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Abstract

Modifying weights within a recurrent network to improve performance on a task has proven to be difficult. Echo-state
networks in which modification is restricted to the weights of connections onto network outputs provide an easier
alternative, but at the expense of modifying the typically sparse architecture of the network by including feedback from the
output back into the network. We derive methods for using the values of the output weights from a trained echo-state
network to set recurrent weights within the network. The result of this ‘‘transfer of learning’’ is a recurrent network that
performs the task without requiring the output feedback present in the original network. We also discuss a hybrid version in
which online learning is applied to both output and recurrent weights. Both approaches provide efficient ways of training
recurrent networks to perform complex tasks. Through an analysis of the conditions required to make transfer of learning
work, we define the concept of a ‘‘self-sensing’’ network state, and we compare and contrast this with compressed sensing.
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Introduction

Training a network typically involves making adjustments to its

parameters to implement a transformation or map between the

network’s input and its output, or to generate a temporally varying

output of a specified form. Training in such a network could

consist of modifying some or all of its weights. Learning schemes

that modify the recurrent weights are notoriously difficult to

implement [1–2] (although see [3]). To avoid these difficulties,

Maass and collaborators [4] and Jaeger [5] suggested limiting

synaptic modification during learning to the output weights,

leaving the recurrent weights unchanged. This scheme greatly

simplifies learning, but is limited because it does not allow the

dynamics of the recurrent network to be modified. Jaeger and

Haas [6] proposed a clever compromise in which modification is

restricted to the output weights, but a feedback loop carries the

output back into the network. By permitting the output to affect

the network, this scheme modifies the intrinsic dynamics of the

network. FORCE learning was developed as an efficient algorithm

for implementing this approach with the benefits of creating stable

networks and enabling the networks to operate in a more versatile

regime [7].

While the echo-state approach greatly expands the capabilities

for performing complex tasks [6] [8] [7], this capacity comes at the

price of altering the architecture of the network through the

addition of the extra feedback loop (Figure 1A), effectively creating

an all-to-all coupled network. In neuroscience applications in

particular, the original connectivity of the network is typically

restricted to match anatomical constraints such as sparseness, but

the additional feedback loop may violate these constraints by being

non-sparse or excessively strong, and thus may be biologically

implausible. This raises an interesting question: Can we train

a network without feedback (Figure 1B) to perform the same task

as a network with feedback (Figure 1A), using the same output

weights, by modifying the internal, recurrent connections?

The answer is yes, and previously [7] we described how the

online FORCE learning rule could be applied simultaneously to

recurrent and output weights in the absence of an output-to-

network feedback loop (Figure 1B). We now expand this result in

three ways. First, we develop batch equations for transferring

learning achieved using a feedback network with online FORCE

learning to the recurrent connections of a network without

feedback. The reason for this two-step approach is that it speeds

up the learning process considerably. Second, we use results from

this first approach to more rigorously derive the online learning

rule for training recurrent weights that we proposed previously [7].

Third, we introduce the concept of a self-sensing network state,

and use it to explore the range of network parameters under which

internal FORCE learning works.

There has been parallel work in studying methods for

internalizing the effects of trained feedback loops into a recurrent

pool. These studies focused on control against input perturbations

[9–10], regularization [11] and prediction [12]. The principle

issue that we study in this manuscript is motivated from

a computational neuroscience perspective: what are the conditions

under which transfer of external feedback loops to the recurrent

network will be successful, while preserving sparse connectivity.

Maintenance of sparsity requires us to work within a random

sampling framework. Our focus on respecting locality and
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sparseness constraints increases the biological relevance of our

results and leads to a network learning rule that only requires

a single, global error signal to be conveyed to network units.

Results

Our network model (Figure 1) is described by an N-dimensional

vector of activation variables, x, and a vector of corresponding

‘‘firing rates’’, r ~ tanh (x)(other nonlinearities, including non-

negative functions, can be used as well). The equation governing

the dynamics of the activation vector for the network of Figure 1B

is of the standard form

t
dx

dt
~{xzJrzvI(t) : ð1Þ

The time constant t has the sole effect of setting the time scale for

all of our results. For example, doubling t while making no other

parameter changes would make the outputs we report evolve twice

as slowly. The N|N matrix J describes the weights of the

recurrent connections of the network, and we take it to be

randomly sparse, meaning that only n v N randomly chosen

elements are non-zero in each of its rows. The non-zero elements

of J are initially drawn independently from a Gaussian distribution

with zero mean and variance g2=n. The parameter g, when it is

greater than 1, determines the amplitude and frequency content of

the chaotic fluctuations in the activity of the network units. In

order for FORCE learning to work, g must be small enough so

that feedback from the output into the network can produce

a transition to a non-chaotic state (see below and Sussillo and

Abbott, 2009). The scalar input to the network, I(t), is fed in

through the vector of weights v with elements drawn indepen-

dently and uniformly over the range ½{1,1�. Thus, up to the scale

factors v, every unit in the network receives the same input.

The output of the network, z(t), is constructed from a linear

sum of the activities of the network units, described by the vector r,
multiplied by a vector of output weights w [13] [4–5],

z(t)~wT r(t): ð2Þ

Training in such a network could, in principal, consist of

modifying some or all of the weights v, w or J. In practice, we

restrict weight modification to either w alone (Figure 1A), or w and

J (Figure 1B). Increasing the number of inputs or outputs

introduces no real difficulties, so we treat the simplest case of

one input and one output.

The idea introduced by Jaeger and Haas [6], which allows

learning to be restricted solely to the output weights w, is to change
equation 1 for the network of Figure 1B to.

t
dx

dt
~{xzJrzuzzvI(t)~{xz JzuwT

� �
rzvI(t), ð3Þ

for the network of Figure 1A. The components of u are typically

drawn independently and uniformly over the range {1 to 1 and

are not changed by the learning procedure. As indicated by the

second equality in equation 3, the effective connectivity matrix of

the network with the feedback loop in place is JzuwT . This

changes when w is modified, even though J, u and v remained

fixed. This is what provides the dynamic flexibility for this form of

learning.

The problem we are trying to solve is to duplicate the effects of

the feedback loop in the network of Figure 1A by making the

modification J?JzdJ in the network of Figure 1B. A compar-

ison of equations 1 and 3 would appear to provide an obvious

solution; simply set dJ~uwT . In other words, the network without

output feedback is equivalent to the network with feedback if the

rank-one matrix uwT is added to J. The problem with this solution

is that the replacement J?JzuwT typically violates the

sparseness constraint on J. Even if both u and w are sparse, it is

unlikely that the outer product uwT will satisfy the specific

sparseness conditions imposed on J. This is the real problem we

consider; duplicating the effect of the addition of a rank-one

matrix to the recurrent connectivity by a modification of higher

rank that respects the sparseness of the network.

Review of the FORCE Learning Rule
Because the FORCE learning algorithm provides the motiva-

tion for our work, we briefly review how it works. More details can

be found in [7]. The FORCE learning rule is a supervised learning

procedure, based on the recursive least squares algorithm (see

[14]), that is designed to stabilize the complex and potentially

chaotic dynamics of recurrent networks by making very fast weight

changes with strong feedback. We describe two versions of

FORCE learning, one applied solely to the output weights of

a network with the architecture shown in Figure 1A, and the other

applied to both the recurrent and output weights of a network of

the form shown in Figure 1B. In both cases, learning is controlled

by an error signal,

e(t)~z(t){f (t), ð4Þ

Figure 1. The two recurrent network architectures being considered. The nets are shown with non-modifiable connections shown in black
and modifiable connections in red. Both networks receives input I(t), contain units that interact through a sparse weight matrix J, and produce an
output z(t), obtained by summing activity from the entire network weighted by the modifiable components of the vector w. (A) The output unit
sends feedback to all of the network units through connections of fixed weight u. Learning affects only the output weights w. (B) The same network
as in A, but without output feedback. Learning takes place both in the network through the modification J?JzdJ, to implement the effect of the
feedback loop, and at the output weights w, to correctly learn z(t).
doi:10.1371/journal.pone.0037372.g001
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which is the difference between the actual network output, z, and
the desired or target output, f .

For the architecture of Figure 1A, learning consists of

modifications of the output weights made at time intervals Dt
and defined by

w(t)~w(t{Dt){e(t)P(t)r(t): ð5Þ

P(t) is a running estimate of the inverse of the network correlation

matrix,

C~
X
t

r(t)r T (t), ð6Þ

where the sum over t refers to a sum over samples of r taken at

different times. FORCE learning is based on a related matrix

Capprox(t) that is initially set proportional to the identity matrix,

Capprox(0) ~ aI. At each learning interval, Capprox(t) is updated

with a sample of r, so that Capprox(t) ~ Capprox(t{Dt)zr(t)rT (t).

As t??, Capprox(t) approaches the correlation matrix C defined

in equation 6 (more precisely, they approach each other if

normalized by the number of samples). At each time step, P(t) is
the inverse of Capprox(t), however it does not have to be

determined by computing a matrix inverse. Instead, it can be

computed recursively using the update rule, which is derived from

the Woodbury matrix identity [14],

P(t)~P(t{Dt){
P(t{Dt)r(t)rT (t)PT (t{Dt)

1zrT (t)P(t{Dt)r(t)
: ð7Þ

Equations 5 and 7 define FORCE learning applied to w. The

factor a{1 acts both as the initial learning rate and as a regularizer

for the recurrsive matrix inversion being performed. By setting

a{1 to a large value, the learning rule is able to drive the network

out of the chaotic regime by feeding back a close approximation of

the target signal f (t) through the feedback weights u [7].

As learning progresses, the matrix P acts as a set of N learning

rates with a 1=t annealing schedule. This is seen most clearly by

shifting to a basis in which P is diagonal. Provided that learning

has progressed long enough for P to have converged to the inverse

correlation matrix of r, the diagonal basis is achieved by projecting

w and r onto principal component (PC) vectors of C. In this basis,

the learning rate, ga, for the component of w aligned with PC

vector a after M weight updates is 1=(Mlaza), where la is the

corresponding PC eigenvalue. This rate divides the learning

process into two phases. The first is an early control phase when

Mva=la and ga&1=a and the major role of weight modification

is virtual teacher forcing, that is to keep the output close to f (t)
and drive the network out of the chaotic regime. The second phase

begins when Mwa=la and ga&1=(Mla), and now the goal of

weight modification is traditional learning, i.e. to find a static set of

weights that makes z(t) ~ f (t). Components of w with large

eigenvalues quickly enter the learning phase, whereas those with

small eigenvalues spend more time in the control phase.

Controlling the components with small eigenvalues allows weight

projections in dimensions with large eigenvalues to be learned

despite the initial chaotic state of the network. At all times during

learning, the network is driven through u with a signal that is

approximately equal to f (t), thus the name FORCE Learning -

First Order Reduced and Controlled Error Learning.

FORCE learning was also proposed as a method for inducing

a network without feedback (Figure 1B) to perform a task by

simultaneously modifying w and J. In this formulation, equations

5 and 7 are applied to the actual output unit and, in addition, to

each unit of the network, which is treated as if it were providing

the output itself. In other words, equations 5 and 7 are applied to

every unit of the network, including the output, all using the same

error signal defined by equation 4. The only difference is that the

modification in equation 5 for network unit i is applied to the

vector of weights Jij for all j for which Jij=0 rather than w, and
the values of r used in equations 5 and 7 are restricted to those

values providing input to unit i. Details of this procedure are

provided in [7] and, in addition, this ‘‘in-network’’ algorithm is re-

derived in a later section below. The idea of treating a network

unit as if it were an output is also a recurring theme in the

following sections.

Learning in Sparse Networks
Because sparseness constraints are essential to the problem we

are considering, it is useful to make the sparseness of the network

explicit in our formalism. To do this, we change the notation for J.
Each row of J has only n v N non-zero elements. We collect all

the non-zero elements in row i of the matrix J into an n-
dimensional column vector j(i). In addition, for each unit (unit i in

this case) we introduce an n | N matrix S(i) that is all zeros

except for a single 1 in each row, with the location of the 1 in the

nth row indicating the identity of the nth non-zero connection in J.
Using this notation, equation 1 for unit i can be rewritten as

t
dxi

dt
~{xizjT(i)S(i)rzviI(t), ð8Þ

a notation that, as stated, explicitly identifies and labels the sparse

connections. This is only a change of notation, the set of equations

8 for i ~ 1,2, . . . ,N is completely equivalent to equation 1.

However, in this notation, the sparseness constraint on dJ is easy

to implement; we can modify the n-dimensional vectors j(i), for

i ~ 1,2 . . . ,N by j(i)?j(i)zdj(i) with no restrictions on the vectors

dj(i).

According to equation 8, the modification j(i)?j(i)zdj(i)
induces an additional input to unit i given by dj T

(i) S(i)r. This will
duplicate the effect of the feedback term in equation 3, if we can

choose dj(i) such that

djT(i)S(i)r & uiz: ð9Þ

The goal of learning in a sparse network is to make this

correspondence as accurate as possible for each unit (exact

equality may be unattainable). By doing this, the total input to unit

i in the network of Figure 1B is whatever it receives through its

original recurrent connections plus the contribution from chang-

ing these connections, dj(i)S(i)r, which is now as equal as possible

to the input provided by the feedback loop, uiw
T r, in the network

with feedback (Figure 1A). In this way, a network without an

output feedback loop operates as if the feedback were present.

Equivalence of training a sparse unit and a sparse

output. Equation 9, which is our condition on the change dj(i)
of the sparse connections for unit i, is similar in form to equation 2

that defines the network output. To make this correspondence

clearer we write.

dj(i)~uiwsparse: ð10Þ

Each unit of the network has its own vector wsparse if this equation

is applied to all network units, so wsparse should really have an

Learning the Internal Weights in ESNs
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identifying index (i) similar to the subscript on dj(i). However,

because each network unit is statistically equivalent in a randomly

connected network with fixed sparseness per unit, we can restrict

our discussion, at this point, to a single unit and thus a single

vector wsparse. This allows us to drop the identifier (i), which

avoids excessive indexing. Similarly, we will temporarily drop the

(i) index on S(i), simply calling it S. We return to discussing the full

ensemble of network units and re-introduce the index i in

a following section.

From equation 9, we can define the quantity.

zsparse(t)~wT
sparseSr(t): ð11Þ

Satisfying equation 9 as nearly as possible then amounts to making

zsparse(t) as close as possible to z(t). Comparing equation 2 and 11

shows that, although zsparse(t) arises from our consideration of the

recurrent inputs to a network unit, it is completely equivalent to an

output extracted from the network, just as z(t) is extracted, except
that there is a sparseness constraint on the output weights.

Therefore, the problem we now analyze, which is how can wsparse

be chosen to minimize the difference between zsparse(t) and z(t), is

equivalent to examining how accurately a sparsely connected

output can reproduce the signal coming from a fully connected

output. In order for our results to apply more generally, we allow

the number of connections to this hypothetical sparse unit, which

is the dimension of wsparse to be any integer m v N, although for

the network application we started with and will come back to,

m ~ n.

We optimize the match between zsparse(t) and z(t) by

minimizing
Ð
dt(zsparse(t){z(t))2. Solving this least-squares prob-

lem gives

wsparse~ SCST
� �z

SCw, ð12Þ

with C defined by equation 6. The superscript z indicates

a pseudoinverse, which is needed here because SCST may not be

invertible. The matrix being pseudoinverted in equation 12 is not

the full correlation matrix, but rather C restricted to the m|m
elements corresponding to correlations between units connected to

the sparse output or, equivalently, the network unit that we are

considering. This pseudoinverse matrix multiplies (with the sum in

the matrix product restricted by S to sparse terms) the correlation

matrix times the full weight vector. Note that if m is equal to N
and the connections are labeled in a sensible way, S is the identity

matrix and equation 12 reduces to wsparse ~ w. This recovers the

trivial solution for modifying the network connections implied by

the second equality in equation 3. We now study the non-trivial

case, when 0 v m vN.

For what follows, it is useful to express equation 12 in the basis

of principal component vectors. To do this, we express

C ~ VDVT , where V is the N|N matrix constructed by

arranging the eigenvectors of C into columns, and D is the

diagonal matrix of eigenvalues of C (Dii~li, the i
th eigenvalue of

C). These eigenvectors are the principal component (PC) vectors.

We arrange the diagonal elements of D and the columns of V so

that they are in decreasing order of PC eigenvalue. Using this

basis, we introduce.

ŵw~VTw and ŵwsparse~VTSTwsparse, ð13Þ

where the hats denote vectors described in the PC basis. In this

basis, equation 12 becomes

ŵwsparse~VTST SVDVTST
� �z

SVDŵw: ð14Þ

The Dimension of Network Activity
Equation 11 corresponds to a sparsely connected unit with n

input connections attempting to extract the same signal z(t) from
a network as the fully connected output. For this to be done, it

must be possible to access the full dynamics of N network units

from a sampling of only n v N of them. The degree of accuracy

of the approximate equality in equation 9 that can be achieved

depends critically on the dimension of the activity of the network.

At any instant of time, the activity of an N-unit network is

described by a point in an N-dimensional space, one dimension

for each unit. Over time, the network state traverses a trajectory

across this space. The dimension of network activity is defined as

the minimum number of dimensions into which this trajectory,

over the duration of the task being considered, can be embedded.

If this can only be done to a finite degree of accuracy, we refer to

the effective dimension of the network. The key feature of the

networks we consider is that the effective dimension of the activity

is typically less than, and often much less than, N.

For most networks performing tasks that involve inputs and

parameters with reasonable values, the PC eigenvalues fall rapidly,

typically exponentially [15] [7] [16]. Thus, we can write

li ~exp ({i=peff ), where peff acts as an effective dimension of

the network activity. If peff v N, this raises the possibility that

only n & peff rates can provide access to all the information

needed to reconstruct the activity of the entire network. Therefore,

we ask how many randomly chosen rates are required to sample

the meaningful dimensions of network activity? In addressing this

question, we first consider the idealized case when p PC

eigenvalues are nonzero and N{p are identically zero. We then

consider an exponentially decaying eigenvalue spectrum.

Accuracy of Sparse Readout
For the idealized case where the activity of the network is strictly

p-dimensional, we define ~VV as the N|p matrix obtained by

keeping only the first p columns of V and similarly ~DD is the p|p

diagonal matrix obtained by keeping only the nonzero diagonal

elements of D. When p v N, we can replace V and D in equation

14 by ~VV and ~DD, and ignore the components of ŵw beyond the first p.

Equation 14 then becomes

ŵwsparse~~VVTST S~VV~DD~VVTST
� �z

S~VV~DDŵw: ð15Þ

The matrix S~VV has dimension m|p and thus is not invertible if

m = p. However, provided that the m rows of S~VV span p

dimensions (see the final section before the Discussion), we have

S~VV~DD~VVTST
� �z

~ ~VVTST
� �z ~DD{1 S~VV

� �z
: ð16Þ

Furthermore, if m§p, (S~VV)z(S~VV) is equal to the identity matrix

(although (S~VV)(S~VV)z is not). As a result,

ŵwsparse~~VVTST S~VV~DD~VVTST
� �z

S~VV~DDŵw

~ ~VVTST
� �

~VVTST
� �z ~DD{1 S~VV

� �z
S~VV
� �

~DDŵw~ŵw:
ð17Þ

Therefore, zsparse ~z, and we find that a sparse output or

a network unit with m connections can reproduce the full output

perfectly if m§p and p, the dimension of the network activity, is

less than N .

Learning the Internal Weights in ESNs
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When the PC eigenvalues fall off exponentially with effective

dimension peff , sparse reconstruction of a full network output is

not perfect, but it can be extremely accurate. The error in

approximating a fully connected output with a sparse output

depends, of course, on the nature of the full output, which is

determined by w. To estimate the error, and to compute it in

network simulations, we assume that the components of ŵw are

chosen independently from a Gaussian distribution with zero

mean and variance 1=N . This is in some sense a worst case

because, in applications involving a specific task, we expect that

the components of ŵw corresponding to PC vectors with large

eigenvalues will dominate. Thus, the accuracy of sparse outputs in

specific tasks (where w is trained) is likely to be better than our

error results with generic output weights.

The error we wish to compute is S(zsparse(t){z(t))2T. As

a standard against which to measure this error, we introduce

another, more common way of approximating a full output using

only m terms; simply by using the first m components of ŵw (in the

PC basis) to construct an approximate output that we denote as

zPC . The error S(zPC(t){z(t))2T is easy to estimate, because this

approximation matches the first m PCs exactly and sets the rest to

zero. The error coming from the N{m missing components is

S zPC(t){z(t)ð Þ2T& 1

N

XN
i~mz1

li&
peff lmz1

N

~s2z exp {
m

peff

� �
:

ð18Þ

Here, the factor of 1=N is the expected value of the square of

each component of ŵw, and the sum over eigenvalues is the sum of

the expected values of the squared amplitudes of the modes with

i w m. The second approximate equality follows from setting

li ~exp ({i=peff ), doing the geometric sum, ignoring a term

exp ({(Nz1)=peff ), and using the approximation

1{ exp ({1=peff ) & 1=peff . In the final equality of equation 18,

we have normalized the error by the output variance s2z .

Sz(t)2T&
1

N

XN
i~1

li&
peff l1

N
:s2z , ð19Þ

using the same set of results and approximations as for equation

18. In this context, the squared error of the approximation is

expressed as the fraction of the output variance that is missing.

We expect the error for zsparse to be larger than zPC because

ŵwsparse does not perfectly match the first m components of ŵw, nor
does it approximate the remaining components as zero. We

extracted a good fit to the error for a sparse output with m
connections when the effective network dimension is peff by

studying a large number of numerical experiments and network

simulations (for examples, see Figure 2). We found that this error is

well-approximated by.

S zsparse(t){z(t)
� �2T& (peffzm)lmz1

N

~ 1z
m

peff

� �
s2z exp {

m

peff

� �
:

ð20Þ

The difference between the accuracy of the output formed by m
random samplings of r and that constructed by a PC analysis is the

factor 1zm=peff in equation 20 grows with m, but it multiplies

a term that decays exponentially as m increases. Thus, using m
randomly selected inputs is almost as good as using an optimal PC

approximation with m modes. The latter requires full knowledge

of the eigenvectors and the locations of the meaningful PC

dimensions, whereas the former relies only on random sampling.

To illustrate the accuracy of these results, we constructed

a network with N ~ 1000, n ~ 100, g ~ 1:5 and t ~ 10 ms,

and injected a time-dependent input with variable amplitude.

Changing the amplitude of the input allowed us to modulate peff ,
which is a decreasing function of input amplitude [17]. The

readout weights, w, were selected randomly so that all modes of

the network were sampled. There is good agreement between the

results of the network simulation for the error in zPC (filled blue

circles) and equation 18 (blue curve), and the error in zsparse (filled
red circles) and our estimate, equation 20 (red curve). Both

equations fit the simulation data over a wide range of m and peff
values.

Transfer of Learning from a Feedback to a Non-Feedback
Network
We now return to the full problem of adjusting the recurrent

weights for every unit in a network in order to reproduce the

effects of an output feedback loop. This merely involves extending

the previous results from a single unit to all the units. In other

words, we combine equations 10 and 12 to obtain an equation

determining dj(i) for all i values,

dj(i)~ui S(i)CS
T
(i)

� �z

S(i)Cw: ð21Þ

Note that we have restored the (i) indexing that identifies the

sparseness matrices for each unit. If these adjustments satisfy

equation 9 to a sufficient degree of accuracy, a network of the form

shown in Figure 1B, with the synaptic modification and output

weights w should have virtually identical activity to a network with

unmodified recurrent connections, the same output weights, and

feedback from the output back to the network (Figure 1A). We

discuss the conditions required for this to happen in the final

section before the Discussion.

An example of a network constructed using equation 21 is

shown in Figure 3. First, a network (N ~ 2000, n ~ 600,
g ~ 1:35, t ~ 10 ms) with output feedback was trained with

online FORCE learning to generate an output pulse after

receiving two brief input pulses, but only if these pulses were

separated by less than 1 second (Figure 3A, left column). When

presented with input pulses separated by more than 1 second, the

network was trained not to produce an output pulse (Figure 3A,

right column). The input pairs were always either less than 975 ms

or more than 1025 ms apart to avoid ambiguous intervals

extremely close to 1 s. The learning was then batch transferred

to the recurrent connections using equations 21, and the output

feedback to the network was removed. After this transfer of

learning to the sparse recurrent weights, the network performed

almost exactly as it did in the original configuration (Figure 3B).

Over 940 trials, the original feedback network performed perfectly

on this task, and the network with no feedback but learning

transferred to its recurrent connections performed with 98.8%

accuracy. The green traces in Figure 3 show that djT(i)S(i)r matches

uiw
T r quite accurately.

Relation to simultaneous online learning of w and J. The

previous section described a batch procedure for transferring

learning from output weights to recurrent connections. It is also

possible to implement this algorithm as an online process. To do
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this, rather than duplicating the complete effects of feedback with

output weight vector w by making a batch modification dj(i), we
can make a series of modifications Dj(i)(t) at each learning time

step that duplicate the effects of a sequence of weight changes

Dw(t). We could accomplish this simply by applying equation 21

at each learning time step, replacing the factor of w with Dw(t).
However, this would assume that we knew the correlation matrix

C, whereas FORCE learning, as described earlier, constructs this

matrix (actually a diagonally loaded version of its inverse)

recursively. Therefore, the correct procedure is to replace the

factors of C in equation 21, when it is applied at time t, by

Capprox(t). Similarly, the matrix (S(i)CS
T
(i))

z in equation 21 is

replaced by a running estimate, updated by an equation analogous

to equation 7,

P(i)(t)~P(i)(t{Dt){
P(i)(t{Dt)S(i)r(t)r

T (t)ST
(i)P

T
(i)(t{Dt)

1zrT (t)ST
(i)P(i)(t{Dt)S(i)r(t)

: ð22Þ

There is no problem with doing the inverse (rather than

pseudoinverse) here because, as a consequence of setting

Capprox(0) ~ aI, P(i) is diagonally loaded.

The recursive learning rule for modifying J in concert with the

modification of the output weights (equation 5) is then

Dj(i)(t) ~ P(i)(t)S(i)Capprox(t)Dw(t). Using equation 5 to specify

Dw(t), we find that

Capprox(t)Dw(t) ~ e(t)Capprox(t)P(t)r(t)~e(t)r(t) because

Capprox(t) and P(t) are inverses of each other. Thus,

Dj(i)(t)~uie(t)P(i)(t)S(i)r(t): ð23Þ

The factor of ui is needed if these modifications are designed to

match those of a specific output feedback loop that uses u as its

input weights. If all that is required is to generate a network

without a feedback loop (Figure 1B) that does a desired task, any

non-singular set of ui values can be chosen, for example ui~1 for

all i. Equation 23 is equivalent to the learning rule proposed

previously when this particular choice of u is made [7]. Note that

all recurrent units and outputs are changing their weights through

Figure 2. Comparison of network simulations and analytical results. The network simulations (filled circles) and analytic results (solid lines)
for sparse (red) and PC (blue) reconstruction errors as a function of m for different peff values. The ‘‘error’’ here is either S(zsparse(t){z(t))2T (red points
and curve) or S(zPC(t){z(t))2T (blue points and curve). The input was I(t) ~ c( sin (pvt)z sin (2pvt)=2z sin (3pvt)=6z sin (4pvt)=3) with
v~1=(60t) and c=0, 0.4, 0.6 in the three panels, from left to right. The value of peff was adjusted by changing c. Inserts show the PC eigenvalues
(blue) and the exponential fits to them (red), using the value of peff indicated. Logarithms are base 10.
doi:10.1371/journal.pone.0037372.g002

Figure 3. An example input-output task implemented in a network with feedback (A) and then transferred to a network without
feedback using equation 21. The upper row shows the input to the network, consisting of two pulses separate by less than 1 s (left columns of A
and B) or more than 1 s (right columns of A and B). The red traces show the output of the two networks correctly responding only to the input pulses
separated by less than 1 s. The blue traces show 5 sample network units. The green traces show uiz(t) in A and djT(i)S(i)r(t) in B for the five sample
units. The similarity in these traces shows that the transfer was successful at getting the recurrent input in B to approximate well the feedback input
in A for each unit.
doi:10.1371/journal.pone.0037372.g003
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exactly the same functional form using only the global error and

information that is local to each unit. Please see Appendix S1 in

the supplemental materials for a derivation of these equations

using index notation, which may be more helpful for implementa-

tion on a computer.

Self-Sensing Networks and Compressed Sensing
We can now state the condition for successful transfer of

learning between the networks of Figures 1A and 1B. This

condition defines our term self-sensing. We require that, for each

unit in the network, an appropriate modification of its sparse set of

input weights allows the unit to approximate any function that can

be extracted from the activity of the network by a linear readout

with full connectivity. In other words, with an appropriate choice

of dj(i), dj
T
(i)S(i)r(t) can approximate any readout, z(t)~wT r(t), for

all i from 1 to N .

Self-sensing and our analysis of it have relationships to the field

of compressed sensing [18–19]. Both consider the possibility of

obtaining complete or effectively complete knowledge of a large

system of size N from m v N (and often m % N) random

samples. Self-sensing, as we have defined it, refers to the accuracy

of outputs derived from random sparse samples of network

activity. Compressed sensing refers to complete reconstruction of

a sparse data set from random sampling. The problem in

compressed sensing is that the data can arise from a large or

even infinite set of different low-dimensional bases, and the

reconstruction procedure is not provided with knowledge about

which basis is being used. In self-sensing, the sparse basis is given

by PCA, but the problem is that a sparsely connected unit cannot

perform PCA on the full activity of the network. No matter what

computational machinery is available to a unit for computing PCs,

it cannot find the high variance PC vectors due to a lack of

information. In a parallel and distributed setting, the only strategy

for a unit with sparse inputs to determine what a network is doing

is through random sampling. The general requirements for both

self- and compressed sensing arise from their dependence on

random sampling. The conditions for both are similar because it is

as difficult to randomly sample sparsely from a single, unknown

low-dimensional space as it is to sample from a sparse one when

the low-dimensional state is unknown.

Our approach to constructing weights for sparse readouts is to

start with the matrix of PC eigenvectors V, keep only the p
relevant vectors giving ~VV, and then randomly sample m
components from each of these vector, giving the matrix S~VV
(e.g. see equation 14). Random sampling of this form will fail, that

is generate zero vectors, if any of the eigenvectors of V are aligned

with specific units or if the m columns of S~VV fail to span p
dimensions. These requirements for a self-sensing network

correspond to the general concepts of incoherence and isotropy

in the compressive sensing literature [19]. Put into our language,

incoherence requires that the important PC eigenvectors not be

concentrated onto a small number of units. If they were, it is likely

that our random sparse sampling would miss these units and thus

would have no access to essential PC directions. Isotropy requires

that, over the distribution of random samples (all S), the columns

of SV are equally likely to point in all directions. This corresponds

to our requirement that the m rows of the matrix S~VV span p
dimensions.

To be more specific, a random sampling of the network will fail

to sample all of the modes of the network if some of the modes are

created by single units. This problem can be eliminated by

imposing an incoherence condition that the maximum element of
~VV be of order 1=

ffiffiffiffiffi
N

p
[18], which ensures that ~VV is rotated well

away from the single-unit basis (the basis in which each unit

corresponds to a single dimension). We require this condition, but

it is almost certain to be satisfied in the networks we consider. One

reason for this is that the connectivity described by J is random,

and no single or small set of units in the networks we consider are

decoupled from the rest of the network. Further, random

connections induce correlations between units, and these correla-

tions almost always ensure that the eigenvector basis is rotated

away from the single-unit basis. Even if such an aligned

eigenvector existed, the loss in reconstruction accuracy would

likely be small because the r variables defining the correlation

matrix are bounded. This implies that it is unlikely that an aligned

mode would be among those with the largest eigenvalues because

eigenvectors involving all of the units can construct larger total

variances.

We now address the isotropy condition, which in our

application means that the m columns of S~VV span p dimensions,

as was required to prove that sparse reconstruction is exact if

p ƒ m v N (equation 17). The columns of the full eigenvector

matrix V are constrained to be orthogonal and so, of course, they

isotropically sample the network space. However, if m % N , the

column vectors of S~VV are no longer orthogonal. We make the

assumption that, in this limit, the elements selected by the random

matrix S can be treated as independent random Gaussian

variables. Studies of V matrices extracted from network activity

and randomly sparsified support this assumption (Figure 4). If S~VV
is a random Gaussian variable, the m columns of S~VV are unbiased

and isotropically sample the relevant p dimensional space.

In networks with a strictly bounded dimensionality of p, self-
sensing requires n§p. In networks with exponentially falling PC

eigenvalues, self-sensing should be realized with an accuracy given

by equation 20 if n w peff . The effective dimensionality is affected

by the inputs to a network, which reduce peff for increasing input

amplitude, and the variance of the elements of J (controlled by g2),
which increases peff for increasing g

2. In response to an input [17]

or during performance of a task, peff drops dramatically and is

likely to be determined by the nature of the task rather than by N.

The crucial interplay is then between the scale of the input and the

variance of J, controlled by g2. The self-sensing state should be

achievable in many applications where the networks are either

input driven or are pattern generators that are effectively input

driven due to the output feeding back.

Discussion

We have presented both batch and online versions of learning

within a recurrent network. The fastest way to train a recurrent

network without feedback is first to train a network with feedback

and then to transfer the learning to the recurrent weights using

equation 21. This will work if the network is in what we have

defined as a self-sensing state.

An interesting feature of the online learning we have derived is

that equation 23, specifying how a unit internal to the network

should change its input weights, and equation 5 determining the

weight changes for the network output, are entirely equivalent.

Both involve running estimates of the inverse correlation matrix of

the relevant inputs (P(i)(t) for network unit i and P(t) for the

output) multiplying the firing rates of those inputs (either S(i)r or r).
Importantly, both involve the same error measure e(t). This means

that a single global error signal transmitted to all network units and

to the output is sufficient to guide learning. The modifications on

network unit i are identical to those that would be applied by

FORCE learning to a sparse output unit with connections

specified by S(i). In other words, each unit of the network is

being treated as if it was a sparse readout trying to reproduce, as
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part of its input, the desired output of the full network. The self-

sensing condition, which assures that this procedure works, relies

on the same incoherence and isotropy conditions as compressed

sensing. These assure that units with a sufficient number of

randomly selected inputs have access to all, or essentially all, of the

information that they would receive from a complete set of inputs.

In this sense, a sparsely connected network in a self-sensing state

acts as if it was fully connected.

Supporting Information

Appendix S1 Equations with Indices for ‘‘internal’’ FORCE

Learning Rule.

(PDF)
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