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A new Python-based graphical user interface for the PHENIX suite of

crystallography software is described. This interface unifies the command-line

programs and their graphical displays, simplifying the development of new

interfaces and avoiding duplication of function. With careful design, graphical

interfaces can be displayed automatically, instead of being manually

constructed. The resulting package is easily maintained and extended as new

programs are added or modified.

1. Introduction
PHENIX (Adams et al., 2010) is a widely used system that has been

developed for crystallographic structure determination using

diffraction data. Recent improvements in the experimental and

computational tools available for macromolecular crystallography

have led to widespread adoption of the technique by nonspecialists

over the past decade, as well as a steep increase in the number of

structures deposited in the Protein Data Bank (PDB; Bernstein et al.,

1977; Berman et al., 2000; Berman, 2008). Simultaneous efforts by

structural genomics initiatives (see for example Cymborowski et al.,

2010; Elsliger et al., 2010) and the biotechnology and pharmaceutical

industries have focused on high-throughput technologies, with the

goal of rapid structure solution. Rapid structure solution often

requires a combination of many approaches, such as parallel testing

of phasing strategies or quick evaluation of multiple related data sets

of unknown quality. This can be accomplished by using a high degree

of automation, both increasing the probability of successfully solving

and refining structures, and avoiding burdening the crystallographer

with repetitive time-consuming tasks. A large number of systems for

running part or all of the computational ‘pipeline’ nearly unattended

have been proposed, many focused around linking together existing

components with command-line scripts or HTML interfaces (Brun-

zelle et al., 2003; Holton & Alber, 2004; Kroemer et al., 2004; Panjikar

et al., 2005; Vonrhein et al., 2007). In favorable cases, a mostly

complete model can be obtained starting from raw diffraction images

or processed data; however, additional correction and completion by

experts is almost always necessary, and automation may fail for more

difficult structures.

In many respects a graphical user interface (GUI) is highly suitable

as an automation platform, especially for novice users who face a

steep learning curve when using software that implements a large

number of complex algorithms. Presentation in a GUI can be used to

separate commonly used parameters from advanced options and

provide additional information about their intended use. Addition-

ally, a GUI can provide a framework for tracking information about

individual projects, rather than relying on the native file system and

text files; it can also facilitate automation, for example by suggesting

or easing transitions between programs, or promoting re-use of

common parameter sets and other input files. Finally, much of the

information generated by crystallography software can be difficult to

interpret when presented as plain text files. In many cases presenta-

tion as two-dimensional graphs or three-dimensional models and

maps greatly simplifies the process.

Most of the current generation of graphical interfaces have focused

on making the individual steps as accessible as possible and linking

them together, rather than imposing ‘black-box’ automation on the

user (Potterton et al., 2003; Pape & Schneider, 2004; Minor et al., 2006;

Emsley et al., 2010). We have implemented a graphical interface to

PHENIX designed around a similar concept, using a novel parameter

syntax suitable as a basis for both command-line tools and the GUI.

The new GUI provides access to nearly all of the command-line

features of PHENIX, making it suitable for experts as well as users

with a less technical background.

2. Methods
2.1. The PHENIX software development environment

2.1.1. Programming languages. When building a complex large-

scale system the choice of fundamental tools is critical. Clearly the

most important choice of all is the choice of programming languages.

For PHENIX a combination of Python (Van Rossum & Drake, 2003)

and C++ (Stroustrup, 2000) is used (Grosse-Kunstleve et al., 2002;

Adams et al., 2010). This decision was motivated by a number of

considerations. Firstly, Python and C++ are simultaneously compa-

tible and complementary: compatible because both languages are

object oriented, complementary because Python maximizes

programmer productivity while C++ maximizes runtime efficiency.

Secondly, both languages are in wide use in the software development

world, including many open-source projects. Therefore this makes

accessible a vast and still growing pool of widely used and well
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maintained libraries. Thirdly, both languages are highly portable and

are almost certain to remain so in the future because of the strong

community interest in supporting new platforms for the many existing

packages based on Python and C++.

The integration between Python and C++ uses the Boost.Python

library (Abrahams & Grosse-Kunstleve, 2003) to implement Python

interfaces for the C++ components of PHENIX. Boost.Python uses

the C++ template engine to generate C++/Python bindings, which has

the two important advantages that no additional tools are needed and

that the syntax for defining the bindings is standard C++. This

contrasts with other widely used tools (most notably SWIG; http://

swig.org) thereby maximizing portability and sparing new methods

developers the effort of learning a third syntax.

2.1.2. The GUI toolkit. The second fundamental decision is the

choice of GUI toolkit. We determined that a Python interface is

highly suitable, for two main reasons. The first is that Python maxi-

mizes programmer productivity, the second that the core algorithms

of PHENIX are almost universally called through Python interfaces

(Grosse-Kunstleve et al., 2002). We also determined that the GUI

toolkit must offer cross-platform support for all major features and

that it should be backed by a major existing user community, because

this is correlated with long-term availability. Finally, to be compatible

with the distribution model of PHENIX, it is important that the GUI

toolkit is open source. After a thorough evaluation the wxPython

toolkit (http://wxpython.org) was chosen as the best match for these

requirements.

2.1.3. A unifying user interface toolkit (Phil). The third funda-

mental component behind the PHENIX GUI is the Python-based

hierarchical interchange language (Phil; http://cctbx.sourceforge.net/

libtbx_phil.html), which was developed as part of the PHENIX

project (Grosse-Kunstleve et al., 2005). Phil is designed to simulta-

neously enable intuitive command-line user interfaces and aid in

largely automating the generation of graphical user interfaces.

PHENIX command-line users are presented with a minimal but

powerful syntax for defining input parameters; the only two major

syntax elements are the equal sign for keyword-value assignments

and curly braces for the delineation of a hierarchical structure. For

methods developers, Phil provides flexible means for the modular

assembly of parameter files. The Phil modules are typically imple-

mented along with the algorithms using the parameters. Phil supports

embedded help text for users. Typically the algorithms and the Phil

modules including the help text are kept in the same Python source

code file. This arrangement ensures that the algorithms, associated

parameters and help texts can easily be developed and maintained

together and are approachable by new methods developers.

Phil parameter files can be automatically converted to a graphical

presentation. This makes use of metadata embedded in the Phil

modules, primarily the type for each parameter (for example int,

float, choice, path etc.), which is defined by the developer. For each

type there is a corresponding default presentation in the GUI.

Optionally, the type information is augmented by secondary infor-

mation defined by the developer, to direct customized presentation in

the GUI. A typical example is shown in Figs. 1(a) and 1(b). Nearly all

of the information required to create and manage the graphical

controls for editing these parameters is contained in the metadata.

The hierarchical organization of the Phil parameters helps determine

the window layout. Developers may modify most of the options for

underlying programs without disrupting the GUI. The user-modified

parameters are retrieved from the GUI by forming new internal Phil

objects, which may be saved as input files for the command-line

programs or used directly to start computational processes.

Advanced users may opt to edit the Phil files prior to executing the

processes. The need for repetitive input is reduced both by the ability

to restore and merge past inputs and by the option of saving default

settings for specific contexts.

Each Phil parameter definition or hierarchical level is tagged with

an ‘expert level’ attribute, which allows the display in the GUI to be

limited to basic settings or increasing levels of complexity. Because

many of the settings are distracting for novices or used primarily for

development purposes, the default interface is kept simple, and a

minimal set of controls is displayed in the main window.

computer programs
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Figure 1
(a) Example of phenix.refine parameter specifications using the libtbx.phil module
in cctbx, with metadata used in the GUI. (b) Controls drawn automatically based on
the specifications in (a). (c) A practical example of fully automatic interface
generation: PDB file preparation for refinement in phenix.ready_set.



The Phil implementation is intended to be reusable for a wide

variety of purposes. To this end, the Phil type system is designed to be

extensible from Python. For example, the extension mechanism is

used to support crystallography-specific types, most notably unit-cell

and space-group types. These accommodate common abbreviations

and syntactical variations. For example, the space-group symbols

‘p212121’ or ‘19’ are converted to the standardized form ‘P 21 21 21’.

2.2. Execution of programs

The PHENIX software development framework allows any

program to be run within the GUI as a Python module. This enables

immediate feedback, such as real-time plots or progress bars. For

maximum flexibility, however, several additional approaches to

starting processes have been implemented. Programs may be started

either directly from the GUI, as separate processes on the same

computer, or on a cluster managed by a batch queuing system (for

example the Sun Grid Engine or the Portable Batch System). The

latter two mechanisms allow the GUI to be closed (and resumed

later) without interrupting running processes, at the cost of losing

some interactive features that require direct communication between

the GUI and running process. In all cases, the printed console output

is automatically propagated to the GUI. More complex output is sent

to the GUI on a case-by-case basis using ‘callbacks’, which encap-

sulate intermediate data to be saved to temporary files or sent

directly via interprocess-communication objects. Information sent to

the GUI by this mechanism may include warning messages, tables of

statistics, plot data, or even models and maps. The ability to propa-

gate higher-level data to the GUI makes it possible to provide fine-

grained indicators of program progress using easily interpretable

presentations instead of relying on the text output alone.

2.3. Testing

An essential feature of collaborative development, or any long-

term software project, is frequent testing of all basic functionality to

guard against bugs introduced by code changes. In the context of

PHENIX and the cctbx (Adams et al., 2010), this is primarily

accomplished by running nightly builds and a set of regression tests

on all supported platforms. Automated testing of graphical code is

notoriously difficult because of the interactive nature of the software.

However, careful separation of core logic and presentation allows the

nongraphical components to be tested as part of a nightly build

system. This includes consistency checks to ensure that none of the

parameters represented in the GUI have been removed from the

underlying program. Graphical controls are implemented as separate

modules with minimal dependencies where possible, which makes

them potentially reusable for other purposes and less prone to errors

as a result of changes to other code. Each control includes a simple

test program that can be run manually as a standalone command,

allowing quick verification of code changes without the burden of

running the entire application.

3. Results and discussion

3.1. Overview of the PHENIX GUI

As of the current release (1.7.3, December 2011), most of the major

programs in PHENIX are available in the GUI, including phenix.

refine (Afonine et al., 2012), the AutoSol, AutoBuild, AutoMR and

LigandFit wizards (Terwilliger et al., 2006, 2008, 2009), Phaser

(McCoy et al., 2007), Xtriage (Zwart et al., 2005), eLBOW (Moriarty et

al., 2009), MR-Rosetta (DiMaio et al., 2011), a comprehensive vali-

dation suite largely derived from MolProbity (Chen et al., 2010),

POLYGON (Urzhumtseva et al., 2009), and phenix.model_vs_data

(Afonine et al., 2010), as well as many simpler programs for building,

map calculations, restraints editing, file manipulation, data analysis

and visualization.

Nearly all of the programs in PHENIX are now configurable by

Phil; in those cases where the original code was designed around this

framework (such as phenix.refine and Xtriage), few modifications

other than addition of GUI-specific metadata were required. For

applications that pre-date Phil, such as the wizards and eLBOW,

additional wrapper code was required to provide an interface

between Phil and the configuration mechanism used internally. In the

case of Phaser, an entirely new command-line interface was added as

a bridge between the Phil layer and the existing Python API (McCoy

et al., 2007).

The Phil-based system has proved essential for maintaining the

interfaces to applications such as phenix.refine, which currently has

more than 900 unique parameters. Most changes to parameters can

automatically be propagated to the PHENIX GUI, and most custo-

mizations are made in the Phil metadata rather than Python code. For

particularly complicated input types (especially file input), embedded

keywords may specify callback functions to be executed when a

parameter is changed. Some common parameters that use the basic

types often have additional restrictions on syntax and may be tightly

coupled to other parameters, such as the selection of column labels

(as comma-separated strings) from reflection data files; these are

flagged by style keywords in the Phil syntax and handled by specia-

lized controls. Additional customization of individual applications is

often inevitable, and nearly all interfaces contain some custom layout

code for the top-level controls. However, for simple programs an

entirely automatic interface is possible (Fig. 1c), and even the most

complex interface, that for phenix.refine, presents more than 90% of

parameters without any customization.

The organization of the central GUI (the ‘phenix’ command)

combines a list of user-defined projects and their current status with

individual programs grouped by category (Fig. 2). Internally, Phil is

also used to define much of the information about available

programs, such as module locations and the content displayed in the

widgets in the main GUI. On the Macintosh platform, help links

embedded in the Phil specification are used to generate buttons to

navigate directly to the HTML documentation from anywhere in the

computer programs
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Figure 2
Screen capture of the main window of the PHENIX GUI running on a Macintosh
computer.



GUI. Phil is also the primary storage format for project tracking. Job

history for the currently selected project is displayed in a separate

window (reached through the ‘Job history’ tab). Both jobs and

projects can be sorted on the basis of modification time or current

best Rfree (Brünger, 1992) (extracted at the end of each job if it is

calculated). Currently job tracking is the primary function of projects,

but this functionality will be extended in the future to manage default

settings and inputs. For demonstration purposes, PHENIX is

distributed with a number of tutorial data sets, which can be readily

set up as projects directly from the GUI.

Although they share a common configuration system, the output of

the individual programs is heterogeneous, and a variety of mechan-

isms have been implemented to present the progress and results of

each application visually. Larger programs such as phenix.refine send

entire molecules and maps via callbacks as they are updated, and this

output is displayed in graphics programs such as Coot (Emsley et al.,

2010) (see below). Final results may encompass validation reports,

models, tables for plotting and any information written to files. These

results (and any intermediate results from callbacks) are saved to disk

and can be quickly reloaded and displayed in the GUI in future

sessions. For many programs, the final result returned is a simple list

of files created, which can be automatically displayed using a generic

procedure. The heterogeneous nature of the large programs and the

complexity of the information returned requires the use of manual

layout for many results, although re-use of common classes is made

wherever possible.

3.2. Interfacing with molecular graphics

The PHENIX GUI includes basic three-dimensional graphics

functionality, for example the ability to display wireframe atomic

models and electron density maps. However, manual model building

or publication-quality graphics are outside the scope of the PHENIX

project. Therefore, we have implemented interface layers for the

crystallographic building program Coot and the general-purpose

molecular graphics program PyMOL (DeLano, 2002). Both programs

are extensible from Python. Most of the communication is through

files [PDB, MTZ or CCP4 (Collaborative Computational Project,

Number 4, 1994)], but a local network connection is used internally,

allowing functions in the Coot and PyMOL Python APIs (for

instance, loading and contouring a map file) to be called remotely

from within PHENIX. Interactive model validation summaries

(‘kinemages’) may also be loaded in KiNG (Chen et al., 2009),

providing visual validation similar to that available in MolProbity.

All applications in the GUI support the loading of data files

directly into Coot, and the majority also support PyMOL and/or the

built-in graphical viewer. Any necessary file conversions or additional

commands, such as a fast Fourier transform to generate a CCP4-

formatted map file, are handled internally. Thus, the final model and

map coefficients from refinement can be opened in Coot or PyMOL

by a simple mouse click in the PHENIX GUI, and PDB files used for

input may be opened in one of the viewers instead of a text editor. A

more powerful application of the graphics extensions is continuous

display of results during computation, by saving intermediate data

and re-loading the files as they change. Similar interactivity has

previously been implemented in VMD (visual molecular dynamics;

Humphrey et al., 1996), both for visualizing molecular dynamics

simulations and for NMR refinement (Schwieters & Clore, 2001), and

applied to visualizing the progress of the building program ARP/

wARP (Payne et al., 2005; Langer et al., 2008). This is most useful in

refinement where one can watch model and map changes in real time.

Other programs that iteratively rebuild models (currently AutoSol

and AutoBuild) produce similar output at longer intervals.

For applications requiring a particularly high degree of inter-

activity and two-way communication, extending the Coot GUI via the

Coot Python API is necessary. This approach has been used to

facilitate editing of input models for molecular replacement with the

Sculptor utility (Bunkóczi & Read, 2011). In most situations,

however, it has been sufficient to use a direct network connection

instead. When displaying validation results, therefore, instead of

creating a redundant interface in Coot to list outliers, the list controls

in PHENIX re-center the attached Coot window on the selected

residue (Fig. 3). Controlling PHENIX from Coot via the same

mechanism is also possible. Currently this is limited to starting the

phenix.refine GUI and loading a selected model, but more complex

operations such as atom picking or selecting from a choice of auto-

matically fitted loops could be added.

3.3. Automation in a GUI framework

Although the new PHENIX GUI has been designed around

individual programs, many of the most common automation strate-

gies for phasing and model building are implemented in the wizards

(Terwilliger et al., 2006, 2008, 2009). The GUI provides a framework

for further simplifying the process, primarily by linking related

actions and easing the transition between programs. In the interface

for phenix.refine, for instance, common tasks such as setting up

restraints and adding hydrogen or deuterium atoms (via the

phenix.ready_set program), identification of noncrystallographic

symmetry (NCS) groups (phenix.simple_ncs_from_pdb), rapid iden-

tification of translation/libration/screw (TLS) groups (phenix.

find_tls), and assigning secondary structure for the purpose of

generating hydrogen-bond restraints (phenix.secondary_structure_

restraints) are easily accessed and the results incorporated into the

refinement input. At the end of each run, the validation suite is

automatically executed and the results displayed with refinement

statistics (Fig. 3).

A simpler, but extremely important, type of automation is for

programs to suggest appropriate next steps after a job is complete,

and provide an easy and direct transition to other programs. For

example, the wizard GUIs display buttons for launching phenix.refine

computer programs
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Figure 3
Integrated validation application, showing a list of outliers for all-atom contact
analysis, and the multi-criterion plot combining geometry outliers, electron-density
levels and B factors. The model, maps and Probe dots (Word et al., 1999) are
automatically loaded into Coot, and the view is re-centered on the selected atom.



with input fields filled in with data calculated by the wizard, and for

running other wizards where appropriate. This allows new ‘pipelines’

to be constructed by chaining of GUI modules instead of integrating

programs at a lower level, such as molecular replacement single-

wavelength anomalous diffraction (MR-SAD) phasing, which is

performed in PHENIX simply by running the molecular replacement

GUI, then clicking a button labeled ‘Run MR-SAD’ to launch a

separate wizard with the required inputs. Future developments will

address common parallel workflows, such as evaluating multiple

molecular replacement search models, or validating several closely

related structures simultaneously.

4. Conclusions and future directions

The combination of Python and the Phil configuration system has

proved to be a highly productive environment for efficiently devel-

oping graphical interfaces, which greatly increase the accessibility of

PHENIX to the broader community of structural biologists. New

interfaces are added regularly, and because configurable parameters

are now usually designed with GUI considerations in mind, their

implementation typically requires only a small effort relative to the

effort invested in developing the core algorithms. The integration

with Coot and PyMOL provides a nearly seamless workflow for all

aspects of structure determination and refinement starting from

processed data, without requiring knowledge of the PHENIX

command-line tools. This allows the training of researchers to focus

on general principles and best practices, rather than advanced

computer skills.

As development of PHENIX and the GUI continues, the under-

lying framework is constantly revised to improve modularity and

enable more comprehensive unit testing. Lightweight applications

using Phil can often be integrated into the PHENIX GUI without

specialized Python code, and a growing set of utilities now uses this

approach. Eventually the core GUI libraries will be extended to serve

as a general-purpose framework for developing graphical tools built

around the cctbx, incorporating related programs such as LABELIT

(Sauter et al., 2004).

5. Availability

The GUI is distributed as part of the PHENIX suite, which is freely

available to academic users, both as binaries for standard Macintosh

and Linux platforms and as source code. PHENIX can be obtained

from http://www.phenix-online.org after online registration. The Phil

implementation and many of the low-level graphical controls, toolkits

and libraries are also available as part of the open-source cctbx

project (http://cctbx.sourceforge.net).

Luc Bourhis made many important contributions to the cctbx,

including code for displaying electron density and anisotropic ellip-

soids. Alexandre Urzhumtsev developed the POLYGON concept

used in validation. Many users and collaborators provided essential

feedback and ideas during the development of PHENIX, especially

James Fraser, Herb Klei, Frank von Delft, Joel Bard, Engin Ozkan,

Felix Frolow and Robert Nolte. Paul Emsley, Bernhard Lokhamp and

William Scott assisted with Coot integration and support, and Robin

Dunn contributed advice on wxPython development. We are

indebted to the late Warren DeLano for PyMOL support and advice

throughout the course of the PHENIX project. Funding was provided

by the NIH (grant No. GM063210) and the PHENIX Industrial

Consortium.
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