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Cor pulmonale has long been described in very severe chronic ob-
structivepulmonarydisease (COPD)andemphysema.Cross-sectional
results frompopulation-based studies showthat left ventricular filling
and a variety of vascular measures in the systemic circulation are
abnormal in preclinical COPD and emphysema and that a predom-
inant vascular change in COPD and emphysema is endothelial and
microvascular dysfunction. These findings suggest that pulmonary
vascular changes may occur early in COPD and emphysema and
might contribute to pathogenesis. However, longitudinal epidemi-
ologic studieswithdirectmeasures of thepulmonary vasculature are
lacking; therefore, inferences are limited at present. New imaging-
based approaches to the assessment of the pulmonary vasculature
are applicable to epidemiologic studies andmayhelp in defining the
relationship of pulmonary vascular damage to progression of COPD
and emphysema. These measures may also provide imaging-based
surrogate markers, and novel therapeutics targeted to the pulmo-
nary vasculature might reduce symptoms and improve function in
these common diseases.
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COR PULMONALE: PULMONARY HEART DISEASE

Increased pulmonary vascular resistance and right heart failure
have long been known to occur in very severe chronic obstructive
pulmonary disease (COPD) and emphysema (1). Classic reports
of cor pulmonale describe elevated pulmonary vascular resis-
tance and right heart failure with reductions in left ventricular
filling, left ventricular stroke volume, and cardiac output, but
generally preserved left ventricular ejection fraction (2–4).

Clinical experience has demonstrated mild resting pulmonary
hypertension in severe COPD without a significant reduction in
left ventricular ejection fraction, although exercise-induced pul-
monary hypertension is more common (1). In this usual schema,
cor pulmonale is generally absent in mild, moderate, and even
severe COPD but develops as an effect of end-stage, very se-
vere COPD. The relationship between the FEV1 and left ven-
tricular stroke volume can be conceptualized as resembling a
hockey stick, with little effect of airflow limitation on left ven-
tricular hemodynamics until the FEV1 is very severely reduced.

The traditional explanations for elevated pulmonary artery
pressures in COPD are that tissue destruction causes loss of vas-
culature and that hypoxemia and acidosis cause pulmonary artery

vasoconstriction (5, 6). Severe hyperinflation from air trapping
is correlated with ventricular dimensions (7) and may cause pul-
monary air pressure to exceed pulmonary venous pressure, but its
effect on hemodynamics is debated (8). Surgical relief of hyper-
inflation, for example, lowers pulmonary venous but not arterial
pressures (9).

Current work in basic science described elsewhere in this
issue (see article by Petrache and colleagues, pp. 492–496) sug-
gests that endothelial damage may contribute to emphysema,
and recent observations of impaired left ventricular filling in pre-
clinical emphysema and COPD provide indirect support for pul-
monary vascular damage in the development of emphysema and
COPD. Both revive the endothelial hypothesis of emphysema.

PULMO VASCULARE: VASCULAR LUNG DISEASE

Historical Perspective

Early work noted prominent pulmonary vascular changes in em-
physema and posited that vascular damage in the lungs may con-
tribute to end-organ damage in the lungs as it does in other organs,
such as the kidney. Almost 60 years ago, Abbott noted, on filling
the pulmonary arteries of patients with emphysema post mortem
with lipiodol, the “absence of smaller arteries in the more em-
physematous areas” (10).

The prominent pathologist A. A. Liebow articulated more
than 50 years ago an early construct of the endothelial hypothesis
of COPD. After careful examination of the pulmonary arteries
and veins of patients with emphysema, he postulated that changes
in the local vascular milieu caused alveolar destruction in emphy-
sema (11). Leading pulmonary physiologists at the time did not
accept his hypothesis (12).

Difficulty in accessing the pulmonary vasculature compart-
ment in clinical far less large-scale epidemiological studies, how-
ever, resulted in Liebow’s hypothesis languishing. Contemporary
imaging modalities are starting to allow the testing of his hypoth-
eses in epidemiologic studies. To date, however, most clinical and
epidemiologic studies have relied on proxy measures of pulmo-
nary vascular structure and function. Most of these proxy meas-
ures have been defined in the systemic circulation and can be
grouped into endothelial, microvascular, and macrovascular
measures. This approach provides basic inferences but is lim-
ited in that abnormalities in the pulmonary circulation may or
may not be reflected in the systemic circulation, and vice versa.
An alternative approach is to examine blood flow into the left
ventricle as a very indirect measure of pulmonary vascular resis-
tance and pulmonary vascular damage. More recent and ongoing
studies are using newer noninvasive approaches for the direct
assessment of pulmonary vascular structure and function to tackle
the endothelial hypothesis in epidemiologic studies more directly.

Systemic Endothelial Function

Direct assessment of pulmonary vascular endothelial function
in vivo requires invasive catheterization and is not feasible in
epidemiologic or large clinical studies. Flow-mediated dila-
tion (FMD) of the brachial artery is a physiological test of
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endothelium-dependent, nitric oxide–mediated vasodilation,
which has been validated against both coronary (13, 14) and
pulmonary artery endothelial function (15).

We performed a study among 107 cotinine-confirmed greater
than 10 pack-year former smokers nested within an ongoing pro-
spective cohort study of smokers (16). FMD of the brachial
artery was measured after 12-hour fast and 15-minute rest.
Forty percent of participants had COPD. We observed signifi-
cant associations of FMD with post-bronchodilator FEV1 and
percent emphysema and consistent associations with diffusing
capacity (DLCO).

Because endothelial dysfunction was known to occur in very
severe COPD (17), these observations might have been driven
by the presence of a few patients with very severe COPD and
not by the larger number of participants with milder or no
COPD. In other words, endothelial dysfunction might have
been a result of end-stage COPD and absent in milder COPD.
However, to be involved in the pathogenesis of COPD and
emphysema, endothelial dysfunction would be a requisite com-
ponent of early, mild disease. The use of generalized additive
models with smoothing function allowed the examination of this
question. Generalized additive models with smoothing functions
fit curves to the data, should curves be present (e.g., a hockey
stick pattern) and straight lines should there be no evidence for
nonlinearity. The associations of FMD with FEV1 and with
percent emphysema (Figure 1) were not hockey sticks but
rather were linear across the spectrum from normality to dis-
ease without statistical evidence for a hockey stick pattern (16).
This finding suggests that endothelial dysfunction is a compo-
nent of mild, early COPD and not just a result of end-stage cor
pulmonale.

In addition, the relationship of FMD to the FEV1 in this study
was entirely explained by percent emphysema, possibly suggest-
ing that emphysema mediated the relationship of FMD to the
FEV1. This finding is also consistent with the endothelial hy-
pothesis, which is likely of greater relevance to emphysema than
to airflow limitation.

Eickhoff and colleagues subsequently replicated these associ-
ations for lung function among 60 patients with COPD and 40
control subjects, with the additional contribution of showing in-
dependence from serummarkers of inflammation (18). Likewise,
Moro and colleagues found lower FMD among 44 patients with
COPD without hypoxemia compared with 48 control subjects
and a consistent relationship of FMD to airflow limitation (19).

Both studies also found evidence for impaired nitrate-mediated
dilation in COPD, which suggests subendothelial vascular dys-
function in COPD. The impairments in endothelial-dependent
dilation in patients with COPD were considerably greater than
those observed for endothelial-independent dilation (e.g., 31%
vs. 15%, respectively, in Eickhoff and colleagues [18]) such that
both authors concluded a mixed but predominantly endothelial
defect in COPD.

In contrast, Maclay and colleagues found no difference in pre-
cise measures of endothelial reactivity during intrabrachial infu-
sion of endothelium-dependent vasodilators among 18 men
with COPD and 17 male control subjects (20). There were sev-
eral differences between this study and the first three that might
account for the diverse result. The first three measured systemic
endothelial function using FMD, whereas the latter measured it
using venous occlusion plethysmography. FMD reflects endothe-
lial function in both conduit and resistance arteries, whereas ve-
nous occlusion plethysmography reflects endothelial function in
resistance arteries (21). Conduit and resistance arteries in the
systemic circulation differ with respect to caliber, location, and
molecular characteristics (22), as they likely do in the pulmonary
circulation, and only FMD has been validated against endothelial
function of the pulmonary arteries, to my knowledge. Second, the
strongest associations for FMD were observed for emphysema,
which was not assessed in the Maclay and colleagues study (20).
Third, its sample size was small, raising the possibility of a false-
negative result. An additional difference was the high prevalence
of inhaled corticosteroid use in that study (78% vs. 9% in ours;
not reported in Eickhoff and colleagues [18] and Moro and col-
leagues [19]), which may be relevant because inhaled corticoste-
roids appear to normalize airway endothelial function (23).
Whether these findings apply to systemic or pulmonary endothe-
lial function is unknown, but they raise an intriguing explanation
for the difference between the studies.

Hence, most of the published epidemiologic and clinical data
suggest that systemic endothelial dysfunction occurs early in
COPD and particularly emphysema, although the direct rele-
vance to the pulmonary circulation, mechanisms, direction,
and clinical implications of this association remain to be defined.

Systemic Microvascular Structure and Function

Multiple validated measures of small vessel and microvascular
function are available for the systemic circulation. These include

Figure 1. Linear relationship between endothelial function

measured by flow-mediated dilation of the brachial artery
and percent of emphysema in former smokers. (Reprinted

with permission from Reference 16.).
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direct measures of retinal arteriolar and venular caliber and
microalbinuria. The retinal arterioles narrow predominantly in
response to hypertension and the retinal venules widen predom-
inantly from smoking, inflammation, and diabetes; both changes
independently predict cardiovascular events (24, 25). Less direct
measures of systemic microvascular function include microalbu-
minuria, which is a measure of endothelial dysfunction, and mi-
crovascular damage in the renal circulation (26, 27), which also
predicts cardiovascular events regardless of the presence of di-
abetes and hypertension (28, 29).

Among 3,397 participants with retinal measures in the Multi-
Ethnic Study of Atherosclerosis (MESA) Lung Study, we re-
cently found that retinal venular caliber was inversely associated
with the FEV1 and FEV1/FVC ratio independent of smoking,
biomarkers of inflammation, diabetes, and other risk factors for
microvascular disease (30). The association was linear, as was pre-
viously found for FMD.

Polatli and others have found that microalbuminuria is in-
creased in COPD exacerbations (31, 32), and Casanova and col-
leagues demonstrated greater microalbuminuria among patients
with COPD compared with control subjects independent of smok-
ing (33). They further found that microalbuminuria was partic-
ularly correlated with oxygen saturation in patients with COPD.

Together, these cross-sectional studies suggest that COPD is
associated with systemic microvascular damage, as evidenced in
the retinal and renal circulations and that these shared deficits in
pulmonary and systemic microvascular structure and function are
not simply due to shared risk factors, such as cigarette smoking.
These cross-sectional associations suggest that COPD may cause
systemicmicrovascular disease, that there is a shared susceptibility
to the deleterious effects of cigarette smoking, or that endothelial
dysfunction and microvascular disease in both the pulmonary and
systemic circulations may contribute to COPD pathogenesis.

Systemic Macrovascular Structure and Function

In contrast to findings for systemic microvascular disease, the
relationship between COPD and emphysema and systemic mac-
rovascularmeasures is more varied.Measures of systemicmacro-
vascular disease include those that approximate atherosclerosis
and those that approximate large artery stiffness. Whereas ath-
erosclerosis results predominantly from lipid deposition and re-
lated inflammation, changes in collagen and elastin matrix and
composition, vascular aging, and atherosclerosis all can contrib-
ute to large artery stiffness.

Of noninvasive measures of atherosclerosis, coronary artery cal-
cium measured on cardiac-gated computed tomography (CT) scans
is, arguably, the best predictor of clinical cardiovascular events (34,
35). In the MESA Lung Study, there was no evidence of an asso-
ciation of either airflow limitation or percent emphysema on CT
scan with either the presence or the extent of coronary artery
calcium (36). These findings were similar to a smaller study of
Korean men, in whom the FVC but not the FEV1/FVC ratio was
associated with coronary artery calcium (41). The latter study sug-
gests, in fact, that increased coronary artery calcium may be more
of a component of restrictive rather than obstructive lung disease.

Thickening of the carotid intimamedia is ameasure of subclin-
ical atherosclerosis that independently predicts cardiovascular
events. The common carotid intima media thickens in response
to hypertension, whereas thickening of the internal carotid intima
media may be a response to endothelial dysfunction and oxidative
stress (37, 38). Airflow limitation was also associated in the
MESA Lung Study with greater internal carotid intima media
thickness among smokers but not among never smokers (36),
findings that were similar to those in the Atherosclerosis Risk
In Communities (ARIC) Study (39).

In contrast, percent emphysema on CT scan was associated
with reduced ankle-brachial index in the MESA Lung Study
regardless of and independent of smoking history (36), and em-
physema fully explained the previously reported association of
lung function with ankle-brachial index (39, 40). Low ankle-
brachial index is a measure of atherosclerosis of the large arteries
and defines peripheral vascular disease clinically. Nonetheless,
endothelial dysfunction and microvascular disease are prominent
features of peripheral vascular disease (41), and lower leg an-
gioplasty in patients with peripheral vascular disease improves
FMD (42). Hence, these findings may be of relevance to the pul-
monary microcirculation, although validation studies are lacking.
Interestingly, emphysema appeared to mediate the relationship
of ankle-brachial index to lung function, reminiscent of our
earlier findings for FMD (16).

Measures of central artery stiffness, such as pulse-wave velocity,
are abnormal in clinical COPD (43) and emphysema among
patients with COPD (44) but have been previously reviewed in de-
tail in this journal (45) and hence are not covered here. These
measures integrate stiffness, caliber, and tortuosity. We were not
able to demonstrate significant relationships between decrements
in lung function or subclinical increases in percent emphysema
with a more direct measure of proximal aortic stiffness, distensibil-
ity of the ascending aorta on magnetic resonance imaging (MRI)
among 1,917 participants in a population-based context (46).

Findings for macrovascular disease are more varied in COPD
and emphysema and range from thoroughly null for coronary ar-
tery calcium to modestly strong relationships of internal carotid
intima media thickness with lung function among smokers and
ankle-brachial index with emphysema. Both patterns of associ-
ations might suggest that endothelial dysfunction is an early link
of the vasculature to COPD and emphysema.

Percent Emphysema, Airflow Limitation, and Impaired Left

Ventricular Filling

The endothelial hypothesis of emphysema suggests that endothe-
lial and microvascular damage increase pulmonary vascular re-
sistance with concomitant increases in emphysema and resultant
airflow obstruction. Because elevated pulmonary vascular resis-
tance causes impaired left heart filling and reductions in stroke
volume and cardiac output, we hypothesized that greater percent
emphysema and lower FEV1/FVC ratio would be associated with
decrements in left ventricular end-diastolic volume, stroke vol-
ume, and cardiac output.

We evaluated these relationships among 2,771 participants in
MESA Lung Study with left ventricular measures on MRI. We
found strong, highly significant associations of the FEV1/FVC
ratio and particularly percent emphysema with left ventricular
end-diastolic volume, stroke volume, and cardiac output (47).
These associations were linear across the spectrum of subclini-
cal to clinical lung disease (Figure 2), which suggests that low
left ventricular stroke volume and cardiac output occur not only
in severe COPD but also in mild and subclinical lung disease. In
contrast, there were no significant associations of lung measures
with left ventricular ejection fraction.

These associations were modified by smoking status (Figure
2; P interaction , 0.001). The multivariate association between
percent emphysema and left ventricular end-diastolic volume
was 9.2 ml (95% CI, 6.5–11.8; P ¼ 10211) in current smokers,
4.2 ml (95% CI, 2.8–5.4; P ¼ 10210) in former smokers, and
2.6 ml (95% CI, 1.4–3.7; P ¼ 1025) in never smokers. The mag-
nitude of the association with left ventricular end-diastolic vol-
ume among smokers was greater, on a standard deviation basis,
than all previously described risk factors, including age, and was
accompanied by a reduction in left ventricular mass.
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These unique results suggest that pulmonary blood flow is re-
duced in participants with subclinical airflow obstruction and
emphysema such that left ventricular filling is impaired, with re-
sultant reductions in stroke volume and cardiac output. Explan-
ations for this subclinical association include early primary
smoking-related pulmonary vascular damage contributing to car-
diopulmonary impairment, hyperinflation (7), and concurrent ac-
celerated aging of the lungs and heart manifest as emphysema
and increased left ventricular stiffness (48). Supportive of the
first explanation, recent studies confirm that left ventricular unload-
ing due to known pulmonary vascular disease causes impaired
left ventricular filling with a reversible reduction in left ventric-
ular mass due to atrophy (49).

Pulmonary Vascular Structure and Function

Studies of excised lung tissue show significant morphological dif-
ferences in the pulmonary artery endothelium of smokers with
and without COPD and also inmild, moderate, and severe COPD
(50, 51) in addition to attenuation of nitric oxide–mediated,
endothelium-dependent relaxation (52, 53).

Such direct assessment of pulmonary vascular tissue is not
feasible in large antemortem epidemiologic studies due to the
invasiveness of such methods. Similarly, the definitive approach
to the assessment of pulmonary vascular resistance, right heart
catheterization with direct measurement of pressures, is also not

feasible in large population-based studies. Catheterization is lim-
ited by invasiveness, expense, and potential insensitivity to sub-
clinical and exercise-induced disease. Furthermore, right heart
catheterization yields information on pressure but not volume
or structure, omissions lamented by Cournand and Richards
(54). Catheterization studies are generally small and included
only severe COPD. The one study to include a sizable number
of patients with mild to moderate COPD found subclinical
increases in pulmonary artery pressure (55).

Recent advances in imaging technology, however, offer ad-
ditional opportunities for the assessment of the pulmonary vas-
culature in humans. These include the use of contrast-enhanced
CT imaging. This approach has demonstrated increased hetero-
geneity in regional perfusion parameters in smokers with em-
physema compared with smokers without emphysema and
persons who never smoked cigarettes (56). The size of the bolus
of iodinated contrast in that study, however, required central
line placement and would be inappropriate for epidemiologic
studies. Nonetheless, advances in dual-source CT imaging (57)
and non–contrast-enhanced approaches are overcoming this
limitation.

The cross-sectional area of small pulmonary vessels on non-
contrast chest CT scan correlate with FEV1, percent emphysema,
DLCO, pulmonary artery pressure, and thoracic aortic calcium,
a measure of systemic atherosclerosis, in patients with COPD
(58–60). This latter finding provides evidence of concurrent

Figure 2. Continuous relationships of the percent emphysema to left ventricular (LV) end-diastolic volume in current smokers, past smokers, and

never smokers in the Multi-Ethnic Study of Atherosclerosis. Multivariate relationships of the percent emphysema to left ventricular end-diastolic

volume in current, former, and never smokers. Straight lines ¼ smoothed regression lines adjusted for age, race/ethnicity, sex, body surface area,

pack-years, urine cotinine, educational attainment, diabetes mellitus, fasting plasma glucose, body mass index, hypertension, systolic and diastolic
blood pressure, C-reactive protein, fibrinogen, computed tomography scanner type, and milliampere dose. Dotted lines ¼ 95% confidence intervals.

Dots ¼ predicted 1 residual values. (Reprinted with permission from Reference 47).
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pathology in the pulmonary and systemic circulations. In a more
general sample of smokers, the total pulmonary vascular vol-
ume on noncontrast chest CT scan correlates with lung function
and percent emphysema (61).

MRI has been used in large-scale epidemiologic studies (47)
and gadolinium-enhanced MRI provides an opportunity to as-
sess both cardiac and pulmonary perfusion (62–65). Hyperpo-
larized gas MRI provides measures of regional diffusion.
Ongoing studies are likely to define directly the changes in
pulmonary vasculature in varying severities of COPD and sub-
types of emphysema.

CONCLUSIONS

Cor pulmonale has long been described in very severe COPD
and emphysema. Cross-sectional results from population-based
studies that have used a variety of vascular measures in the sys-
temic circulation suggest that the predominant vascular change
in COPD and particularly emphysema is endothelial and micro-
vascular dysfunction. Longitudinal epidemiologic studies with
direct measures of the pulmonary vasculature are lacking to date;
therefore, inferences on cause and effect are limited at present.
New imaging-based approaches to the assessment of the pulmo-
nary vasculature are applicable to epidemiologic studies andmay
soon help in defining the relationship of pulmonary vascular dam-
age to progression of emphysema and COPD and may provide
imaging-based surrogate markers. Extant cardiovascular drugs
and novel therapeutic agents targeted to the pulmonary vascu-
lature might reduce symptoms and improve function in emphy-
sema and COPD. Statins, for example, have long been known to
improve endothelial function in humans and have recently been
shown to improve pulmonary arterial endothelial function, re-
duce pulmonary artery pressure, and reduce emphysema in ani-
mals exposed to cigarette smoke (66).

Author Disclosure: R.G.B. received support for travel for presentation at Transat-
lantic Airways Conference from Boehringer Ingelheim and received a donation of
drugs from Cenestra Health for an NIH-sponsored clinical trial.
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