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Abstract

A new designer surfactant is described containing a covalently bound organocatalyst, proline. This
species is water-soluble and, via spontaneous nanomicelle formation, catalyzes aldol reactions on
water-soluble or -insoluble substrates in water as the only medium. Recycling the catalyst is
trivial, as the amphiphile/catalyst remains in the aqueous phase in the flask.

Although organocatalysis dates back to 1971,1 it is only over the past decade during which
remarkable progress has been made.2,3 An impressive number of reaction types can now be
effected using this transition metal-free approach, and applications abound. Reviews on this
subject in 2010 alone are plentiful.4 Included among the new directions in organocatalysis
being pursued are tandem or “organocascade” reactions that combine multiple reaction
partners leading to significant increases in molecular complexity in a one pot sequence.5

Notwithstanding these advances, the vast majority of reactions that utilize organocatalysis
rely on relatively few catalyst turnovers; typically, ≥10% catalyst is needed to achieve
reasonable reaction rates and ultimately, isolated yields. Under such circumstances the
implications are clear: a considerable amount of organic material is lost upon workup. While
economics may not enter into consideration, e.g., using an inexpensive commercially
available catalyst such as proline, many second-generation catalysts require several steps to
prepare.4a,6 Moreover, the waste component due to catalyst loss upon workup is necessarily
large, detracting from even those processes amenable to use in water as solvent.7 Those run
in organic media where most substrates of interest find solubility are even less
environmentally friendly. Not surprisingly, therefore, recent efforts that address catalyst
recycling have come to light.8 Those reported to date follow a similar pattern; i.e.,
attachment to a solid support, thereby requiring catalyst separation from a reaction mixture
and, oftentimes, reactivation. Ideally, no such manipulation would be needed; i.e., in-flask
processing should prevail, where the catalyst remains in the reaction vessel.9 Use of water in
place of organic solvent(s) would add a considerable element of “greenness” as well. In this
communication we describe a newly designed organocatalyst-containing system that
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provides a solution to all of these issues: organocatalysis involving water-soluble or
insoluble substrates, done in water at room temperature, with in-flask catalyst recycling.

As a “proof-of principle” case, 4-hydroxyproline was selected to represent the potential of
the new technology developed. Covalent attachment to the water-soluble micelle-forming
species “PQS” (1)10 via its OH group was anticipated to arrive at species 2 (Figure 1). The
synthesis of 2 follows the outline shown in Scheme 1. Protected proline derivative 311 was
used to open succinic anhydride to arrive at acid 4 in close to quantitative yield.
Esterification of coenzyme Q10-derived PQS (1) led to ester 5 (96%), which underwent
global hydrogenation to remove (1) the benzyl ester, (2) the Cbz residue, and (3) all ten
olefins present in the 50-carbon side-chain found in the reduced form of CoQ10, ubiquinol.
Compound 2 thus serves in multiple capacities: (a) as the source of the organocatalyst, in
this case, proline; (b) provides the reaction solvent in the form of the 50 carbon hydrocarbon
chain; (c) forms a water-soluble nanoparticle that, due to the PEG-2000 component, remains
in water upon in-flask extraction of the product. Dissolution of PQS-proline (2) in pure
water results in formation of 79 nm micelles, as determined by Dynamic Light Scattering
(DLS),12 within which homogeneous organocatalysis can occur.

For comparison purposes, the aldol reaction between cyclohexanone and p-
nitrobenzaldehyde was chosen for initial study (Table 1). This particular pair of reactants is
described in the literature with considerable frequency for related studies in
organocatalysis.13 The closest analogy to PQS-proline 2 is Barbas’ micelle-forming proline
derivative 6C,7b which shows considerable promise for use in industrial settings.7c Catalysts
screened for this aldol reaction included not only PQS-proline, but also the analogous mixed
diester derivative 6A14 of 4-hydroxyproline, designed to test the importance of the micelle-
forming CoQ10 platform, and proline itself. As illustrated in Table 1, only PQS-proline (2)
afforded aldol product to any significant extent, the reaction being run in water at room
temperature. With less ketone present (2.5 equiv), the extent of conversion was lower and
the yield, therefore, dropped to 80%.

Several additional examples of aldol reactions occurring within, and mediated by, PQS-
proline can be found in Table 2. Catalyst loading (10 mol %) was chosen as a compromise
between maximizing the amount of 2 used (since none is lost), and the overall viscosity of
the aqueous medium (typically hosting large excesses of ketone). While proline works well
insofar as ee’s are concerned in several cases, the goal in this study was not to maximize
levels of stereoinduction. Rather, both the dr’s and ee’s resulting from various ketone/
aldehyde combinations are all as expected based on proline as catalyst.15 In several cases,
far better ee’s can be realized using known alternative catalysts that could replace proline
bonded to the PQS backbone.16 Another feature worthy of note, given that catalysis is
presumably taking place within the lipophilic core of 2 (and not in water), is that water-
insoluble educts, in fact, are the preferred substrates. Thus, substituted cyclohexanones
(entries 4, 5, 7, and 8) readily participate at ambient temperatures.

Key to the value of 2 as a model for organocatalytic processes is its inherent potential for in-
flask recycling.10 Thus, upon completion of the aldol event, introduction of a single organic
solvent (e.g., EtOAc) allows in-flask extraction of the product. Removal of the EtOAc layer
is followed by product purification and potential solvent recovery, while the residual
aqueous layer in the reaction flask retains the proline-containing nanomicelles composed of
amphiphile 2. Re-introduction of starting materials begins the first recycle. Table 3
documents, through three recycles, that the yield, diastereomeric ratio, and ee of the process
are essentially invariant.
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The option to add educts differing in constitution at any point exists as well. For example, as
illustrated in Scheme 2, following an initial PQS-proline-catalyzed aldol reaction between
aldehyde 7c and ketone 8c giving product 9c, addition of aldehyde 7d and ketone 8d to the
same pot containing 2 now leads to aldol 9d.

In summary, a new surfactant has been designed with the principles of green chemistry in
mind to address the high levels of catalyst loading typically associated with organocatalysis.
Proline, as a model catalyst, has been attached to a nanomicelle-forming amphiphile derived
from the dietary supplement CoQ10. In water this species self-aggregates into nanoreactors
in which catalysis takes place at room temperature. Given the covalent linkage of the
catalyst (that can be varied) and the high solubility in water of the amphiphile to which it is
attached, typical extractive workup is avoided, and in-flask recycling of the catalyst is easily
performed.17
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MHz, CDCl3): δ 215.1, 142.8, 131.7, 130.9, 129.4, 118.9, 112.7, 74.2, 57.3, 42.8, 30.9, 27.8, 24.9;
MS (ESI): m/z 252 (M + Na); HRMS (ESI) calcd for C14H15NO2Na [M + Na]+ = 252.1000,
found 252.0993.
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Figure 1.
PQS attached proline catalyst for reactions in water.
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Scheme 1.
Synthesis of PQS-proline (2)
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Scheme 2.
In-flask Recycling of Catalyst 2 in Different Asymmetric Aldol Reactions
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Table 1

Comparisons between Organocatalysts in an Aldol Reaction, in Water at rt

catalyst yielda (%) anti:synb eec (%)

PQS-proline (2) 93 92:8 96

proline C-4 ester (6A) <5 – –

proline (6B) 0 – –

proline C-4 ester (6A)

proline (6B)
Barbas’ catalyst 7b (6C)

a
Combined yield of isolated diastereomers.

b
Determined by 1H NMR of the crude product.

c
Determined by chiral-phase HPLC analysis for anti-product.
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Table 3

In-flask Recycling of Catalyst 2

run yielda (%) anti:synb eec (%)

1 94 92:8 96

2 94 91:9 96

3 93 91:9 96

4 91 90:10 96

a
Combined yield of isolated diastereomers.

b
Determined by 1H NMR of the crude product.

c
Determined by chiral-phase HPLC analysis for anti-product.
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