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Abstract

Stroke patients recover more effectively when they are rehabilitated with bimanual movement rather than with unimanual
movement; however, it remains unclear why bimanual movement is more effective for stroke recovery. Using a
computational model of stroke recovery, this study suggests that bimanual movement facilitates the reorganization of a
damaged motor cortex because this movement induces rotations in the preferred directions (PDs) of motor cortex neurons.
Although the tuning curves of these neurons differ during unimanual and bimanual movement, changes in PD, but not
changes in modulation depth, facilitate such reorganization. In addition, this reorganization was facilitated only when
encoding PDs are rotated, but decoding PDs are not rotated. Bimanual movement facilitates reorganization because this
movement changes neural activities through inter-hemispheric inhibition without changing cortical-spinal-muscle
connections. Furthermore, stronger inter-hemispheric inhibition between motor cortices results in more effective
reorganization. Thus, this study suggests that bimanual movement is effective for stroke rehabilitation because this
movement rotates the encoding PDs of motor cortex neurons.
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Introduction

One of the challenges of rehabilitation research is to elucidate

efficient method of promoting the functional recovery of upper

limb movement in stroke patients. In neuroscience, a related

challenge is determining the neural mechanisms of such functional

recovery. Although stroke patients tend to recover lower limb

movement after therapeutic intervention, the majority of these

patients (65%) do not regain full movement of their upper limbs

[1–3]. Recent studies have suggested that patients can recover the

use of paretic upper limbs through several therapeutic methods

such as constraint-induced therapy [1,4], in which patients are

restricted to using only the paretic arm by immobilizing the

healthy arm. Although stroke patients can recover upper limb

movement after this therapy, the neural mechanisms of this

recovery remain unknown.

A recent computational study suggested that constraint-induced

therapy is effective because it leads to the reorganization of a

damaged region in the motor cortex based on supervised and

unsupervised learning [1]. The results of this computational study

thus explain several aspects of the observed effects of rehabilita-

tion; e.g., stroke patients recover upper limb movement only when

they undertake more than a threshold number of rehabilitation

trials [1,5]. Therefore, a computational approach will likely be

effective for determining the neural mechanisms of functional

recovery in recovered patients.

Although previous computational studies investigated the

unimanual movements of stroke patients, individuals often move

their arms bimanually. Bimanual movement is effective for the

recovery of paretic arm movement [6–8]; i.e., bimanual move-

ment facilitates recovery and retention of the recovery effect.

However, it is unknown why bimanual rehabilitation is effective

for stroke rehabilitation. It remains unclear what differences

between unimanual and bimanual movement result in the

effectiveness of bimanual rehabilitation. This study approaches

this question using a computational model inspired by neurophys-

iological results related to bimanual movement.

Neural activities in the motor cortex differ during unimanual

and bimanual movement [9–11]. In unimanual movements, when

subjects move their right arms towards a radially distributed

target, neural activity in the left motor cortex can be well fit by the

cosine function of the target angle [12], indicating that each

neuron is maximally activated when subjects reach in the

preferred direction (PD) of the neuron and that neural activity is

determined by the movement direction of the contralateral arm.

Although neural activity is assumed to be influenced only by

contralateral arm movement, this activity is also influenced also by

ipsilateral arm movement [9–11,13]. Because bimanual movement

is a combination of right and left arm movements, neural activity

in bimanual movement appears to be well fit by a linear

summation of the activities in ipsilateral and contralateral arm

movement. However, this linear summation cannot explain the
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neural activity in bimanual movement [9–11]. Furthermore, the

PD and modulation depth (height of the fitted cosine function) of

each neuron are different in bimanual and unimanual movement.

In bimanual movement, motor cortex neurons are not maximally

activated when subjects move their contralateral arms in the PD

determined in unimanual movement. Thus, these differences in

neural activity may explain why bimanual movement is effective

for stroke rehabilitation.

Using a computational model of stroke rehabilitation [1], we

investigated the following two questions: 1) what type of changes in

bimanual movement affected stroke recovery or the reorganization

process of the damaged motor cortex and 2) when was bimanual

rehabilitation strongly effective for the reorganization process?

First, we demonstrated that bimanual rehabilitation is effective

because this rehabilitation causes changes in PD; changes in PD

rather than in modulation depth provide a neural mechanism for

the effectiveness of bimanual rehabilitation for motor cortex

reorganization. Additionally, we observed the effectiveness of

bimanual rehabilitation only when the PD changes were in

encoding but not in decoding. Second, we confirmed that

bimanual rehabilitation is strongly effective when the encoding

PDs are strongly rotated. On the basis of a previous computational

study [10], the present study hypothesized that bimanual

rehabilitation was strongly effective when the encoding PDs

undergo large changes.

Results

This study investigated how bimanual movement affected stroke

recovery by modeling the different PDs and modulation depths

during unimanual and bimanual movement. During bimanual

movements, we invesitigated only bimanual parallel movements in

which the right and left arms move in the same directions, because

the neural activities during these parallel bimanual movements

have been investigated previously. We describe the definitions

used in the model in detail in the Methods section.

Initially, in simulating bimanual rehabilitation, we assume that

changes occur only in the PDs. These changes are referred to as

PD rotations for the remainder of this manuscript. Because PDs

are rotated pseudo-randomly in bimanual movement, we modeled

these rotations as

we,b
i ~we,u

i zei ð1Þ

where we,b
i and we,u

i are the encoding PDs in bimanual and

unimanual movements, respectively (i~1,:::,N), and N is the

number of neurons. The encoding PD determines the cosine-

tuned neural activity, Ai(h,we,w
i ), where h is the angle of a reaching

target and the index w[fu,bg indicates unimanual or bimanual

movement (see the Methods section). The encoding PDs are rotated

ei degree that is randomly sampled from a Gaussian distribution

with a mean of 0 and a variance of s2. Additionally, these PDs are

rotated using quenched random variables, meaning that ei is

invariant across trials. In contrast to quenched random variables,

the encoding PDs can be rotated using annealed random variables

sampled from trial to trial, but this type of rotation cannot facilitate

the reorganization of a damaged motor cortex (see the Discussion

regarding the effects of the annealed random variables on the

reorganization). Due to the rotations of the encoding PDs, neural

activities are different in unimanual and bimanual movement as

shown in figure 1. In the subsection titled Importance of encoding PD

rotations for reorganization, we consider changes of modulation depth,

i.e., Ai(h,we,b
i )~(1zei)Ai(h,we,b

i ), but the rotations of encoding

PDs are primarily investigated.

Decoding PDs are used to calculate the population vector (PV)

as follows:

PV(h)!(
XN

i

Ai(h,we,w
i ) coswd,w

i ,
XN

i

Ai(h,we,w
i ) sinwd,w

i )T ð2Þ

with a direction and amplitude that model the direction and

velocity of the reaching movements, respectively [12,14,15], and

wd,w
i is the decoding PD. In contrast to the encoding PDs that

determine neural activities, decoding PDs determine movement

directions; i.e., the ith neuron generates the motor command for

moving arms in the direction wd,w
i . Following previous studies

[14,16,17], in our simulations of unimanual movement, the

decoding PD is set to equal the encoding PD (we,u
i ~wd,u

i ). During

bimanual movement, we assume that decoding PDs are not

rotated on the basis of previous studies [10] (but see [11]), but in

the section Importance of encoding PD rotations for reorganization, the

modeling of rotations in decoding PDs is described.

We can model the upper limb movements of stroke patients

using a PV by removing a fraction of the model neurons [1,18] (see

also [19]). Because stroke patients have difficulty in reaching in a

particular direction [20], we depleted pN neurons with encoding

PDs of approximately p=4, where p[(0,1� is the fraction of

depleted neurons. We refer to h[½0,
p

2
� and other h as the

Lesioned zone

Figure 1. Neural activities in unimanual and bimanual movement after stroke. Dotted and solid lines denote the neural activities before

and after stroke, respectively, when h~
p

4
. (A): Solid lines indicate neural activities when s~0. (B): Neural activities when s~

p

4
. (C): Neural activities

when s~
p

2
.

doi:10.1371/journal.pone.0037594.g001
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movement directions of large and small errors, respectively. For

this damaged motor cortex, stroke rehabilitation induced a

reorganization that can be modeled using an optimization

framework. In this framework, the rehabilitation modifies we,w
i to

minimize the cost function

E~
1

2
(1{cos(h{hp))z

l

2

XN

i

(Ai(h,we,w
i ))2 ð3Þ

where hp is the angle of the PV and l is the regularization

parameter [1]. We model stroke rehabilitation using two

optimization terms, supervised and unsupervised learning of we
i ,

which coincide to the first and the second terms in equation (3),

respectively. In the rehabilitation trials, patients moved their arms

towards one of eight radially distributed targets (h~2p
k

8
,

k~1,:::,8) that are selected with the same probability, i.e.,

P(h~2p
k

8
)~

1

8
. After each rehabilitation trial, supervised learn-

ing resulted in decreased movement error between the PV and the

target angle. Stroke rehabilitation also decreased the metabolic

cost of neuronal activity, which was modeled by the unsupervised

learning.

Reorganization due to bimanual movement
After a neuronal lesion, we investigated whether reorganization

in the damaged motor cortex can be facilitated by rotations of the

encoding PDs. When the encoding PDs are not rotated (s~0), i.e.,

in unimanual rehabilitation, these PDs are reorganized to increase

the number of neurons with encoding PDs close to the movement

directions of large errors (figure 2A). In agreement with a previous

study [1], however, the encoding PDs cannot be concentrated only

in just these directions, especially in the middles of these directions

(h~
p

4
). By contrast, when the encoding PDs are rotated (s~

p

4
or

p

2
), i.e., in bimanual rehabilitation, the encoding PDs are

reorganized to localize in the depleted region (figures 2B and

2C). Comparing figures 2B and 2C, larger rotations of the

encoding PDs lead to better the equalization of these PDs. In the

Discussion section, we discuss the conditions in which encoding PDs

are strongly rotated. Taken together, in both unimanual and

bimanual rehabilitation, encoding PDs are reorganized after the

neuronal lesion, but these PDs are only reorganized in the

movement directions of larger errors after bimanual rehabilitation.

Behavioral effects of bimanual rehabilitation
Bimanual rehabilitation facilitates the reorganization of dam-

aged motor cortex, but it remains unknown how this rehabilitation

affects behavioral aspects such as movement error and speed.

Based on the PV model, we investigated these movement

parameters in unimanual reaching after either unimanual or

bimanual rehabilitation. Both unimanual and bimanual rehabil-

itation decreased the angular error between the target position and

the PV (figure 3), suggesting that these rehabilitations can restore

movement precision. Bimanual rehabilitation allows angular error

to reach its minimum value when s~
p

2
, indicating that when

encoding PDs are strongly rotated, bimanual rehabilitation en-

hances movement precision.

In addition to movement error, we investigated how unimanual

or bimanual rehabilitation affects movement speed by calculating

the norm of the PV (figure 4). After the neuronal lesion, reaching

speed becomes critically slower in the directions of large error

(figure 4A). With moderate rotations of the encoding PDs (s~
p

4
),

bimanual rehabilitation improved reaching speed in the move-

ment directions of larger errors; however, this rehabilitation also

resulted in reduced reaching speed in the directions of small errors

(figures 4B, 4C). With strong rotations of the encoding PDs

(s=
p

2
), bimanual rehabilitation effectively improved reaching

speed in the movement directions of large errors without hindering

speed in those directions of small errors, suggesting that bimanual

rehabilitation can be strongly recommended when bimanual

movement induces strong rotations of the encoding PDs.

Importance of the rotation of encoding PDs on
reorganization

This study originally modeled the rotations of encoding PDs,

but we remained unsure whether these rotations are important for

the reorganization of a damaged motor cortex. Bimanual

movement causes changes not only in PDs but also in modulation

depth, and decoding PDs may also be rotated. First, we simulated

changes in modulation depth without PD rotations (figure 5); we

observed no reorganization after bimanual rehabilitation. Next,

we simulated the rotations of both encoding and decoding PDs,

i.e., wd,b
i ~we,b

i ~we,u
i zei (figure 6); however, after bimanual

rehabilitation, we again observed no reorganization. Thus, we

concluded that the rotation of encoding PDs, as opposed to

changes in either modulation depth or decoding PDs, is the most

important factor in reorganization via bimanual rehabilitation.

Nonuniform distribution of the target position
In the aforementioned results, motor cortex reorganization was

investigated by presenting one of the eight targets with equal

probability, but it remains unclear whether the reorganization still

occurs when only limited targets are presented. Intuitively, this

reorganization appears to effectively occur when patients repeat-

edly move their arms in the movement directions of large errors.

We simulated this case for both unimanual and bimanual

rehabilitation. In unimanual rehabilitation, excess reorganization

occurred in the movement directions of larger errors, with a

decrease in the number of neurons with encoding PDs approx-

imately aligned with the directions of small errors (figure 7A).

When patients did not practice reaching in the directions of large

errors, effective reorganization did not with either unimanual or

bimanual rehabilitation (data not shown). By contrast, in bimanual

rehabilitation, uniform reorganization occurred despite a nonuni-

form target distribution (figures 7B and 7C). Even when a limited

number of targets were presented, reorganization was facilitated

during bimanual rehabilitation.

Effect of the learning rule on reorganization
Reorganization occurs due to both supervised and unsupervised

learning, but it is unclear which learning rules better facilitates

reorganization. With only an unsupervised learning rule, the

reorganization was not facilitated independently of whether

encoding PDs are rotated (figure 8). Conversely, when the only

a supervised learning rule, the reorganization is facilitated when

encoding PDs are rotated (figure 9). In bimanual rehabilitation,

the reorganization is thus facilitated mainly by supervised learning.

Discussion

After a neuronal lesion, reorganization of a damaged motor

cortex can be facilitated by the rotations of the encoding PDs;

these rotations are induced by bimanual movement (figure 2).

Moderate reorganization can increase the reaching velocities of

Recovery in Stroke by Bimanual Rehabilitation
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movements in the directions of large errors but decrease the

velocities in the directions of small errors (figure 4B). However,

when encoding PDs are strongly rotated, the reorganization

facilitates the recovery of reaching velocities in the directions of

large errors without decreasing the velocities in the directions of

small errors (figure 4C), which effectively facilitates the recovery of

reaching precision (figure 3). The reorganization occurs only due

to the rotations of encoding PDs (figures 2, 5, and 6), suggesting

Figure 2. Reorganization of a damaged motor cortex after unimanual and bimanual rehabilitation (A): Histograms of we,u when s~0.

(B): The same histograms when s~
p

4
. (C): The same histograms when s~

p

2
.

doi:10.1371/journal.pone.0037594.g002

Figure 3. Angular error between the target and PV in unimanual movement. (A): The angular error between the target position and PV
when the encoding PDs were rotated in bimanual movement. (B): The angular error when only modulation depth was changed in bimanual
movement. (C): The angular error when both encoding and decoding PDs were rotated in bimanual movement.
doi:10.1371/journal.pone.0037594.g003
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Figure 4. Norm of the PV after rehabilitation. (A): The norm of the PV immediately after the neuronal lesion. (B): The norm of the PV after 1000
rehabilitation trials. (C): The norm of the PV after 2000 rehabilitation trials. (D): The norm of the PV after 3000 rehabilitation trials.
doi:10.1371/journal.pone.0037594.g004

Figure 5. Reorganization of the damaged motor cortex when only modulation depth was changed in bimanual movement. (A):

Histograms of we,u when s~0. (B): The same histograms when s~
p

4
. (C): The same histograms when s~

p

2
.

doi:10.1371/journal.pone.0037594.g005

Recovery in Stroke by Bimanual Rehabilitation

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e37594



that bimanual rehabilitation is effective for stroke recovery because

this movement induces the rotation of encoding PDs. We also

conclude that bimanual rehabilitation is strongly effective when

bimanual movement induces strong rotations of encoding PDs.

Because there are few hypothesis-driven studies in this field [3],

to our knowledge, our conclusions are likely the first hypotheses

regarding bimanual rehabilitation in stroke patients. However, we

should note in what conditions encoding PDs are strongly rotated

and in which cases bimanual rehabilitation is thus strongly

Figure 6. Reorganization of the damaged motor cortex when both encoding and decoding PDs were rotated in bimanual

movement. (A): Histograms of we,u when s~0. (B): The same histograms when s~
p

4
. (C): The same histograms when s~

p

2
.

doi:10.1371/journal.pone.0037594.g006

Figure 7. Reorganization of the damaged motor cortex when limited targets were presented in rehabilitation trials. (A): Histograms of

we,u when s~0. (B): The same histograms when s~
p

4
. (C): The same histograms when s~

p

2
.

doi:10.1371/journal.pone.0037594.g007
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recommended. A previous computational study suggested that

stronger inter-hemispheric inhibition results in stronger rotation of

the encoding PDs for the following reason [10]. In unimanual

movement of the right arm, the encoding PD determines the

tuning curve of the ith motor cortex neuron in the left hemisphere

as Ai(h)~cos(h{Qe,u
i ). For simplicity, we neglected nonlinearity

and neural noise here. In bimanual movement, motor cortex

neurons in the right hemisphere are also activated; these neural

Figure 8. Reorganization of the damaged motor cortex with only supervised learning. (A): Histograms of we,u when s~0. (B): The same

histograms when s~
p

4
. (C): The same histograms when s~

p

2
.

doi:10.1371/journal.pone.0037594.g008

Figure 9. Reorganization of the damaged motor cortex with only unsupervised learning. (A): Histograms of we,u when s~0. (B): The same

histograms when s~
p

4
. (C): The same histograms when s~

p

2
.

doi:10.1371/journal.pone.0037594.g009

Recovery in Stroke by Bimanual Rehabilitation

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e37594



activations excite the inhibitory interneurons in the left hemi-

sphere through excitatory corpus callosum connections. These

interneurons inhibit the ith neuron in the left hemisphere as

follows:

Ai(h)~cos(hr{Qe,u
i ){

J

M

XM

j
cos(hl{Qe,u

j )!cos(hr{(Qe,u
i zei))

where M is the number of right-hemispheric neurons projecting to

the inhibitory neuron and J is the strength of inter-hemispheric

inhibition determined by both the corpus callosum connections

and the connections between interneurons and the ith neuron.

Although the encoding PDs are not rotated (ei~0) when J~0,

stronger the inter-hemispheric inhibition yields a stronger rotation

of the encoding PDs. These PDs are randomly rotated only when

inter-hemispheric connectivities are sparse; i.e., when M is

sufficiently large, e1~e2~:::~eN due to the law of large numbers.

In actual rodent and primate brains, callosal connectivities are

sparse in the hand region of primary motor cortex [21,22]. The

strength of inter-hemispheric inhibition can be estimated from

imaging data such as functional magnetic resonance imaging data

[23]. In summary, our computational study suggests that we can

strongly recommend bimanual rehabilitation for patients with

inter-hemispheric inhibition that is stronger than a specific

threshold value. Although several previous studies have suggested

that unimanual and bimanual rehabilitation affect stroke recovery

equivalently [3], based on our results, we observed that bimanual

rehabilitation facilitates stroke recovery only when inter-hemi-

spheric inhibition is strong. Thus, we must determine the

threshold inhibition value in a future project.

Although this study distinguished between encoding and

decoding processes, it is unclear why exactly we are able to

separate these processes. Encoding and decoding processes are

equivalent to motor planning and execution, respectively. In

motor planning, the neural activities of motor cortex neurons are

determined on the basis of the position of the presented target. In

motor execution, these neurons send motor commands to muscles

through the spinal cord. Based on a study by Georgopoulos et al.

[12], because the PV models actual reaching movements well,

motor cortex neurons have encoding PDs that are likely equal to

or very close to decoding PDs in unimanual movement. This

symmetry between encoding and decoding PDs may be broken

when a perturbation is applied to the reaching movement. When

adapting to a visuomotor rotation or force field, neural activities

change to minimize the error between target position and actual

movement. When adapting to a visuomotor rotation, neural

activities change only in the motor planning phase [24], suggesting

that only encoding PDs change to minimize the error. During

force field adaptation, a recent computational model separately

modeled encoding and decoding processes; when only the

encoding process is adaptable for error minimization, this motor

cortex model can explain the experimental neurophysiological

data of the motor cortex [25]. To our knowledge, there is little

evidence regarding whether encoding and decoding processes

should be separated in bimanual movement. However, we believe

that these processes should be separated on the basis of the

aforementioned studies of unimanual movement.

Motor cortex neurons send motor commands to muscles [26],

and thus, we should note the relationship between PDs and

muscles. To our knowledge, the mechanism for the determination

of encoding PDs is unknown; however, based on the PV

frameworks, encoding PDs are likely to be similar to decoding

PDs in unimanual movement [12]. Contrastingly, using a realistic

biomechanics model, decoding PDs are suggested to be deter-

mined by the strength of the connectivities between a neuron and

each muscle [27,28], i.e., the connectivities modeling cortical-

spinal-muscle or direct cortical-muscle connections. When a

neuron has strong connections to elbow extensors and weak or

negative connections to elbow extensors, this neuron has a

decoding PD in the upper-right direction in the horizontal plane.

Based on these computational frameworks, a decoding PD is thus

determined by the degree to which the neuron is connected to

agonists or antagonists in the assumed movements. These previous

studies assumed only unimanual movement, and thus, it remains

for future research to determine how biomechanical properties

affect decoding PDs in bimanual movement. Based on our

assumptions, decoding PDs are determined in accurately gener-

ating both unimanual and bimanual movements, and rotations of

the encoding PDs are responsible for generating the different

motor commands in unimanual and bimanual movement. In our

framework, we must thus define a biomechanics model in

subsequent work.

Rotations of the encoding PDs facilitate cortical reorganization,

but it remains unclear why this reorganization is facilitated by

these rotations. Because we concentrated on the recovery of

feedforward movements in this study, the reorganization occurs to

minimize the angular error. After 3000 trials of unimanual

rehabilitation, the reorganization decreased the angular error

when reaching in the movement directions of larger errors by

reorganizing neurons to localize in these directions. These

decreases occurred because, for example, even when there is a

small neuron with an encoding PD of only 45 degrees, the average

PV across many trials can be directed towards 45 degrees when

the neurons are reorganized as an equivalent number of neurons

with encoding PDs of approximately 30 (45215) and 60 (45+15)

degrees. However, in this case, the norm of the PV is smaller than

that of the well-equalized population; this reorganization is

observed when the encoding PDs are strongly rotated. Further-

more, in well-equalized populations, more neurons are activated in

generating PVs oriented at 45 degrees, and movement precision is

better than that observed in the impaired populations observed

after unimanual rehabilitation. In other words, in unimanual

rehabilitation, the reorganization stops at one of the local solutions

for which the angular error is decreased to some extent, but

movement speed does not recover. When non-quenched (trial-by-

trial variant) random variables are added to each rehabilitation

(learning) step, these variables act as search noise and cause

reorganization, thus avoiding trapping in local solutions [29]. As

described in the next paragraph, it remains unclear whether such

random variables are available in rehabilitation trials, but strong

and quenched rotations may play similar functional roles. Thus,

we suggest that strong rotations of the encoding PDs play the role

of search noise, enabling the reorganization to avoid local solutions

and leading the damaged motor cortex to a global solution, i.e., a

well-equalized population.

This study investigated the influence of quenched (trial-by-trial

invariant) rotations of encoding PDs on reorganization, but

annealed (trial-by-trial variant) rotations can also be considered.

However, we observed no significant reorganization when the

rotations were annealed (data not shown). By contrast, when we

added annealed noise to each learning step (see Methods), i.e., when

we considered synaptic drift, we observed significant reorganiza-

tion (figure 10). Additionally, even when the strength of this

synaptic drift was moderate, we observed significant reorganiza-

tion, equivalent to that observed in the case of strong and

quenched rotations (figure 10B), suggesting that moderate synaptic

drift enables the avoidance of local solutions and leads to a global

solution. Despite the effectiveness of annealed rotations on

Recovery in Stroke by Bimanual Rehabilitation
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reorganization, it remains unclear whether synaptic drift occurs

during the reorganization process [30] (but see [25]). Conversely,

quenched rotations likely occur in bimanual movement [10]. Our

computational study suggests that strong and quenched PD

rotations can effectively facilitate reorganization, but in future

work, we plan to investigate how synaptic drift can be

parsimoniously induced.

Methods

Definitions
This study assumed the following conditions: subjects move

their arms towards one of eight radially distributed targets at

angles of hk~2p
k

8
(k~1,:::,8), and the reaching movements are

modeled as weighted averaging of neural activities. If the kth

target is presented, then the ith neuron is activated as follows:

Ai(hk,we,w
i )~½cos(hk{we,w

i )zji�z ð4Þ

where we
i is a uniformly distributed encoding PD (i~1,:::,N),

N (~500) is the number of model neurons, the index w[fu,bg
indicates unimanual or bimanual movement, and ½a�z denotes a

rectified nonlinearity of neural activity, where ½a�z~a if aw0 and

½a�z~0 if av0. The neural activity is noisy due to signal-

dependent noise, ji, has a mean of 0, and its variance is

determined by

Var(ji)~s2½cos(hk{we,w
i )�2z ð5Þ

where s(~0:15) is the strength of the noise.

Based on these neural activities, the neural population generates

a population vector PV (hk) defined as

PV (hk)~
1

N
(
XN

i

Ai(hk,we,w
i ) coswd,w

i ,
XN

i

Ai(hk,we,w
i ) sinwd,w

i )Tð6Þ

where wd,w
i is the decoding PD. Following previous studies, the

decoding PD is set to equal the encoding PD in unimanual

movement (we,u
i ~wd,u

i ) [1,12]. Although the PV is normalized by

the summation of neural activity in the standard PV algorithm,

this study assumed normalized neural activity, which allows the

PV to be normalized simply by using a weighted average of the

neural activities, as shown in equation (6) [1].

Stroke implementation. The PV can be used to model the

reaching movements of stroke patients by depleting a fraction of

the model neurons [1,18]. As an initial condition, we removed

model neurons with encoding PDs of approximately p=4 because

stroke patients have difficulty moving their paretic limbs to targets

far from their body centers [20]. We thus removed the neurons for

which we,u
i [½p=8,3p=8). We modeled the recovery process by

defining supervised and unsupervised learning (see the following

section) because these learning rules model the recovery process of

post-stroke rehabilitation.

Stroke recovery implementation. After the neuron deple-

tion we modeled the reorganization process of a damaged motor

cortex as the optimization process of the following cost function:

Et(ht,w
e,w
i )~

1

2
(1{cos(ht{hp))z

l

2

XN

i

(Ai(ht,w
e,w
i ))2 ð7Þ

where l is the regularization parameter and hp is the angle of PV

at the tth trial. The reorganization process decreases the angular

error between hp and h by rotating PVs toward the target position;

this supervised learning is modeled by the first term of equation (7).

The process also decreases the total neural activation, or metabolic

Figure 10. Reorganization of the damaged motor cortex when annealed noise was added to each learning step. (A): Histograms of we,u

when sa~0. (B): The same histograms when sa~
p
4
. (C): The same histograms when sa~

p
2
.

doi:10.1371/journal.pone.0037594.g010
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cost; this unsupervised learning is modeled by the second term of

equation (7). After each rehabilitation trial, the reorganization

occurs as follows:

(we,w
i )tz1~(we,w

i )tzgs sin(h{hp)Ai(h,we,w
i )zgu sin(h{we,w

i ) ð8Þ

where gs~0:005 and gu~0:002 are the learning rates for the

supervised and unsupervised learning methods, respectively. The

learning process is not affected by these learning rates, as shown in

figures 8 and 9. The reorganization is facilitated when this learning

step includes synaptic drift (figure 10); this drift is modeled by

adding a random Gaussian variable ft
i to this learning rule, for

which the variable mean is 0 and the variance is s2
a.

Bimanual movement implementation. We assumed that

bimanual movement induces rotations of the PDs only during

encoding and not in decoding [10] (but see [11]). In other words,

we assumed that bimanual movement changes neural activities

through inter-hemispheric inhibition between primary motor

cortices, but this movement does not affect cortical-spinal-muscle

connectivities. In bimanual movement, the encoding PDs are

rotated pseudo-randomly [10]; these rotations are modeled as

wd,u
i ~wd,b

i ~we,u
i and we,b

i ~we,u
i zei, where ei is a random

Gaussian variable with a mean of 0 and a variance of s2.

Additionally, ei is a quenched random variable, meaning that this

variable is invariant across trials; we assumed constant rotations of

the encoding PDs in bimanual movement.
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