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Abstract

Major depressive disorder (MDD) is a psychiatric disorder that is characterized -amongst others- by persistent depressed
mood, loss of interest and pleasure and psychomotor retardation. Environmental circumstances have proven to influence
the aetiology of the disease, but MDD also has an estimated 40% heritability, probably with a polygenic background. In
2009, a genome wide association study (GWAS) was performed on the Dutch GAIN-MDD cohort. A non-synonymous coding
single nucleotide polymorphism (SNP) rs2522833 in the PCLO gene became only nominally significant after post-hoc
analysis with an Australian cohort which used similar ascertainment. The absence of genome-wide significance may be
caused by low SNP coverage of genes. To increase SNP coverage to 100% for common variants (m.a.f..0.1, r2.0.8), we
selected seven genes from the GAIN-MDD GWAS: PCLO, GZMK, ANPEP, AFAP1L1, ST3GAL6, FGF14 and PTK2B. We genotyped
349 SNPs and obtained the lowest P-value for rs2715147 in PCLO at P = 6.8E27. We imputed, filling in missing genotypes,
after which rs2715147 and rs2715148 showed the lowest P-value at P = 1.2E26. When we created a haplotype of these SNPs
together with the non-synonymous coding SNP rs2522833, the P-value decreased to P = 9.9E27 but was not genome wide
significant. Although our study did not identify a more strongly associated variant, the results for PCLO suggest that the
causal variant is in high LD with rs2715147, rs2715148 and rs2522833.
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Introduction

Major depressive disorder (MDD) is a psychiatric disorder

characterized by persisting depressed mood, loss of interest or

pleasure in normally enjoyable activities, psychomotor retardation

and changes in e.g. sleep and appetite [1]. The lifetime prevalence

in western civilization is estimated to be approximately 10–15%

and the World Health Organization has predicted that by the year

2020, MDD will be the second leading cause of disability

worldwide [2].

Though the etiology of the disease remains elusive, a genetic

component is recognized and, based on twin studies, heritability is

estimated to be around 40% [3]; [4]; [5]. However, MDD is a

complex disorder and so far causal variants have proven to be

difficult to find. For candidate genes, many association studies

have been conducted, but this has not resulted in reproducible

identification of susceptibility genes, because findings have often

been inconsistent. This may be explained by methodological

differences (i.e. difference in study design, study population,

diagnostic criteria) or small sample sizes [6].

With the introduction of genome-wide association studies

(GWAS), a systematic hypothesis-free search for common suscep-

tibility genes became possible. The Netherlands Study for

Depression and Anxiety and the Netherlands Twin Registry both

took part in the Genetic Association and Information Network

(GAIN) to conduct the first GWAS for MDD.

In this GWAS, 11 single nucleotide polymorphisms (SNPs) of

the 200 SNPs with the lowest P-values located to a 167 kb

segment overlapping the gene PCLO. This gene encodes the

presynaptic protein piccolo, which has a possible role in facilitating

monoamine transporter internalization [7]. In addition, it
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negatively regulates synaptic vesicle exocytosis by decreasing

transport of vesicles from reserve pools to readily-releasable pools

through an action on synapsin [8]. This suggests a possible role for

PCLO in the regulation of mood-related monoaminergic neuro-

transmission.

Though multiple SNPs reached P-values in the order of 10E27,

genome-wide significance was not reached. 30 SNPs were

included in a replication effort using an additional five MDD

cohorts. These replication studies only partly confirmed the

results. Only after post-hoc analysis with an Australian cohort that

used similar ascertainment, the non-synonymous coding SNP

rs2522833 showed nominal genome-wide significance (6.4E28).

The lack of conclusive evidence for the involvement of any gene

suggests that different factors are involved in different types of

MDD. MDD is quite a heterogeneous disorder, with diagnosis

based on levels of severity, depression subtypes and suggested

underlying etiology. In order to obtain a more specific phenotype,

one could use so-called endophenotypes: a concept with the

purpose to divide for example behavioral symptoms into more

stable phenotypes with a clearer genetic connection.

A second cause for sub-threshold P-values may be a lack of

statistical power to detect a variant at a genome-wide level, due to

the sheer number of variants genotyped. In addition, the effect size

of a variant may be small in case of a common complex disorder.

Thirdly, in order to accurately distinguish an association, it is

imperative to have sufficient SNP-coverage within the regions of

interest. Despite the intragenic association in PCLO, the SNP

genotyping microarray that was used for the GWAS was not

designed in a gene-centered manner. This implies that SNP

coverage was generally not optimal for genic regions, including

most genes for which small but not genome-wide significant p-

values were found. We cannot rule out that these genes contain

genetic risk factors, as there is no full coverage of them.

We therefore selected seven genes from the GAIN-MDD

GWAS, with low SNP-coverage and multiple SNPs with a P-value

#0.05, for further fine mapping. We aimed to increase coverage

for these genes to capture all common variation in order to find a

variant with stronger association with MDD in the GAIN-MDD

cohort.

Materials and Methods

Samples
The subjects for this study originated from two longitudinal

studies, the Netherlands Study for Depression and Anxiety

(http://www.nesda.nl), designed to be representative of individuals

with depression and/or anxiety disorders, and the Netherlands

Twin Registry (http://www.tweelingenregister.org) for both of

which sample collection and DNA isolation has been extensively

described previously [9]; [10]. Genotyped samples contained 1738

cases and 1802 controls, of which 1216 male and 2324 female. All

individuals had an age of 18–65 years and had self-reported

western European ancestry.

Ethical Issues
The NESDA and NTR studies were approved by the Central

Ethics Committee on Research Involving Human Subjects of the

VU University Medical Center, Amsterdam, an Institutional

Review Board certified by the US Office of Human Research

Protections (IRB number IRB-2991 under Federal-wide Assur-

ance-3703; IRB/institute codes, NESDA 03–183; NTR 03–180).

All subjects provided written informed consent. As part of the

GAIN application process, consent forms were specifically re-

reviewed for suitability for the deposit of de-identified phenotype

and genotype data into the controlled-access dbGaP repository

[11].

Gene and Tag SNP Selection
We made a selection of the 25 genes with the lowest SNP P-

values in the GAIN-MDD GWAS and ranked them according to

1) expression in the brain (yes or no), 2) high number of SNPs that

reached P#0.05 per total number of SNPs genotyped for this

gene, 3) low SNP coverage of the gene in the GAIN-MDD

GWAS, 4) low number of haplotype blocks per kb. Genes were

tagged using the online Tagger tool [12] with r2.0.8 and

m.a.f..0.1 (Table 1). A margin of 5 kb around each gene was

included, to tag possible regulatory regions as well. In addition, for

each gene we included several SNPs that showed low P-values in

the GAIN-MDD GWAS as a quality check.

Genotyping
Forty 96-well plates were made, blind to case-control status.

Cases and controls were randomly allocated to plates and positions

within plates. Each plate contained 93 samples from Dutch

subjects, plus 3 QC samples at a concentration of 50 ng/ml of

DNA. The three QC samples included two parents of one control

sample on that plate, to add up to a total of 40 trios. Half of the

plates contained a randomly selected duplicate case sample.

Several samples were removed for analysis: offspring from trios,

duplicates and various samples based on a principal component

analysis described previously [10], leading to a total of 3540

samples (1738 cases and 1802 controls).

All genotyping was performed using the OpenArrayH Real-

Time PCR System (Life Technologies, Carlsbad, USA), in

accordance with the protocol of the manufacturer (version: 7/

2010). Arrays were designed to have 128 assays for 24 samples per

array and were loaded using the OpenArray Accufill robot or

using the AutoLoader, manually loaded into a cassette and then

PCR was performed in an NT cycler (GeneAmpH PCR System

9700, Life Technologies, Carlsbad, USA). After this, arrays were

scanned with the OpenArray NT Imager. 30 assays that were not

correctly spotted onto the 128-format arrays were put on a

separate 32-format array.

The quality of scanned arrays was checked by visually assessing

the location of the array in the scanner (the so-called Spotfind

image). The loading of the arrays was checked using the ROX

image and the fluorescence signal strength was checked using the

VIC and FAM images with the software tool ImageJ (http://

rsbweb.nih.gov/ij/). Genotypes for approximately 200 samples

Table 1. Selected genes, their function and the number of
tag SNPs required to reach 100% coverage at m.a.f..0.1 and
r2.0.8.

Gene Function/Description Tag SNPs

AFAP1L1 Actin filament associated protein 21

ANPEP Alanyl (membrane) aminopeptidase 17

FGF14 Fibroblast growth factor 167

GZMK Granzyme K precursor 7

PCLO Presynaptic active zone protein Piccolo 70

PTK2B Protein tyrosine kinase 37

ST3GAL6 Beta-galactoside alpha-2,3-
sialyltransferase 6

25

doi:10.1371/journal.pone.0037384.t001
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were analyzed simultaneously, using Taqman Genotyper Software

v 1.0.1. This number of 200 samples was set by optimizing for

clear clustering, without getting a bias due to too few data points.

Quality Control and Concordance Rates
For quality control reasons we included duplicated samples in

the cohort. After genotyping we have checked the concordance

between the two identical samples. To do this we used a home-

made Perl script to compare all the genotype data from duplicate

samples. Concordance was calculated for every SNP for which the

sample and its duplicate both had a genotype. Concordance was

99.0% for duplicate samples. Out of the two duplicates we selected

the sample that had the most genotype data for further analysis.

The Y-chromosomal SNP rs2534636 was included for QC.

Genotype results for this SNP correspond to female/male

distribution on the arrays.

Using the genome analysis tool PLINK, we performed quality

control. As this is a follow up study of the initial GAIN-MDD

GWAS, we chose to use the same quality control settings. Samples

were excluded if more than 25% of data was missing, according to

the standards that were used in the GAIN-MDD GWAS. SNPs

were excluded if a) m.a.f. was lower than 1%, b) missing genotype

rate was higher than 5%, c) more than one Mendelian error

occurred in 38 trios, or d) P,10E25 for the Hardy-Weinberg

Equilibrium exact test in PLINK.

For each gene, several SNPs with a low P-value in the GAIN-

MDD GWAS were also genotyped using the OpenArray system.

Concordance between genotypes of both platforms was calculated

to be 99.5% using PLINK [13].

Statistical Analysis
The results of each analysis that was performed with the

Taqman Genotyper Software were exported as a text file. Text

files for all analyses were combined using a home-made script

written in Perl [14]; With this script sample IDs, rs-numbers and

genotypes were extracted and, with an additional script these data

were merged into a ped-file.

All statistical analyses were performed using PLINK. We used

an allelic chi-square test with one degree of freedom to perform

association analysis, to compare the allele frequencies between

MDD cases and controls for each SNP. Since this project entails

the fine mapping of the results of a GWAS, we corrected for

genome-wide significance when performing the association anal-

ysis. A P-value of 5E28 or lower was considered to be genome-

wide significant.

Haplotype blocks were calculated with PLINK, using the

method of Gabriel et al., which defines pairs to be in strong LD if

the one-sided upper 95% confidence bound on D9 is larger than

0.98 and the lower bound is above 0.7 [15]. The association of

haplotypes with MDD was calculated with a chi-square test using

one degree of freedom.

Calculation of Coverage
In order to calculate coverage, we used the online Tagger tool

from De Bakker et al [12]. We force included all the tag SNPs that

we selected and force excluded all other SNPs for tagging at

m.a.f..0.1 and r2.0.8. This resulted in a calculation of how many

SNPs out of all the present SNPs are covered by the force included

tag SNPs.

Imputation
MaCH was our imputation method of choice, based on its high

imputation accuracy and efficacy, its user-friendly data handling

[16], and high compatibility with 1000 genomes data. 1000

genomes 2010-06 release CEU data was used as a reference,

because of its high number of variants and its novelty [17].

We did not use imputation data for the entire chromosome, as

we were only interested in seven genes and their regulatory

regions. However, to leave the underlying LD-structure intact, we

used a margin of 100 kb around each gene.

To extract the genes +/2100 kb from the full chromosome data

of the 1000 genomes project, we used a home-made script written

in Python [18]. According to MaCH protocol, an estimation of

imputation parameters was created with 100 random control

samples and 100 random cases, to get information about the

length of haplotype stretches shared between our data and the

reference panel [19]. After estimating parameters, imputation was

performed with 100 Markov chain iterations for the entire cohort,

per gene. All imputation was performed on the Lisa system cluster

(www.sara.nl/systems/lisa). For each gene, we filled in the missing

genotypes by imputation and left genotyped SNPs intact.

Joint Reanalysis
We performed a joint reanalysis of 77 PCLO SNPs surrounding

rs2522833 and rs2715147. For this analysis, we calculated Z-

scores by performing logistic regression and dividing the slope for

each data point by its standard error, similar to the method used

by Sullivan et al [10]; [20]. The absolute values of these Z-scores

were then plotted against the root of the r2 between one of these

77 SNPs with either rs2522833 or rs2715147.

Epistasis Analysis
To perform an analysis of epistasis, we selected 52 genes that, on

a protein level, interact with PCLO, using the method of Lips et al.

[21] for 47 synaptic genes and using the InWeb database [22] for 5

additional genes. Genotypes for the SNPs existing in these genes

were extracted from the GAIN-MDD GWAS data, after which

epistasis analysis was performed with PLINK [13]. We tested a

total of 94 PCLO SNPs against the 1579 SNPs in the selected

genes.

Results

Genotyping

The seven selected genes were tagged in order to reach 100%

coverage at r2.0.8 and m.a.f..0.1. A total of 349 tag SNPs were

selected for genotyping. After genotyping, five SNPs were removed

due to poor clustering. 51 SNPs and 64 samples failed because of

high levels of missing data, after which the average call rate per

sample was 96.7% and average call rate per SNP was 96.7%.

Coverage
In order to compare the coverage of the seven selected genes,

coverage was calculated before and after additional genotyping,

using the online Tagger tool [12]. SNPs that were genotyped in

the original GWAS were merged with the 298 SNPs that were

genotyped and passed the quality control that we performed with

the genome analysis tool PLINK [13]. After merging, 459 SNPs

and 3476 individuals remained (1712 cases and 1764 controls) for

the seven genes. Total genotyping rate in remaining individuals

was 98.8%.

As not all our tag SNPs passed quality control, we did not reach

100% coverage for all genes, but adding these SNPs to those

genotyped in the initial GWAS resulted in significantly higher

coverage (Table 2).

Fine Mapping Genes from a GWAS for Depression
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Association Analysis
After quality control, we performed association analysis for the

newly genotyped SNPs using PLINK, for association with MDD.

For six genes the result of fine mapping did not improve P-values

compared to the P-values that were detected in the original GAIN-

MDD GWAS (Table 2). However, for PCLO we found that

rs2715147 had a P-value of 6.8E27. This is lower than rs2715148,

which showed the lowest P-value (P = 7.7E27) for PCLO in the

GAIN-MDD GWAS. This finding did not reach genome-wide

significance (P = 5E28).

We then compared rs2715147 and rs2715148, while only using

the samples that were genotyped for both SNPs to exclude a bias

due to unequal numbers of cases and controls. We thus excluded

all samples with missing genotypes for either of these SNPs, after

which rs2715148 had a P-value of 5.3E27 and rs2715147 had a

P-value of 6.8E27.

As 51 SNPs were excluded from the analysis after quality

control, this prevented reaching full coverage for 6 genes, except

for GZMK. To increase coverage for these genes after exclusion of

these SNPs, we imputed missing genotypes using the 1000

genomes CEU data.

After imputation we again performed an association analysis

(Table 3). rs2715147 and rs2715148 showed a similar P-value:

1.223E26. In addition, the P-values for FGF14 and PTK2B

decreased. However, none of the genotyped and imputed SNPs

reached genome-wide significance (P = 5E28). After imputation,

rs2715147 and rs2715148 show a slightly better P-value

(P = 1.172E26) than the non-synonymous coding SNP

rs2522833 (P = 1.223E26). When using a logistic model with sex

as a covariate, P-values for rs2715147 and rs2715148 increased

slightly to P = 1.763E26, showing only a marginal effect of sex

when taken along as a covariate.

Haplotypes
Using PLINK, we calculated the architecture of haplotype

blocks for each gene, for the genotype data completed with

imputed data (Table 4). With this data, again an association test

was performed. This showed a decrease in the P-values for

AFAP1L1 and FGF14, but did not reach genome-wide significance

for any of the genes.

Joint Reanalysis
In addition, we performed a joint reanalysis of 77 SNPs

surrounding rs2522833 and rs2715147. The absolute values of

Z-scores were plotted against the square root of the r2 between one

of these 77 SNPs with either rs2522833 or rs2715147. When

assuming the null-hypothesis of no association, one would expect

that the slope of the linear fit would approximate 0, since SNPs in

high LD with a causal variant will reflect the Z-score of this causal

variant. When we assume that rs2522833 is the causal variant, the

slope of the linear fit is 4.17, which increases slightly to 4.24 when

assuming that rs2715147 is the causal variant (Figure 1),

supporting the hypothesis that an unknown variant between

rs2715147 and rs2522833 may be causal for MDD in the GAIN-

MDD cohort.

Epistasis Analysis
Since PCLO gave the lowest P-values of the seven genes selected

for fine mapping, epistasis analysis was performed for PCLO only.

The lowest P-value (1.6E205; OR 0.5928) was found for PCLO

SNP rs6947662 in conjunction with rs16946196, which is located

in DLGAP1. Since this epistasis analysis did not lead to a lower P-

value than a single SNP analysis, we found no evidence for an

epistatic effect of PCLO SNPs with SNPS from interacting

proteins.

Using the merged data of the GAIN-MDD GWAS, our fine

mapping study, plus the imputed data, we generated an r2-plot of

the region spanning PCLO in the haplotype analysis program

Haploview [23], since PCLO provided the lowest P-value.

rs2715147 and rs2715148 are in high r2 (0.99) with one another.

In addition, both SNPs show an r2 of 0.77 with the non-

synonymous coding SNP rs2522833 (Figure 2).

Based on the haplotype structure as seen in Haploview, we

performed a haplotype association test with for rs2715147,

rs2715148 and rs2522833, as we find the lowest P-values in this

region. For this haplotype we found a P-value of 9.9E27, meaning

that the combination of these three SNPs as a haplotype will give a

slightly better association than any of them as a single SNP.

Discussion

In 2009 a GWAS for MDD was performed [10]. Unfortunately,

the propriety microarrays used for this GWAS (Perlegen Sciences

Inc., Mountain View, CA, USA) where not designed in a gene-

centered manner resulting in incomplete coverage of genic

regions. From the 25 genes that harbored the SNPs with lowest

P-values, we selected seven genes for fine mapping. We used the

Hapmap Tagger tool to tag these genes with r2.0.8 and

m.a.f..0.10, in order to capture all common variation.

After genotyping, several SNPs were excluded through quality

control. Even though we did improve coverage significantly, due

to this exclusion we did not acquire full coverage for all genes.

Full coverage was reached only for GZMK. We performed an

association test with all SNPs and samples that made it through

cut-off values. For the SNP rs2715147 in PCLO we found a P-

value of P = 6.8E27, which is lower than the lowest P-value for

Table 2. Coverage calculated for each gene at r2.0.8 m.a.f..0.1 before and after fine mapping.

Gene Coverage after GAIN-MDD GWAS Coverage with additional genotyping

AFAP1L1 50% 75%

ANPEP 68% 93%

FGF14 50% 94%

GZMK 80% 100%

PCLO 88% 95%

PTK2B 83% 98%

ST3GAL6 80% 93%

doi:10.1371/journal.pone.0037384.t002
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PCLO-SNPs in the original GAIN-MDD GWAS (P = 7.7E27

for rs2715148). This small decrease in P-value could also be due

to technical variability, however, in both the GAIN-MDD

GWAS and our fine mapping project, the lowest P-values are

found in this area of the PCLO gene. For the other six genes we

did not find a variant with better association than in the GAIN-

MDD GWAS.

Since we reached 100% coverage only for the GZMK gene, we

filled up missing genotypes by performing imputation with MaCH

for the remaining six genes. Previously, for the GAIN-MDD

GWAS, two imputation approaches have been used: MaCH was

used for imputing 2037829 autosomal SNPs with r2$0.5 (which

removes approximately 90% of SNPs with unreliable imputation

results, while dropping only 2–3% of reliably imputed SNPs) and

using the SNPMStat method [24], 246 SNPs in the PCLO area

were imputed. The HapMap2 CEU panel was used as a reference

[10].

In this study, imputation was only performed for missing

genotypes, rather than for all new tag SNPs. The rationale behind

this is that there are local differences in LD structure between the

GAIN-MDD cohort and the HapMap CEU population. This

might decrease the validity of the genotypes estimated by

imputation [25].

We used MaCH to impute for six genes. Imputation decreased

P-values for FGF14 and PTK2B, albeit for the SNP that showed

the lowest P-value for those genes in the original GAIN-MDD

GWAS. For PCLO, rs2715147 and rs2715148, which are in strong

LD, both showed the same P-value at P = 1.2E26, which was also

the lowest P-value for this gene. For ANPEP, AFAP1L1 and

ST3GAL6, P-values were not improved by means of imputation.

None of the genes showed a genome-wide significant association

with MDD after imputation.

In addition, we wanted to investigate whether SNPs in PCLO

are interacting with SNPs in synaptic genes. To determine this, we

performed an epistasis analysis using PLINK [13]. As the lowest P-

value was in the range of 10E25, we cannot conclude whether

there is epistasis between these SNPs or not.

In a joint reanalysis of 77 PCLO SNPs we show a graphical

representation of the Z-scores for each SNP versus the correlation

of this SNP with rs2715147. In comparison with rs2522833, the

slope for rs2715147 is slightly steeper. This supports the hypothesis

that the low P-values in this area may be caused by an unknown

variant located between rs2715147 and rs2522833, or an

unknown variant that is in strong LD with these SNPs.

We can conclude that fine mapping of these seven genes did not

provide a variant with a stronger association than reported in the

original GAIN-MDD GWAS, where the lowest P-value was

obtained for rs2715148 and rs2522833 showing nominal signifi-

cance after post-hoc analysis with an Australian cohort. However,

there could be a number of reasons for this apparent lack of

association. First of all, diagnosis of MDD is based on relatively

subjective assessments of symptoms. By specifying endophenotypes

within an MDD cohort, for instance brain activity, cortisol levels

and pharmacological response, one might find variants that are

exclusive to that particular endophenotype, with a higher effect

size.

Another possibility would be to expand the cohort in order to

increase the power for detecting an associated variant. Park et al.

show that for a number of complex traits, the sample size has to be

at least around 10,000 in order to reliably detect new variants [26].

Table 3. rs-numbers and P-values for the SNPs with the lowest P-values.

Gene GAIN-MDDa P-value Fine mappingb P-value OR; CI Imputed datac P-value OR; CI

AFAP1L1 rs4705335 1.9E24 rs352355 1.3E22 0.83; 0.72–0.96 rs4705335 2.7E24 1.26; 1.11–1.43

ANPEP rs6496603 5.6E25 rs8035089 3.9E24 0.82; 0.72–0.92 rs6496603 5.7E25 0.82; 0.75–0.90

FGF14 rs17688345 1.2E24 rs9518638 1.6E23 0.84; 0.75–0.94 rs17688345 8.2E25 0.75; 0.65–0.87

GZMK rs2112938 5.1E25 rs6875666 4.9E23 0.86; 0.78–0.96 - - -

PCLO rs2715148 7.7E27 rs2715147 6.8E27 0.79; 0.72–0.87 rs2715147+
rs2715148

1.2E26 0.79; 0.72–0.87

PTK2B rs7000615 1.5E24 rs748281 3.7E24 1.30; 1.12–1.50 rs7000615 5.4E25 1.30; 1.14–1.47

ST3GAL6 rs999147 1.6E24 rs704586 1.0E23 0.84; 0.76–0.93 rs14310 1.7E24 1.2; 1.09–1.33

aGAIN-MDD GWAS, btag SNPs used for fine mapping, cboth GAIN-MDD GWAS and fine-mapping tag SNPs, merged and imputed. OR = Odds Ratio, CI = Upper and
Lower bounds of the 95% Confidence Interval.
doi:10.1371/journal.pone.0037384.t003

Table 4. The haplotypes with the lowest P-values, per gene.

Gene SNPs in haplotype block with lowest P-value P-value

AFAP1L1 rs10515625|rs4705335|rs12657199|rs1438693|rs11954165|rs1438692 1.7E24

ANPEP rs8035089|rs10584|rs6496603|rs17239917|rs25651|rs16943599|rs1439120 2.8E24

FGF14 rs17688345|rs9518615|rs9557792|rs636674|rs1457315|rs4772439|rs35700852|rs7992504|rs12865694 2.5E25

GZMK rs3776038|rs6875661|rs6875666|rs2112938 9.9E25

PCLO rs2715147|rs2715148|rs2522833|rs2522840|rs2522843|rs7792042|rs12707523|rs12707524|rs13233504 2.0E26

PTK2B rs7827965|rs9773817|rs3736524|rs11135993 7.0E24

ST3GAL6 rs3821359|rs2334230|rs278376|rs3755574|rs16846347|rs3755576|rs999147|rs828609|rs278390|rs14310|rs704586 2.4E24

doi:10.1371/journal.pone.0037384.t004
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One way to create such an expansion would be to perform a

meta-analysis of several cohorts. Nevertheless, despite the increase

in sample size, one has to take into account that a meta-analysis, in

case of MDD, may also increase any heterogeneity caused by

inconsistencies in ascertainment.

Other GWAS for depression are troubled by equal predica-

ments. So far, marginally significant associations have been found

for -among others- FKBP5, SP4, GRM7, C5ORF20 and NPY.

However, many of these results cannot be replicated in another

cohort [27]; [28]; [29]; [30]. Here again, sample size may be

crucial to acquire the statistical power necessary to find an

associated variant. In addition, not all studies use the same method

of ascertainment. Even though cases are mostly obtained for

research through a DSM-IV diagnosis of MDD, more specific

secondary interviews may deviate in determining depression

subtypes, severity, age of onset, recurrence and comorbidity [28].

Although we did not select our seven genes based on their

function, several of them are linked to the central nervous system

and brain physiology. First of all, the product of ANPEP,

aminopeptidase N, metabolizes angiotensin III (AngIII), which is

one of the main effector peptides of the brain renin-angiotensin

system. This system controls vasopressin release in the brain.

When aminopeptidase N is inhibited, both AngIII and vasopressin

increase, which in turn causes an increase of ACTH [31]. An

increase in ACTH ultimately stimulates the release of cortisol,

which is a major stress hormone. This connects aminopeptidase N

to the HPA-axis, which is linked to MDD as it elicits the stress-

response in the brain [32].

Both PTK2B and GZMK have been linked to brain physiology

and depression through animal models. Following acute stress,

PTK2B (also known as pyk2) expression is increased, whereas

increasing PTK2B activity in lateral septum neurons reverses the

behavioral deficits of acute, inescapable stress. These findings

establish a role for PTK2B in the behavioral response to stress and

may suggest a possible role in the pathophysiology of depression

[33].

GZMK is part of a network of genes that are co-expressed higher

in mice that have a high predisposition to freezing behavior or

catalepsy [34]. This reaction is a natural passive defensive strategy,

but in chronically stressed animals, for instance in models for post-

traumatic stress disorder or MDD, animals show enhanced

catalepsy [35].

The protein product of PCLO, Piccolo, can be found in the

presynaptic active zone [36]. If Piccolo is knocked out, synapse

formation or morphology is not affected, suggesting that piccolo is

not necessary for formation of synapses. However, synapses

lacking Piccolo exhibit faster rates of synaptic vesicle exocytosis,

indicating that Piccolo is a negative regulator of the exocytotic

process [8]. This may suggest a role for Piccolo in the monoamine

hypothesis of depression, which states that depression is caused by

an imbalance of monoamine availability [37]. In addition, the

non-synonymous coding SNP that was found to be significant in

Figure 1. Linear fit for the Z-scores and correlation (!r2) between markers and rs2715147. The linear fit with Z-scores versus r relative to
rs2715147, for 77 markers in PCLO.
doi:10.1371/journal.pone.0037384.g001
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the GWAS by Sullivan et al. [10], changes a serine to an alanine in

a calcium-binding C2A-domain. Overexpression of this C2A-

domain causes a depression-like phenotype in mice [37].

These genes may still be interesting candidate genes, when

looking at monoamine availability (PCLO), or more specific (endo-

)phenotypes like cortisol levels (ANPEP) and co-morbid anxiety

(PTK2B and GZMK). Despite the fact that the other selected genes

that are also expressed in the brain, based on exploring literature,

they do not show an obvious link with MDD. In combination with

their apparent lack of genome-wide associated variants, this makes

them less likely to be successful candidate genes.

None of the SNPs for any of the seven genes showed a P-value

in the magnitude of P = 5E28, which leads to the conclusion that

in the scenario of common variation and corrected for genome-

wide testing, these genes show no genome-wide significant

association with MDD for this cohort. However, considering the

fact that in PCLO there are several signals in the magnitude of

P = 1.0E26 and P = 1.0E27 and the ‘‘Fundamental Theorem of

the HapMap’’, which states that all tested SNPs are expected to

reflect the true association of the unknown causal variant

proportional to their LD with it, one cannot disregard the

possibility that a rare variant may still be associated.

Previously, we showed that most of the association between

genotype data and MDD is statistically explained by the

association of the non-synonymous coding SNP rs2522833 with

MDD. The data from the GWAS are consistent with the

hypothesis that either rs2522833 or a variant in high LD with it

is a causal risk factor for MDD [38]. However, our data do not

favor rs2522833 as the causal variant, as it does not show the

lowest P-value in our data set. We do see a very high LD (r2 = 0.99)

between rs2715147 and rs2715148 and a high LD between these

two SNPs and rs2522833 (r2 = 0.77). In addition, the haplotype

which includes SNPs rs2715147, rs2715148 and rs2522833 shows

a lower P-value than the P-values calculated for these SNPs

individually. This implies that between rs2715148 and rs2522833

there may be an unknown variant that has an r2 of at least 0.77

with both variants and has a slightly better association with MDD

(9.9E27). Nevertheless, this observation could also be caused by

missing data. Ideally, the study should be replicated in a larger

cohort or in a meta-analysis in order to confirm or decline the

improved P-value in case of this haplotype.

In addition, instead of looking at SNPs as individual units of

association studies, one might jointly analyse all variants within a

putative gene to obtain a single P-value for the association of the

entire gene, as it is the functional unit of the genome. A pitfall for

joint analysis is that one would have to assign weights to the

individual SNPs, as not every SNP will have the same impact on a

putative association. In tools for gene-based P-values, this matter is

still an open question, as we do not yet have a full understanding of

the relationship between sequence and function [39].

In conclusion, the current study suggests that using common

variation to fine map the GAIN-MDD GWAS results, does not

lead to lower P-values or the identification of a stronger associated

variant. The genomic region in PCLO between rs2715147 and

rs2522833 covers approximately 5 kb. It is estimated that SNPs

occur every 100–300 bp in the human genome. That would imply

that between rs2715147 and rs2522833 approximately 16–50

variants could occur. With new, powerful approaches for DNA

analysis such as next generation or massive parallel sequencing

(MPS), these variants could be identified and subsequently

Figure 2. The LD-structure of PCLO. The LD-structure of PCLO shown in an r2-plot created in Haploview. The plot shows the LD-block in which the
SNPs with the lowest P-values were found. Non-synonymous coding SNP rs2522833, rs2715147 and rs2715148 are in high r2 with each other.
doi:10.1371/journal.pone.0037384.g002
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genotyped in the whole cohort. This could lead to the discovery of

a causal variant that is in high LD with rs2715147, rs2715148

and/or rs2522833. Accordingly, we should perform MPS for

PCLO, in order to confirm the existence of such a variant and find

its association with MDD.
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