Editorial

Treatment Option(s) for Pulmonary
Lymphangioleiomyomatosis: Progress

and Current Challenges

Pulmonary lymphangioleiomyomatosis (LAM) is a rare progressive
cystic lung disease affecting primarily women of childbearing age
(1, 2). LAM occurs sporadically (LAM-S) with prevalence of 2.6
per 1 million women or in 34% of women with tuberous sclerosis
(TS) (LAM-TS) (3), an autosomal dominant hamartoma syn-
drome that occurs in 1 of 5,800 live births (2). Clinical manifesta-
tions of LAM are pneumothorax from cyst rupture, chylothorax
from obstruction of lymphatics, and progressive decline of pul-
monary function (1, 2). About 40% of patients with LAM-S and
about 80% of patients with LAM-TS also develop in kidney an
angiomyolipoma (AML), a benign tumor of smooth muscle
(SM), blood vessels, and fat cells (1, 2). Pathological changes
in the LAM lung are associated with growth throughout the
lung parenchyma of LAM nodules that consist of SM-like spin-
dle-shaped cells and epithelioid-like polygonal cells positive for
melanocytic cell marker HMB45 (human melanoma black 45)
(4,5) (Figure 1). SM-like LAM cells show high immunoreactivity
for PCNA (proliferating cell nuclear antigen), a marker of DNA
synthesis and cell proliferation, compared with the epithelioid-
like HMB45-positive cells (2), suggesting that SM-like LAM cells
represent the proliferative component of the LAM nodules. The
role of melanocyte-specific markers in LAM and whether they
could be targeted therapeutically have been explored (6) and
were reviewed in the January issue (7).

Major advances in understanding LAM occurred with identifying
in the proliferative SM-like LAM cells a loss of heterozygosity in the
tumor suppressor tuberous sclerosis complex 2 (TSC2) gene (8), and
linking the mutational inactivation of 7SC2 to abnormal SM-like
LAM cell growth (9) and the constitutive activation of the mam-
malian target of rapamycin complex 1 (mTORCT1) (9, 10) (Figure 1),
an integrator of growth factor, nutrient, energy, and stress sig-
naling (11). TSC2 forms a tumor suppressor complex with TSC1
and regulates mMTORCI by directly controlling the activity of
the small GTPase Rheb via the GTPase-activating protein
(GAP) domain of TSC2 (12) (Figure 1). Rheb binds to raptor
and controls the activity of the mTOR that phosphorylates p70
S6 kinase (S6K1) and 4E-BP1 (11). Importantly, TSC2-dependent
S6K1 activation suppresses phosphatidylinositol 3-kinase (PI3K)
signaling, named a negative feedback loop, that may explain the
benign tumorigenesis (13) in LAM and has implications for
the therapeutic targeting of mTORCI (see below). Activity of
mTORCI is sensitive to the inhibition by bacterial microlide
rapamycin (14), which by binding with FKBP12 (FK506-binding
protein of 12 kD) interacts with FKBP12-binding domain of
mTOR and inhibits mTORCT activity (15). Importantly, rapamy-
cin inhibits SM-like LAM cell proliferation at concentrations that
have little effect on human airway and vascular SM cells (9, 16-18).
The discovery of the TSC2 as a negative regulator of the mTORC1
(9, 19) and inhibitory effects of rapamycin in preclinical studies (9,
16, 20, 21) provided a rationale for use of rapamycin analogs in the
clinic.
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Importantly, Frank McCormack and colleagues (22) described
results of the first double-blinded placebo-controlled sirolimus
(rapamycin analog) clinical trial involving patients with LAM.
The sirolimus trial was conducted in two stages, including a 12-
month treatment stage and a 12-month observation stage, with the
difference between the groups in the rate of change (slope) in
FEV; as a primary endpoint. After 12 months of treatment, siro-
limus stabilized lung function, reduced symptoms, and improved
quality of life as compared with the placebo group. After discon-
tinuation of sirolimus, however, the decline of the lung function
resumed and paralleled that in the placebo group (22). Further,
tolerance and safety concerns are also serious limits to the long-
term treatment of patients with sirolimus.

Why did rapamycin fail to have a long-lasting effect in LAM?
One of the major limitations of rapamycin as a drug is that in many
tumors it has a cytostatic but not cytotoxic effect (11). Rapamycin
only partially inhibits mMTORCI because it induces allosteric inhi-
bition of mTOR without affecting ATP binding site of mTOR.
Further, rapamycin inhibition of S6K1 releases a negative feed-
back loop on PI3K signaling that induces activation of the pathway
and supports cell survival (14). Rapamycin also transiently and
partially inhibits phosphorylation of 4E-BP1, thus having only
modest inhibitory effect on protein translation (11) (see Figure
1). These limitations of rapamycin have motivated the search for
novel or additional therapeutic targets for LAM. To overcome the
limitation of rapamycin, the second generation of mTOR inhibi-
tors targeting the catalytic activity of mTOR have been developed
and are currently being tested in preclinical studies and clinical
trials in the treatment of cancer (14). This group of drugs has not
been preclinically tested for LAM (1, 2). The study by Joel Moss
and colleagues found a correlation between a positive response to
bronchodilators with more airflow obstruction and a predomi-
nantly solid pattern of LAM lesions in the lung biopsy (23). Fur-
ther, there is no evidence that corticosteroids and hormonal
therapy are beneficial for LAM (2, 24). Based on the prevailing
hypothesis that the cystic lung destruction in LAM occurs due
to up-regulation of matrix metalloproteases (MMPs), a clinical
case of one patient was reported in which doxycycline, a non-
specific MMP inhibitor, reduced urinary MMP level that was
associated with improved FEV; (1-3). However, this is a single
case that needs further preclinical and clinical investigation.

The finding that RhoA GTPase is activated in LAM (25, 26) and
is required for LAM-derived cell survival (27) (Figure 1) led to
preclinical testing of statins, 3-hydroxy-3-methylglutaryl coenzyme-
A (HMG-CoA) reductase inhibitors, and pleiotropic agents that
might contribute to the prevention of human cancers (28). Statins,
which modulate the lipid metabolism, regulate the geranylgerany-
lation of Rho GTPases that is required for their membrane an-
choring and activation. Initial preclinical studies using synthetic
atorvastatin (Lipitor) did not improve the outcome of syngeneic
growth of TSC2-null tumors in nude mice formed by mouse em-
bryonic fibroblast immortalized by deletion of the tumor suppres-
sor p53 (29) and renal and liver tumors in 7SC2*~ mice (30) that
do not develop lung tumors. In contrast, a simvastatin (Zocor)
not only inhibited xenographic tumor growth of TSC2-null
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SM-like cells derived from uterine leiomyoma by promoting
apoptosis, but also prevented tumor recurrence after treatment
withdrawal (31). Despite the difference in experimental ap-
proaches and animal models, these studies suggest that simvasta-
tin (Zocor) and atorvastatin (Lipitor) have differential effects on
TSC2-null tumors. Current or retrospective analysis (32) of clinical
cases to evaluate whether simvastatin and atorvastatin have differ-
ential effects in the clinic are needed. Among other concepts now
being tested that could have a potential applicability to LAM are
pre-clinical studies in TS showing that glucose deprivation (33) and
autophagy (34) may have an impact on growth of TS-related tumors.

A major limitation in developing new strategies for treatment of
LAM and performing preclinical studies, however, is the lack of
a LAM animal model (35). Attempts to create xenographic human
LAM cell tumors in the lungs of immunodeficient mice have gen-
erally not been successful. Homozygous TSCI ™"~ and TSC2™/~
mice are embryonically lethal. The major features of heterozygous
TSCI1*~ and TSC2""~ mice are development of cystadenomas of
kidney and liver hemangiomas due to loss of heterozygosity at 6 to
12 months (35-37). By 15 to 18 months of age, some animals de-
velop malignant renal carcinoma and lung adenoma (37, 38). In the
Eker rat, which carries naturally occurring 7SC2 mutations, the
natural occurrence of lung metastasis of TSC2-null cells from pri-
mary renal carcinomas and uterine leiomyosarcomas is extremely
rare and only occurs late in the animal’s life (39, 40). Thus, existing
animal models are challenging and incongruous for the study of
human lung disease. It appears that TSC2-null cells from the Eker
rat can form small clusters in the lung when injected into SCID
mice (41). Whether these cell clusters can induce cystic airspace
enlargement has not been reported in the study (41) and needs
further experimental validation. Thus, an animal model of LAM
is needed to perform preclinical studies before new therapies can be
translated into the clinic. Despite these limitations facing the LAM
community, LAM researchers and clinicians strive to outpace them
with innovative strategies to harness the disease.

In the January issue of the Journal, Le Poole and colleagues
(pp. 1-5) explore the translational hypothesis about immunother-
apeutic options in LAM focusing on potential benefits of

melanosomal antigens (7). The melanocytic cell markers have
been identified in LAM. Spindle-shaped LAM cells expressing
SM-specific proteins SM a-actin, desmin, and vimentin form the
core of the nodule surrounded by epithelioid-like cells immuno-
positive for HMB45, which binds glycoprotein gp100, a marker of
melanoma cells and immature melanocytes (5). Interestingly, some
of the SM-positive LAM cells, which form small nodules, also
express HMB45, suggesting that some SM-positive LAM cells
have melanocytic differentiation (42). LAM cells also express an-
other two melanocyte-specific proteins: CD63, a melanoma-
associated protein, and PNL2, an uncharacterized melanocytic
protein. Le Poole and colleagues investigated the expression of
melanoma-associated antigens gpl00 and melanoma antigen
recognized by T cells (MART-1) (6). Using tissue samples from
subjects with LAM, the authors identified the expression of
tyrosinase-related proteins (TRPs) 1 and 2 involved in melano-
genesis in LAM samples in comparison to normal lung. In-
terestingly, the LAM nodules were densely infiltrated by
macrophages but not dendritic cells or T cell subsets, demon-
strating that LAM cell growth was not accompanied by enhanced
immune infiltration (6). Further, cells dissociated from the LAM
lung were susceptible to cytotoxic, gpl100-reactive, and major his-
tocompatibility complex class I restricted CD8" T cells, suggesting
that immunotargeting gp100 provides beneficial cytotoxic effects
on LAM cell growth. Vaccines for malignant melanoma have
been developed and show promise in phase III clinical trials
(43). Although stimulating an immune response with vaccine
might be challenging, targeting melanocytic markers in LAM pro-
vides a novel potential approach.
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