used ε = 0, 0.1, 0.15, 0.2 and 0.25 to restrict the
range of possible values for the cutpoint. Although this restriction is not required for the new
test statistic, we also computed the new test statistic using this range restriction.

Since we have a large number of scenarios, we applied analysis of variance (ANOVA)
techniques to summarize the results. For the type-I error rate, we defined the outcome, R, as
the percentage rejection rate minus the nominal rate of 5%, so good performance is indicated
by values of the expectation of R near 0. Negative values indicate a conservative test
procedure and positive vales indicate that the test procedure inflates the type-I error. The
first model fit to our results has the following effects:

(7)

Tunes-da-Silva and Klein Page 8

Comput Stat Data Anal. Author manuscript; available in PMC 2012 May 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When fitting the model without an intercept and normalizing the effects of the other factors
to have a sum of zero, the estimates for the interaction terms have the interpretation as
average deviations from the nominal level of 5% adjusted for the effects of the other factors.
Table 1 compares the size of the tests by values of ε. The results on Table 1 show clearly
that an adjustment must be made because there is an enormous inflation of type-I error rate
for both the uncorrected Wald and score test statistics. The adjusted Wald statistic also
inflates the type-I error rate a little bit, but the inflation gets smaller when we increase the
value of ε. The score test statistic is conservative, and we can also see that the type-I error
gets closer to 5% when we move ε towards 0.5. The sup score test statistic is still
conservative, but has a type-I error closer to the nominal one when compared to the other
test statistic.

Table 2 examines, using appropriate ANOVA models, the effect of sample size, number of
points and correlation on the size of the three adjusted tests. In Table 2, in the first model
fitted we see that the Wald test is anti-conservative for small samples while the other two
tests are conservative. For moderate samples the test based on the sup scores seems to
perform the best. The models for the number of time points and the correlation ρ in Table 2
suggest that the results hold regardless of the dimension of Y or the correlation.

To study the power of the tests we simulated as described above with γ = 0.25 or 0.5 and δ
= 0 or 0.5. ANOVA methods on the percent rejections, R, are used to summarize the data.
Table 3, based on the ANOVA model

(8)

shows that the power of the tests is not affected by the choice of ε. We see in Table 4 that
the power increases as the sample size increases and as the dimensionality of Y increases.
Also in Table 4, we see no difference in power for the two true cutpoints. In all tables the
adjusted Wald statistic has the highest power. However, since it was anti-conservative this
does not suggest that it is the best statistic to use. The new sup score statistic performs quite
well and we suggest its use.

Finally, we show some results for the cutpoint estimates. Fig. 1 shows the mean bias for
different sample sizes and different cutpoints. The results suggest small bias for all three
procedures, with a smaller standard error for the sup score method. We also conducted a
simulation study with data generated with a different link function and different values for
the β in the linear predictor of the mean function and different cutpoints. The conclusions
are similar to the ones shown here, so we do not include the results here.

5. An application to analysis of survival data based on pseudo-values
We illustrate the use of these techniques using data on 708 patients given an unrelated donor
bone marrow transplant for acute leukemia. The question of interest is the effect of the
number of CD34 cells in the donor marrow on the incidence of relapse and death in
remission. Clinicians would like to know if there is a minimum cell dose beyond which
patients have either lower relapse or less death in remission.

To examine the threshold CD34 count question for these two competing risks we use the
pseudo-observation method of Klein and Andersen (2005). In this approach for relapse we
compute at a grid of time points τj and the pseudo-observations, Yij, are based on the
difference between the full sample estimate of the cumulative incidence of relapse and the
leave-one-out estimator of the cumulative incidence. This difference or pseudo-observation
is used in a generalized estimating equation to study the covariate effects on the relapse
cumulative incidence function. In the example we use j = 0.5, 1, 2 and 3 years post
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transplant and a complementary log–log link function. Note that once the pseudo-
observations are computed the censored data competing risks problem has been reduced to a
GEE problem. Of course, we have similar pseudo-observations for the death in remission
probability.

Fig. 2 shows the value of the three statistics. All statistics are adjusted for the patient’s age,
Karnofsky performance score and the degree of HLA matching. Here we see that the
optimal cutpoint for both relapse and death in remission is at 2.93 × 106 CD34 cells. Table 5
shows the unadjusted and adjusted tests for the effect of CD34 count. We see that if no
adjustment is made for the estimation of the cutpoint that all tests are significant at the 5%
level, while the more appropriate adjusted tests suggest that the CD34 cell count is only
important for death in remission. In Table 6 we present the parameter estimates which shows
that patients with low CD34 counts have significantly more death in remission.

6. Discussion
We have proposed a new test statistic that can be used to estimate a threshold value and also
to make inference about the regression coefficient associated with the categorized covariate
for generalized linear models and generalized estimating equations. We compared our test
statistic with the Wald and score tests statistics as well as their corrected versions. Our
simulations show clearly that adjustments must be made when making inference for the
regression parameter after a cutpoint is selected because the type-I error rates are extremely
high when no correction is used. The adjusted Wald test still inflates the type-I error a little
while the adjusted score test statistic is more conservative. Our proposed test statistic is
conservative, but with type-I error probability closer to the desired one. Also, the method
provides good estimates of the true cutpoint when a threshold model is correct.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Mean bias for cutpoint estimates.
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Fig. 2.
Test statistic values for the bone marrow data example.
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Table 2

Average deviations from nominal 5% level for three tests adjusted using ANOVA models.

Factor Test statistic

Adjusted Wald Adjusted score Sup score

Sample size

50   4.01 −3.07 −2.14

100   1.36 −2.17 −1.64

200   0.31 −1.46 −1.12

400 −0.13 −1.04 −0.82

Number of time points
2   1.36 −1.96 −1.44

4   1.41 −1.91 −1.42

Correlation ρ

0.00   1.42 −1.87 −1.37

0.25   1.29 −2.01 −1.52

0.50   1.49 −1.94 −1.41

0.75   1.34 −1.92 −1.43
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