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Abstract

Biosynthesis of membrane proteins requires that hydrophobic transmembrane (TM) regions be
shielded from the cytoplasm while being directed to the correct membrane. Tail-anchored (TA)
membrane proteins, characterized by a single C-terminal TM, pose an additional level of
complexity because they must be post-translationally targeted. In eukaryotes, the GET pathway
shuttles TA-proteins to the endoplasmic reticulum. The key proteins required in yeast (Sgt2 and
Get1-5) have been under extensive structural and biochemical investigation during recent years.
The central protein Get3 utilizes nucleotide linked conformational changes to facilitate substrate
loading and targeting. Here we analyze this complex process from a structural perspective, as
understood in yeast, and further postulate on similar pathways in other domains of life.

Introduction

Delivery of membrane proteins to the proper membrane is a critical process that is highly
regulated. The field of protein targeting has recently added a new pathway involved in
targeting the special class of tail-anchored membrane (TA) proteins to the ER. After the
initial discovery of proteins involved in this pathway a wealth of genetics, biochemistry and
structural information has rapidly elucidated a complex process of hand-offs of the TA-
substrate. The pathway starts by transfer of the substrate to the Get4/Get5/Sgt2 sorting
complex that then loads the TA onto the targeting chaperone Get3, which is subsequently
released at the membrane by the Get1/Get2 receptor complex. While recent reviews describe
these initial characterizations [1,2], in this review we will summarize the current state of the
field from a structural perspective and more broadly comment on the possibility of similar
pathways beyond fungi. Figure 1 is an overall model of TA-protein targeting, including the
various ambiguities in certain steps, which will be referred to throughout the text.

Structural changes in the Get3 molecular machine

The general structure and mechanism of Get3, which we briefly summarize here, has been
recently reviewed [2,3]. Get3 is a nucleotide hydrolase that modulates its conformation
through nucleotide state. Similar to other SIMIBI class NTPases (named for representative
members signal recognition particle, MinD and BioD), Get3 forms a homodimer through
interactions between the nucleotide hydrolase domains (NHD) [4]. The subunits rotate
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relative to each other from an open state in apo form or bound to ADP to a more compact
closed state bound to Mg2*ADP-AIF,~, Mg2*AMPPNP or Mg2*ADP, forming an
intersubunit hydrophobic groove from a-helices connected to the NHD [5-8].

There are three models for how Get3 sequesters a TA-protein predominantly based on
structures (Fig. 2A & B). The first two models are based on a dimer of Get3, which is the
dominant form of purified fungal Get3. In the prevailing model, an a-helical TA is captured
by the hydrophobic groove formed by the closed Get3 dimer [9] (Fig. 2D). The alternative
dimer model posits that pairs of amphipathic a-helices extending out from either side of the
groove bind the TA through a hydrophobic patch [8]. The third model correlates the
observation that heterologously purified Get3/TA complexes contain four copies of Get3
with the structure of a tetrameric archaeal homolog. In this model, the TA would be
sequestered in a hydrophobic chamber formed by the grooves of opposing dimers (Fig. 4E &
S1) [10]. In all models, similar residues mediate potential TA interactions. The importance
of these regions in TA binding has been shown through various mutagenesis experiments
[7-9]. Additionally, changes in these regions upon TA binding have been demonstrated
through hydrogen exchange mass spectrometry of Get3 complexed with TA-protein [5]. In
general, results from biochemical experiments are compatible with both dimer and tetramer
models. The simplicity of the dimer model is consistent with structures seen in complex with
partners (see below) and binding of functionalized TA substrates [11]. The tetramer model
allows for complete shielding of the hydrophobic domain but necessitates additional
assembly and disassembly steps, yet agrees with complexes analyzed in solution [5,10,12].
The oligomeric state of Get3 in the native TA complex remains a subject for future study.

Many nucleotide hydrolases are molecular machines that act as switches, utilizing
nucleotide state and the energy of hydrolysis to alter their conformation with a broad
spectrum of functionality from signaling interactions to actively driving processes. The Get3
homodimer uses ATP hydrolysis to switch between open and closed conformations during
its targeting cycle (Fig. 2A & B). Related SIMIBI class NTPases in the MinD/Mrp family
[4] switch by changes in dimer conformation like Get3 (NifH and ArsA pseudodimer) or
convert between monomeric and dimeric states (MinD and Soj) [13]. Changes from open
and closed dimer states were originally seen for NifH [14] and have been modeled for ArsA
[15].

In SIMIBI proteins, nucleotide induced conformational changes control interactions with
protein factors. For Get3, this involves ferrying the TA substrate from the sorting complex
(Sgt2/Get4/5) to the membrane receptor (Get1/2) (see below). This is analogous to ArsA
that receives arsenite from ArsD then exports through the membrane protein ArsB [16].
NifH switches between a MoFe bound state ferrying electrons along the nitrogenase cycle
[17]. In the best characterized of these cases, in addition to rotation across the dimer
interface, the switch Il loop alters its conformation among different nucleotide states (Fig.
2C and Fig. S2). This loop connects to structural features mediating partner interactions. In
the case of Get3, switch Il is linked to a, which is connected to the putative substrate-
binding groove (Fig. 2C). Therefore, the nucleotide state can modulate transitions associated
with TA-binding. Similar switch Il conformational changes occur during the NifH and ParA
nucleotide cycle (Fig. S1).

The ArsA fold

Get3 belongs to a subset of the SIMIBI family of proteins characterized by the first member
ArsA. ArsA contains two NHDs linked together forming a pseudo-dimer (Fig. 3A) [18]. In
the first structure, substrate antimony atoms bind in a groove formed by two loops that
extended from the NHD, linking the nucleotide-binding pocket to liganding cysteines and
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histidines (Fig. 3B). ATP hydrolysis is proposed to induce conformational changes that
coordinate the release of the toxic metals to the ArsB exporter. Interestingly, the two halves
have only 26% identity, and this asymmetry appears to play a functional role [19]. The
substrate-binding groove appears to be a unique identifier for this family (Fig. 3A & B).

Fungal Get3 has approximately 25% identity to each half of ArsA; therefore, based on
homology alone, distinguishing an ArsA from a Get3 is difficult. In most genomic
annotations members of this fold family are identified as ArsA homologs. Several key
differences to distinguish Get3 from ArsA have been identified. The simplest is that Get3 is
a homo-dimer. Instead of containing the ArsA metal ligand residues [20,21], Get3 homologs
contain a unique “Get3 motif” insertion [9] (Fig. 3C). Moreover, Get3 homologs typically
contain a pair of cysteines, a CXXC motif, at their dimer interface that coordinate zinc
presumably to stabilize the dimer, analogous to the ArsA linker [21,22].

Archaea contain both ArsA and Get3 homologs [23]. Only about half of the sequenced
genomes contain the Get3 homolog and half of these lack the CXXC motif [10]. While the
role of the ArsA homolog is likely similar to that in eubacteria, the presence of a Get3
homolog suggests membrane protein targeting occurs. Indeed, in heterologous systems
archaeal Get3 can form complexes with a variety of TA-proteins and in one case facilitates
insertion [10,24]. This implies a unique pathway, as other GET pathway members have not
been identified. Recent structural studies of the homologs from Methanobacter
thermoautotripicum (MiGet3) and Methanocaldococcus jannaschii (MfGet3) confirm the
structural homology of archaeal Get3 to fungal Get3 (Fig. 3A & B) [10,24]. Both archaeal
structures are in the closed form; however, unlike fungal Get3 homologs the substrate
binding loops are ordered and extended. In M/Get3 this results in a tetramer, a dimer of
dimers, with a closed hydrophobic chamber stabilized by a8 (Fig. 2E & S1) [10]. Moreover,
of the archaeal homologs where oligomeric state was analyzed, all are capable of forming
stable tetramers in solution including the 7hermococcus kodakaerensis homolog, which
lacks the CXXC motif and is competent for TA binding [10].

Looking more broadly at sequence homology a third class of this fold family becomes
apparent. Here, the fold is found in photosynthetic organisms. For clarity, we will refer to
members of this protein class as the ‘ArsA Family fold associated with Photosynthesis’ or
AFP. They can be found in green sulfur bacteria, cyanobacteria and are nuclear encoded
with chloroplast-targeting signals in plants. Each of these organisms is characterized by
photosynthetic machinery in specialized membranes, either the chlorosome or thylakoid
[25]. A recent structure from this class, all4481 from the cyanobacteria Nostoc sp PCC 7120
(NosAFP), was deposited by the Northeast Structural Genomics Consortium. The structure
reveals a closed Get3-like fold containing the hydrophobic groove but lacking the
nucleotide-binding pocket (Fig. 3A & B). A small heat shock protein (HSP)/crystallin
domain is appended to the C-terminus that contacts the Get3 surface used in yeast for
partner recognition (see below). The remarkable structural similarity of MosAFP is not
evident from the low sequence identity (9%) to ScGet3; however, similar homologs such as
that from the green sulfur bacteria Chlorobium tepidum (CtAFP) have higher identity (28%)
and appear to include the nucleotide-binding pocket (Fig. 3C). The conservation of the AFP
class from ancient photosynthetic organisms to modern plants suggests a critical role in
biosynthesis of the photosynthetic membranes. It will be exciting to see if there is a role for
this protein in protein targeting to membranes.

Getl and Get2 regulate membrane insertion steps

The integral membrane proteins Getl and Get2 form the ER membrane bound complex
required for TA-insertion by Get3 [26]; however, only a homolog for Get2 is found in
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higher eukaryotes [27]. Both proteins have single cytoplasmic domains that can bind Get3 in
the absence of the membrane components. The Getl cytoplasmic domain, which connects
the first and second transmembrane helices, is a coiled-coil motif that extends between the
subunits of a Get3 dimer [28,29] (Fig. 4A). A portion of Getl binds at a groove on the
surface of Get3 formed by a10 and a11. At the other Get3 subunit, Get1 extends into the
nucleotide-binding pocket, preventing ATP or ADP from binding (Fig. 4A, C & D). Get3 is
in an open or semi-open conformation, with Getl acting as a wedge that would block a
complete transition to the closed state. Nearly the entire cytoplasmic loop is modeled in
these structures; therefore, bound Get3 must be in close proximity to the ER membrane.

The cytoplasmic domain of Get2 consists of the N-terminus of the protein. Overall sequence
conservation is poor, with the exception of the first 35 amino acids that are sufficient to bind
Get3 [28,29]. This region forms two helices that wrap along the outer surface of Get3,
including the groove where Get1 interacts (Fig. 4B-D). Unlike Get1, the ordered portions of
Get2 do not contact both subunits of Get3. With bound Mg2*ADP-AIF,~, Get3 is nearly
identical to previous transition state structures [5,9,28]. A second structure containing
Mg2*ADP also is a closed Get3 dimer [29]. Despite this, helices that line the TA-protein-
binding site are in conformations similar to open structures although resolution limited the
extent of modeling and refinement (Fig. S1). Intriguingly, in both structures the surface of
Get3 that interacts with Get2 is unperturbed relative to Get3 alone. Since Get2 does not
contact the TA-protein binding loops or the nucleotide-binding pocket, it is unclear why a
closed conformation of Get3 would be selected. It is also noteworthy that in the Mg2*ADP
bound structure a crystallographic axis relates a second Get3 dimer into an arrangement
similar to the M. jannaschiitetramer [10] (Fig. S1).

The structures of Getl and Get2 and other biochemical data led to a general model for
events at the membrane [28-30] (Fig. 1). The flexible cytoplasmic domain of Get2 initially
captures the Get3/TA-protein complex. As Get3 approaches the membrane, Getl first
displaces Get2 and then facilitates a transition from closed to open Get3. This corresponds
with integration of the TA-protein into the membrane and release of bound nucleotide. ATP
then displaces Getl, releasing Get3 from the membrane complex. The exact nature,
however, of the Getl/Get2/Get3 complex at the membrane remains to be determined and is
crucial for understanding the mechanism of insertion. Without a clear structural explanation
for state selectivity for Get2, it is not obvious how the Get3/TA-protein complex is favored
from free Get3 or how immediate rebinding after an insertion cycle is prevented.
Uncertainty about the stoichiometry of Getl and Get2 results in alternative models of Getl
and Get2 binding at different subunits of dimeric or tetrameric Get3. Finally, the biophysical
mechanism of TA-protein insertion into the membrane and the requirements of Get3 or full-
length Getl and Get2, in this process are largely unknown.

Sgt2, Get4 and Get5 load Get3 with TA-protein

The HSP co-chaperone Sgt2 mediates the committed step in TA-protein targeting. It recruits
a variety of HSP families via an internal tetratricopeptide repeat (TPR) domain [30,31]. The
Sgt2 C-terminal domain binds the transmembrane helix of ER-destined TA-proteins, which
are then handed to Get3 [30,32]. In contrast, mitochondrial TA-proteins remain associated
with bound HSPs. This domain, rich in glutamine, methionine and asparagine, contains only
a short conserved sequence and is weakly predicted as helical. The mechanism of TA-
protein selection and handoff to Get3 are, therefore, intriguing problems. Sgt2 is a
homodimer mediated by its small N-terminal domain, and the TPR and C-terminal domains
of the two subunits extend away from each other [31] (Fig 4E). The N-terminal domain also
mediates the association with Get5, where a dimer of Sgt2 binds a single copy of Get5
[31,33].
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Get4 and Get5 act as an adaptor complex linking Sgt2 to Get3. Get4 is an alpha helical
repeat protein that tightly binds to the N-terminal domain of Get5 [33-35]. The Get5
sequence is followed by a ubiquitin-like domain (Ubl) and a C-terminal homodimerization
domain, resulting in an extended heterotetrameric complex [35,36] (Fig. 4F). The N-
terminal face of Get4 is a conserved basic surface that mediates interaction with Get3
[33,35,37]. Although a high-resolution structure of this complex remains to be determined,
mutagenesis and molecular modeling indicate that, like Getl and Get2, Get4 binds Get3 at
al10 and all (Fig. 4D). The in vivo stoichiometry, however, has not been established. In
order for a single Get4/Get5 heterotetramer to bind both subunits of a Get3 dimer, as it has
been proposed [35,37], the Ubl and C-terminal domains of Get5 would either thread through
the TA binding groove of Get3 or wrap around the NHDs, possibly positioning Sgt2 away
from the TA-protein binding groove. If the two Get4 copies bind independent Get3 dimers,
the Sgt2/TA-protein complex could be more accessible to Get3. This model also provides a
framework for Get3 to tetramerize upon TA-protein capture (Fig. 1)[36].

A complex analogous to Get4/Get5/Sgt2 appears to exist in vertebrates although with some
differences in architecture and function. The homologs of Get4 and Get5, named TRC35 and
Ubl4a, bind to Bag6 (alternatively named Bat-3 or Scythe) forming the Bag6 complex [38].
Bag6 is an approximately 1000-residue protein with an N-terminal Ubl domain and a C-
terminal Bag domain, with internal proline rich regions. SGTA, the homolog of Sgt2, uses
its N-terminal domain to associate with Bag6, and although it has not yet been demonstrated
experimentally, Ubl4A is expected to bridge these proteins [2,39]. The Bag6 complex not
only has the ability to load TA-proteins onto the Get3 homolog, TRC40 [38,40], but also
mediates protein degradation pathways for mislocalized membrane proteins,
retrotranslocated ER proteins and other defective proteins [32,41,42]. Determining how the
interplay between these functions makes or breaks membrane proteins will provide
fundamental insight into how TM segments are manipulated by the cell.

Concluding remarks

We are rapidly acquiring structural information for all of the components of the TA-protein-
targeting pathway. Careful analysis of analogous systems and components of the large and
dynamic complexes generate testable models. These are tied together by low-resolution and
biochemical methodologies. Despite recent leaps in understanding, many crucial questions
remain to be answered. How are TA-proteins initially directed towards the Get4/Get5/Sgt2
sorting complex? How does this complex recruit Get3 and what is the mechanism for
handoff? What is the structure of the physiological Get3/TA-protein complex? How is the
TA-protein integrated into the membrane? Further afield are questions about the functional
roles of structurally homologous proteins in other domains of life. Clearly, understanding
the detailed biosynthesis of this important class of proteins will continue to excite for some
time to come.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A model for TA targeting by the GET pathway

After protein synthesis is complete, a complex consisting of cellular chaperones, two copies
each of Get4 and Get5 and at least one dimer of Sgt2 binds the TM helix of TA-proteins.
The Get4/Get5 complex recruits Get3, and Sgt2 transfers ER destined TA-proteins to Get3.
Each Get4 may bind a separate dimer of Get3, or the same dimer (boxed). The Get3/TA-
protein complex may contain two or four copies of Get3. The stoichiometry of the Getl/
Get2 complex within the ER membrane is unknown but is shown here as a dimer of 1:1
Getl to Get2 dimers. Initially Get2 binds the Get3/TA-protein complex and is then displaced
by Getl. Getl binding is coupled to the opening of Get3, leading to release and integration
of the TA-protein. In the case of a dimeric Get3/TA complex, Getl and Get2 could bind the
Get3 subunits symmetrically (left pathway). Alternatively, Get2 and Getl could bind a
tetramer of Get3 asymmetrically (right pathway).
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Figure 2. Conformations of Get3 and modelsfor TA binding

A. Open form structures of Get3 in a cartoon representation aligned by the right subunit,
using PDB IDs 3A36 (purple), 3H84 (blue) and 2WOO (pink). B. Closed form structures
shown as in A, using PDB IDs 31QW (purple), 3103 (blue) and 2WOJ (pink). C. The NHD
of aligned Get3 structures from one subunit. Motifs are indicated with arrowheads and
labeled A (A-loop), P (P-loop), I (switch 1) and I1 (switch I1). Structures are colored
according to the nucleotide bound with white for no nucleotide (PDB ID: 3A36, PDB ID:
2WOO, PDB ID: 3SJA and PDB ID: 3SJC), green for ADP (PDB ID: 31QX and PDB ID:
3SJD), cyan for ADP-AlF,~ (PDB ID: 2WOJ, PDB ID: 3ZQ6 and PDB ID: 32S9) and blue
for AMPPNP (PDB ID: 31QW). D. A model for TA binding by the Get3 dimer [9]. Get3
(PDB ID: 2W0J) is shown in a surface representation colored hydrophobic (green),
positively (blue) and negatively charged (red). A cartoon representation of a TA from Secp
(PDB ID: 1RHZ), colored pink, is shown in the groove formed in the closed structure of
Get3. The inset shows a cartoon representation of Get3 with the left subunit colored ramped
and the right subunit in gray. E. A TA binding model for a tetramer of Get3 [10] represented
as in D. The structure of tetrameric Get3 (PDB ID: 3UGH) is cut away to show the central
cavity with a TA modeled inside, similar to D. The area shown is indicated with a box on
the overall structure in the inset.
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Figure 3. Members of the Get3/ArsA fold family

A. Cartoon representations of dimers of members of the ArsA fold viewed down the putative
TA binding groove. The structures are the transition state S. cerevisiae Get3 (PDB ID:
2WOQJ), the archaeal M. jannaschii (PDB 1D: 3UG6, monomers color ramped) and M.
thermoautotropicum Get3s (PDB ID: 3ZQ6, monomers light blue/pink), E. coli ArsA (PDB
ID: 1F48, each pseudo-dimer color ramped with the helix filling the groove in brown), and
the cyanobacterial homolog Nostoc sp. all4481 (PDB ID: 31GF, monomers color ramped).
The human a-crystallin structure (PDB 1D: 2WJ7) has been aligned in gray to the equivalent
cyanobacterial domain. Metals are shown as spheres and nucleotides as sticks. B. Surface
representations of the structures in A rotated 90° with residues colored as in Fig. 2D. Some
foreground residues have been removed for clarity and the truncation is colored grey.
MyjGet3 is shown for the archaeal homologs and the loop filling the groove has been
removed in the ArsA surface calculation to show the comparable groove. C. An alignment
of notable regions of the ArsA family proteins from ClustalW. Numbering and region names
are based on the S. cerevisiae protein similar to Fig. 2C. A black bar identifies residues
corresponding to a8. The sequences are ScGet3 (Saccharomyces cerevisiae UniProt 1D:
Q12154), HsTRC40 (Homo sapiens UniProt ID: 043681), MjGet3 (Methanocaldococcus
Jannaschii UniProt 1D: Q58542), MtGet3 (Methanobacter thermoautotropicum UniProt ID:
027555) CtAFP (Chlorobium tepidum UniProt ID: Q46366), NosAFP (Nostoc sp PCC
7120 UniProt ID: Q8YNTO), SynAFP (Synechocystis sp. PCC 6803 UniProt ID: FTUTPY),
AthAFP (Arabidopsis thaliana UniProt ID: Q6DYEA4), PtriAFP (Populus trichocarpa or
California poplar UniProt ID: BOHWMY) and EcArsA (Escherichia coli plasmid R773 N-
and C-terminal domains UniProt ID: P08690). Numbers to the right are percent identity to
ScGet3 excluding crystallin domains.
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Figure 4. Interactions between Get3 and other Get pathway members

A. Crystal structure of Get3 in complex with the Getl cytoplasmic domain (blue) (PDB ID
32S8). One Get3 subunit is gray and the other pale blue. B. Crystal structure of Get3 in
complex with the Get2 cytoplasmic domain (red) (PDB ID: 3SJD). C. Surface rendering of
open Get3 (PDB ID: 3A36). Regions where Getl (blue) and Get2 (red) interact with the
gray subunit are highlighted, with the overlapping region in magenta. D. Close up of Get3
al0and all, colored as in C. The expected Get4 binding interface is indicated with a
dotted line. E. Model of the structure of Sgt2. Two copies of the TPR domain (PDB ID:
3SZ7) are displayed over a cartoon of a SAXS model of the N-terminal dimerization and
TPR domains (gray, adapted from [35]). The additional 107 residues of the C-terminal
domains rotate freely from the TPR and a potential range of motion is indicated with dotted
lines. F. Structure of the Get4/Get5 heterotetramer. Residues shown to be critical for Get3
interaction are shown as spheres [35]. Subunits are arranged based upon SAXS models [31].
One copy of Get4 is color ramped from N- (blue) to C- (red) termini. One copy of Get5 is
colored magenta and the remaining Get4 and Get5 subunits are gray.
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