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Summary
The histologic scoring of renal biopsies is still the gold standard for renal disease classification.
The Banff classification scheme and the chronic allograft damage index are histopathologic
scoring schemes widely used in renal transplantation. The determination of genome-wide gene
expression profiles in human renal biopsies has the potential to serve as independent validation
data sets and also provide a more precise evaluation of the functional status behind the visible
morphologic alterations. It is expected that results from high-throughput -omics experiments will
lead to improved classification schemes in the near future as also discussed at recent Banff
meetings. In this review we give an overview on -omics studies, focusing on the association of
molecular changes on the transcript as well as on the protein level and morphologic scoring
schemes in renal disease and transplantation.
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The classification of renal disease currently is based on histologic scoring of kidney
biopsies.1 Although this approach allows the evaluation of the morphology of all different
compartments of the kidney such as the vasculature, the tubulointerstitium, and the
glomeruli, the functional status and coregulation of genes cannot be uncovered by histology.
In situ hybridization or immunohistochemical staining of few messenger RNAs and proteins
are valuable tools in classification of disease states but usually are not helpful in prediction
of the clinical course. The main reason is that many different pathophysiological entities
yield a morphologically similar histopathology such as tubular atrophy or glomerular
sclerosis.

Well-established classification schemes for native as well as for renal transplant biopsies
were derived in the biannual Banff meetings.2 The Banff classification criteria have been
updated sequentially to reflect the continuously increasing knowledge in the field.3 Besides
the Banff criteria for the evaluation of renal allograft pathologies, the chronic allograft
damage index has been developed and advocated by other researchers.4 Banff and the
chronic allograft damage index have similar classification features and thus provide similar
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information for the clinical judgment of the described histologic features. Neither of those
two scores, however, can provide the desired additive information on potential
pathophysiological causes and consequences of morphologic changes.

Therefore, researchers started to investigate whether genome-wide gene expression studies
of human renal biopsies may provide a more precise evaluation of the functional status and
potential choreographed processes behind the visible morphologic alterations.
Computational tools that integrate the experimentally uncovered regulation of molecular
features were designed to derive useful information from the myriad of regulated single
molecular features. The integration of information derived from molecular, functional,
demographic, and clinical information is the aim of the booming field of systems biology.

Analysis that is -omics-based enabled the identification of predictors for renal injury such as
the neutrophil gelatinase-associated lipocalin or the kidney injury molecule l.5,6 Although
these individual markers are far from optimal in classification of renal cell injury from mild
impairment to more severe damage to sublethal and lethal necrosis, combinations of these
markers in a panel might better mirror the present state of renal cells and the kidney as a
whole. The present article describes in detail how functional changes and morphologic
consequences of tissue injury correlate with molecular features and how these features are
interacting. Not surprisingly, many of the processes that were discovered on a genome-wide
basis are precisely choreographed to direct functional and morphologic changes in renal cell
states.

One clear application of such markers is the determination of the biological age of
transplanted kidneys because the age of the deceased or living donor does not necessary
reflect age-associated changes and thus transplant organ quality.7

BIOINFORMATICS ANALYSES SCHEMES FOR -OMICS DATA
INTERPRETATION

Since the advent of high-throughput -omics experiments a number of excellent tools for the
analysis and interpretation of data have been developed as outlined in comprehensive
reviews.8, 9 In short, the following analysis steps usually are conducted in the analysis chain
of an -omics experiment. After initial quality checks and preprocessing routines a first list of
differentially expressed genes is generated using statistical methods such as the standard t
test or methods such as the Statistical Analysis of Microarrays.10 This list of differentially
expressed genes is successively annotated on a functional level using gene ontology terms or
the PANTHER Classification System and/or pathway databases as provided by KEGG.11-13

In silico analyses of the regulatory regions of deregulated genes can give hints on common
regulatory mechanisms and certain master regulators on a transcriptional level.14,15 Protein-
protein interaction databases can be interrogated to find links between differentially
expressed genes.16,17 The prediction analysis for microarrays method calculates optimal
gene sets for group classification and prediction based on expression data sets.18 A scheme
of analysis approaches is given in Figure 1 with a detailed listing of -omics repositories and
tools in Table 1.

Next to these single sequential analysis steps, data integration approaches have become
more and more popular in recent years for the interpretation of -omics data.19-20 We have
developed an analysis framework for linking gene/protein lists resulting from -omics
experiments on the level of a protein-dependency network.21 Pairwise dependencies for all
human protein-coding genes were calculated based on a gene expression data set in healthy
human tissues, information on functional annotation based on the gene ontology as well as
on assignment to molecular pathways, information on subcellular localization, reported
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protein-protein interaction data, as well as coregulation on the basis of joint transcription
factor binding site profiles. Gene expression data as well as lists of differentially expressed
features now can be analyzed with respect to their adjacent genes/proteins in the dependency
network.

In a recent study by Rudnicki et al22 a network analysis approach resulted in the
identification of deregulations on the transcript level in the hypoxia-inducible pathway and
the connected vascular endothelial growth factor-receptor system in progressive chronic
kidney disease.

In another study the network approach was used to analyze potential marker candidates for
cardiovascular disease and bone metabolism disorders in chronic kidney disease patients.23

-OMICS AND HISTOMORPHOLOCY IN RENAL DISEASE AND
TRANSPLANTATION
Delayed Allograft Function

A first approach of implementing the -omics technology in the field of renal transplantation
was made by Hauser et al.24 The researchers studied the genome-wide gene expression in
donor kidney biopsies obtained before transplantation at the end of cold ischemic time. The
specific goal of this study was to elucidate the molecular signature that was associated with
delayed allograft function (DGF), determined by the necessity of more than one
posttransplant dialysis. DGF is highly associated with impaired long-term graft function and
morphologic criteria of the donor organ cannot discriminate between the subsequent early
graft function. For that purpose biopsies were obtained from 12 organs from deceased
donors that subsequently showed DGF, 12 biopsies from deceased donors with primary
allograft function, and 12 live donor kidneys, that almost always show immediate graft
function. The investigators used generic complementary DNA microarrays holding 26,338
genes and 14,783 expressed sequence tags obtained from the Stanford University Functional
Genomics core facility. Validation of array experiments was performed by real-time
TaqMan polymerase chain reaction for five selected and differentially regulated genes from
different gene ontology categories.

Unsupervised hierarchical clustering of expression profiles showed a clear separation of
samples from deceased donors and DGF, primary function, and live donors. The linkage
distance, calculated as 1 - Pearson correlation coefficient between paired kidneys, was less
than 5%. A sensitivity analysis of the 48 differentially regulated genes was performed by
Jack-knife procedures. These molecular features could be classified into the main gene
ontology terms of cell-cycle regulation, cell growth/metabolism, and communication/signal
transduction. Molecular network analysis suggested choreographed regulation of the
identified features, that is, hierarchical activation of, for example, members of the
complement cascade such as complement factor B, complement component 1, r + s
subcomponents, complement component 2, and clusterin are well known to functionally
interact in a top-down signal transduction. These findings suggest that choreographed
inflammation in the donor kidneys occurring in deceased donors before organ retrieval is
highly associated with DGF. Therefore, the authors suggested that a proof of causal
inference should be performed by an interventional study that suppressed donor
inflammation. This study was performed subsequently and showed that suppression of this
inflammatory signature can be accomplished by pretreatment of the deceased donor with 1 g
of methylprednisolone (Kainz, personal communication, 2010). This intervention, however,
did not change the posttransplant course (ie, it did not reduce that rate of DGF).
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Mas et al25 and Mueller et al26 repeated this gene expression study using different array
platforms. Mas et al25 found 65 probe sets that were differentially regulated between DGF
and immediate functioning kidneys that belong to the similar main functional categories as
described by Hauser et al.24 Accordingly, Mueller et al26 showed in their data set of 87
biopsies that molecular features belonging to the inflammation cascade such as complement
components and chemokines as well as acute phase proteins discriminated deceased from
live donor biopsies but not primary function from DGF. When principal component analysis
was used to compress information to a single eigenvector, deceased donors with DGF
showed quantitative separation of molecular features. This prediction was not possible by
clinical or histologic parameters.

From these studies it remained unclear which compartments in the kidney contribute to the
inflammatory signature, therefore Kainz et al27 studied the molecular signature of micro-
dissected donor kidney biopsies. For that purpose, the glomerular and tubulointerstitial
compartments of five biopsies from deceased donor kidneys and five biopsies form live
donor kidneys were isolated by manual microdissection and the different compartments
were subjected to genomics analysis. Not surprisingly, the tubulointerstitial compartment
showed a completely different gene expression profile than the glomeruli but, interestingly,
the two compartments also showed a clear discrimination between live and deceased donors.
The main biological function of these genes was counter-regulation of oxidative stress.
Promoter analysis of these signatures showed coregulation of molecular features.

A clear limitation of these genomics data is the lack of information of compartment-specific
regulation of transcripts on the protein level. A study supporting the findings of the
transcriptomics experiments on the protein level was published by Schwarz et al,28 who
performed immunohistochemical analysis of members of the inflammation cascade on
implantation kidney biopsies from deceased and live donors. Schwarz et al28 showed that
intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were significantly
activated in the tubulointerstitial compartment of kidneys that developed subsequent DGF
and between deceased and live donor kidneys. In addition, se-lectin E, which is expressed in
the peritubular capillaries, was expressed mainly in kidneys with subsequent DGF and of
deceased donor origin but not in allografts derived from live donors (Fig. 2).

Biopsy Confirmed Acute Rejection
Mueller et al29 used mouse transplants to annotate pathogenesis-based transcript sets (PBTs)
involving cytotoxic T-cell activation, interferon effects, and parenchymal deterioration. The
relationship between PBT expression and histopathologic lesions as well as clinical
diagnoses was investigated in 143 consecutive indication human allograft biopsies. The
transcripts found to be differentially regulated showed a stereotyped internal structure that
led the investigators to conclude that transcriptome changes in rejection are features of a
large-scale disturbance characteristic that are occurring at lower levels in many forms of
injury from other causes.

In 67 human renal allografts with biopsy-conformed acute rejection, Sarwal et al30 showed
that genome-wide gene expression could categorize morphologically indistinguishable
biopsy-confirmed acute rejections in at least three different clusters. Specifically, a strong
association of CD20-positive B-cell infiltrates was observed in samples of steroid-resistant
acute rejection and also confirmed by subsequent immunohistochemical studies. These and
the subsequent findings by Mengel et al (see later) suggest a prominent role of infiltrating B
cells in biopsy-confirmed acute rejection with poor clinical prognosis.

Mengel et al31 assessed whether lymphocyte infiltrates in areas of scarring, a feature that is
not classified by the Banff criteria, are associated with a distinct molecular signature and a
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poor clinical prognosis. The investigators studied 129 indication biopsies and validated
findings in another 50 biopsy cases. The main finding was according to the results from
Sarwal et al30 that the 172 identified signatures of B cells and immunoglobulins as well as
mast cells in areas of scarring were associated with poor clinical outcomes.

Histogenomics
Mengel et al32 performed a balanced analysis of the Banff classification system. One of the
main strengths of the Banff system is its self-organizing consensus and the ability to
incorporate novel scientific findings as they emerge according to the authors. Weaknesses of
the Banff classification on the other hand are the poor reproducibility and the lack of an
independent validation.33 This provides an opportunity for novel high-throughput -omics
technologies such as transcriptomics, proteomics, or metabolomics to function as external
validation of existing classification systems but also to complement and improve existing
scoring schemes. This issue already was addressed at the 2005 Banff meeting with a
genomics-complemented Banff classification as the ultimate aim.34 To achieve this goal the
participation of molecular biologists as well as bioinformaticians is probably necessary in
future endeavors.

We recently determined the gene expression profiles in 82 zero-hour renal transplant
biopsies that were scored histologically for six parameters as follows: degree of
glomerulosclerosis, arteriolosclerosis, interstitial inflammation, interstitial fibrosis, tubular
atrophy, and acute tubular injury.35 A positive correlation was found for the histologic
parameters interstitial inflammation, interstitial fibrosis, arterioloselerosis, and degree of
glomerulosclerosis. The degree of acute tubular damage was correlated weakly with tubular
atrophy and not correlated with the other parameters that are indicative for chronic damage.
Comparing samples with moderate to severe damage as compared with uninjured samples
for each of the six parameters under study resulted in a list of 80 differentially expressed
genes with two genes showing higher expression in damaged tissues no matter which of the
six parameters was analyzed. The two genes are the CD52 molecule and the
immunoglobulin J polypeptide (IGJ). Genes predominantly were up-regulated with members
of the immune response being associated with all histologic damage categories. Up-
regulated genes in tubular atrophy also were involved in cell structure, cell adhesion, and
signal transduction. Large overlaps of differentially expressed genes could be found for the
histomotphologic classifications tubular atrophy and interstitial inflammation, as well as for
degree of glomerulosclerosis and interstitial inflammation (Fig. 3). In a successive analysis
step we identified a marker combination consisting of the three molecules NLR family pyrin
domain containing 2, regulator of G-protein signaling 5, and IGJ that was able to predict
graft function better than a model consisting of clinical and histomotphologic data. The 1-
year serum creatinine values after transplantation were used as graft function.

Einecke et al36 used Asymetrix Gene Chips to study expression changes in cytotoxic T
lymphocytes after renal transplantation in a mouse model. They focused on the association
of gene expression patterns and the Banff lesions of interstitial infiltration and tubulitis.
They determined a set of cytotoxic T lymphocyte-associated transcripts (GATs) that were
expressed at higher levels in rejecting kidneys as compared with normal control organs. This
increase in expression already could be observed at day three after transplantation with even
higher levels at day five, whereas lesion for tubulitis developed much more slowly with a
peak 14 days after transplantation.

Mueller et al29 analyzed PBT sets in a set of 143 human renal transplant biopsies. PBTs
were derived from mouse transplant models and included CATs, interferon γ-dependent
rejection-induced transcripts (GRITs), and two sets of transcripts highly expressed in normal
mouse kidneys and with low expression in mouse inflammatory cells (KT1 and KT2). PBTs
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did show correlations with histopathologic scores for interstitial inflammation, tubulitis, and
vasculitis. Also, a positive correlation between C4d staining and the GRIT1 score was
observed. Expression in CATs and GRITs was increased markedly in samples with rejection
episodes posttransplant, whether the rejection was T-cell-mediated or antibody-mediated.
Classifiers were built based on these gene expression sets to predict the histopathologic
diagnosis of rejection as well as clinically manifested rejection episodes. Sensitivity and
specificity values were in the range between 66% and 79% and 68% and 88%, respectively.

People from the same group used an extended data set of 186 human renal transplant
biopsies to build a classifier to distinguish between rejection and nonrejection using the
prediction analysis of microarray tools.37 In 1,000 training and test runs the classification
sets were found to consist of 24 genes on average. Genes mainly were induced by interferon
γ or were associated with cytotoxic T cells. Classification was consistent in about 80% of
samples between histologic scores and expression profiles. The transcriptomics classifier has
the potential to yield additional information next to the histopathologic scoring, especially in
the group of borderline T-cell-mediated rejection.

In an attempt to identify minimally invasive biomarkers for chronic allograft nephropathy
(CAN), Kurian et al38 performed gene expression profiling and tandem mass spectroscopy
proteomics in peripheral blood of renal transplant patients. CAN is characterized by
interstitial fibrosis and tubular atrophy (IF/TA) and plays a dominant role in transplant
rejection and diminished renal graft function. Kidney biopsies were classified into four CAN
classes based on the Banff classification system: grade 0 depicts samples with no signs of
CAN, mild CAN was designated as grade 1, moderate CAN was designated as grade 2, and
severe CAN was designated as grade 3. Genes and proteins differentially expressed between
CAN 0 and CAN 1 as well as between CAN 0 and CAN 2/3 were determined and analyzed
further on a functional level. Differentially expressed features mainly belonged to the
biological processes of immune response and inflammation, with the apoptosis pathway
among the highest enriched canonical pathways. Top ranked genes were used for class
prediction and yielded prediction accuracy values of 80% with sensitivity and specificity
values of 85% and 77%, respectively, for mild CAN and accuracy values of 92% for the
moderate/severe form. These results were confirmed in a second data set with slightly
different distributions of clinical parameters such as the time of biopsy, immunosuppressive
protocol, or the RNA extraction method used.

Similar patterns of deregulated genes previously were identified by Maluf et al39 when
analyzing 47 renal biopsies with oligonucleotide arrays. Genes showing higher expression in
the set of 17 allografts with IF/TA as compared with biopsies from normal kidneys and
kidney without IF/TA mainly were involved in immune response, inflammation, and matrix
deposition. On the level of molecular pathways the antigen presentation pathway, the
leukocyte extravasation signaling cascade, and the natural killer cell signaling pathway were
found to be enriched with differentially regulated genes.

Henger et al40 studied gene expression profiles in hydronephrotic kidneys with varying
degrees of tubulointerstitial inflammation and fibrosis. Macroarrays holding complementary
sequences for a number of inflammatory molecules as well as genes involved in cell-cell
contact and matrix turnover were used to analyze samples that were well characterized with
regard to their histomorphologic injury based on interstitial inflammation and chronic
tubulointerstitial damage measured as tubular atrophy and interstitial fibrosis. A set of 31
genes was identified that could separate samples showing a high degree of inflammation and
samples showing a high degree of fibrosis from control samples. A subset of nine genes was
successively used to predict damage in an independent set of samples. These genes also
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showed markedly higher expression levels in the subset of samples with a progressive
course of disease as compared with those patient samples with a stable course of disease.

FINAL COMMENTS AND OUTLOOK
Various groups have used gene expression profiling in recent years to perform the
following: (1) to predict renal allograft function, (2) to assess the risk of or diagnose renal
transplant rejection, and (3) to correlate expression patterns to histomorphological scoring
schemes. Enriched biological processes that were involved in the different phenomena often
were congruent along different studies from different groups, even though the identified
differentially expressed genes were not always 100% identical. This is to a certain extent not
surprising owing to different tissues and array platforms used in the experiments. To be used
in clinical diagnostics the gene set(s) used for patient stratification, risk assessment, or early
diagnosis need(s) to yield high sensitivity and specificity values and should be independent
from the array platform used or from the laboratory where the experiment is conducted.

In the field of oncology various single morphoproteomic markers are used for guided
therapeutic regimens such as the HER2/neu receptor in breast cancer or the absence or
presence of the estrogen receptor α.41 The first microarray-based test system called
Mamma-Print was cleared by the Food and Drug Administration in early 2007 for the
prognosis of breast cancer patients and is making its way to the clinics.42,43 This test system
has the potential to pave the way for microarray-based diagnostic or prognostic assays in the
clinical setting, and also in the field of native renal disease and kidney transplantation.
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Figure 1.
Bioinformatics analysis approaches. The sequential and integrative analysis approaches in
data analysis. In the sequential approach the list of differentially genes is analyzed step by
step to derive information. In the integrative approach data are combined and one large
dependency network is generated for interpretation of differentially expressed genes. Color
version available online.
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Figure 2.
Immunohistochemistry of cell adhesion molecules. Immunohistochemical staining
intensities in zero-hour renal transplant biopsies from (A-C) deceased and (D-F) living
donors for the three cell adhesion molecules: (A and D) intercellular adhesion molecule 1,
(B and E) vascular cell adhesion molecule 1, and (C and F) E-selectin. Reprinted with
permission from Schwarz et al.28
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Figure 3.
Overlap of histologic parameters based on differentially expressed genes. Venn diagram of
the six histopathologic scores based on shared identified differentially expressed genes
between injured and healthy tissues. The two genes IGJ and CD52 showed up-regulated in
damage tissues for all histopathologic scores under study. as, arteriolosclerosis; gs, degree of
glomerulosclerosis; ii, interstitial inflammation; ta, tubular atrophy; if, interstitial fibrosis;
ati, acute tubular injury. Color version available online. Reprinted with permission from
Perco et al.35
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Table 1
Tools and Resources for -Omics-Based Analysis

-Omics repositories

 Nephromine http://www.nephromine.org/ 44

 Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ 45

 ArrayExpress http://www.ebi.ac.uk/microarray-as/ae/ 46

 Stanford Microarray Database http://smd.stanford.edu/ 47

Data preprocessing

 Bioconductor http://www.bioconductor.org/ 48

 MAS5 49

 RMA http://rmaexpress.bmbolstad.com/ 50

 dChip http://www.dchip.org 51

Explorative analysis routines

 TIGR MeV http://www.tm4.org/mev.html 52

 SAM http://rmaexpress.bmbolstad.com/ 10

 PAM http://www-stat.stanford.edu/~tibs/PAM/ 18

Functional annotation

 DAVID http://david.abcc.ncifcrf.gov/ 53

 GoMiner http://discover.nci.nih.gov/gominer/ 54

 PANTHER http://www.pantherdb.org/ 13

Pathway resources

 KEGG http://www.genome.jp/kegg/pathway.html 12

 PANTHER http://www.pantherdb.org/ 13

Interaction network analysis

 omicsNET 21

 STRING http://string.embl.de/ 19

 FunCoup http://funcoup.sbc.su.se/ 20

Genome-wide association studies

 dbSNP http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp 55

 HapMap project http://hapmap.ncbi.nlm.nih.gov/ 56

SAM, Statistical Analysis of Microarrays; PAM, prediction analysis for microarrays.
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