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Perspectives of purinergic signaling in stem cell
differentiation and tissue regeneration

Talita Glaser & Angélica Regina Cappellari & Micheli Mainardi Pillat &
Isabele Cristiana Iser & Márcia Rosângela Wink & Ana Maria Oliveira Battastini &
Henning Ulrich

Abstract Replacement of lost or dysfunctional tissues by
stem cells has recently raised many investigations on
therapeutic applications. Purinergic signaling has been
shown to regulate proliferation, differentiation, cell death,
and successful engraftment of stem cells originated from
diverse origins. Adenosine triphosphate release occurs in a
controlled way by exocytosis, transporters, and lysosomes
or in large amounts from damaged cells, which is then
subsequently degraded into adenosine. Paracrine and auto-
crine mechanisms induced by immune responses present
critical factors for the success of stem cell therapy. While
P1 receptors generally exert beneficial effects including
anti-inflammatory activity, P2 receptor-mediated actions
depend on the subtype of stimulated receptors and
localization of tissue repair. Pro-inflammatory actions and
excitatory tissue damages mainly result from P2X7 receptor
activation, while other purinergic receptor subtypes partic-
ipate in proliferation and differentiation, thereby providing
adequate niches for stem cell engraftment and novel
mechanisms for cell therapy and endogenous tissue repair.
Therapeutic applications based on regulation of purinergic

signaling are foreseen for kidney and heart muscle
regeneration, Clara-like cell replacement for pulmonary
and bronchial epithelial cells as well as for induction of
neurogenesis in case of neurodegenerative diseases.
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An overview of purinergic signaling

Receptors for purines and pyrimidines are classified based
on their agonist specificity. P1 receptors subtypes are
selective for adenosine and are classical 7-transmembrane
metabotropic receptors coupled to several families of Gi,
Go, and Gs proteins. There are four types of adenosine
receptors (A1, A2A, A2B, and A3) differing in their
pharmacological and functional properties [1]. P2 receptors
are divided into P2X and P2Y subtypes based on their
structural characteristics. P2X receptors are ATP-activated,
ligand-gated cationic (Na+/K+/Ca2+) channels [2, 3], as-
sembled in trimeric form from P2X1 to P2X7 subunits [1,
3]. Metabotropic P2Y purinoceptors expressed by mamma-
lians are divided into P2Y1,2,4,6,11,12,13,14 subtypes based on
phylogenetic similarity and are stimulated by ATP, ADP,
UTP, UDP, or UDP glucose [1]. Purinergic receptors are
expressed by almost every cell type and are one of the first
expressed neurotransmitter receptors in development [4–6].
The extracellular nucleotide/nucleoside availability is con-
trolled by a highly efficient enzymatic cascade, which
includes the members of the ectonucleoside triphosphate
diphosphohydrolase (E-NTPDases, NTPDase1–8), ectonu-
cleotide pyrophosphatase/phosphodiesterase (E-NPPs),
ecto-alkaline phosphatases, and ecto-5′-nucleotidase/
CD73. These enzymes catalyze the complete nucleotide
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hydrolysis (e.g., ATP) to nucleosides (e.g., adenosine) and
represent a powerful tool for controlling the effects
mediated by extracellular purines [7–9].

Stem cells and purinergic signaling

Replacement of lost or dysfunctional tissues has recently
raised many investigations on possible therapeutic applica-
tion of stem cells. An impressive number of clinical trials
and animal studies have already been performed to
determine the therapeutic potential of various stem cells
models [10, 11]. The first isolation of embryonic stem (ES)
cells from mouse goes back to 1981 followed by human ES
cell isolation and culture in 1998 [12, 13]. Organ-specific
stem cells were isolated from embryonic and adult tissues
including brain, bone marrow, umbilical cord, skeletal and
cardiac muscles, and adipose tissue [14]. Pluripotent ES
cells are capable to originate any somatic cell type, while
tissue-specific stem cells are mostly multipotent and
subsequently originate cell types found in these specific
tissues. Both, ES and tissue-specific stem cells can
proliferate symmetrically replicating themselves for self-
renewal or asymmetrically giving rise to a stem cell and
another more differentiated cell type. The most promising
and recently discovered stem cell model for basic research
and even therapy is the induced pluripotent stem cell (iPS
cell), reprogrammed in 2006 from differentiated mouse
cells and in 2007 from human cells [15, 16]. The recent
described capacity of genetically reprogrammed somatic
cells towards pluripotent ones could bypass obstacles, such
as the lack of histocompatibility and ethical concerns, by
allowing the generation of autologous cells from the
patient. This new pluripotent cell source initially obtained by
overexpression of the genes Klf-4, Oct4, Sox2, and c-Myc
responsible for pluripotency [reviewed by 17] has opened
expectations for treatment of many diseases. Importantly, iPS
cells derived from different species demonstrated the potential
to differentiate into tissues derived from the three germ layers,
such as known from ES cells. However, care must be taken
on using these cells as well as ES cells for transplantation
purposes due to their possible tumorigenic potential.

Therapeutic application of stem cells in patients is
particularly promising for treatment of heart disease, where
new cardiomyocytes could restore contractile function after
myocardial infarction. Cell regeneration therapy could be
also relevant for repair of pancreatic function in diabetes
with the replacement of β insulin-secreting cells [18].
Further possible applications are foreseen for the treatment
of the damaged neuronal system and neurodegenerative
diseases. For instance, efforts are being made to replace
dopaminergic neurons in Parkinson’s disease [19] or to use
the stem cell therapy to restore motorneuron function in

patients suffering from spinal cord injuries [16]. However,
the little obtained progress in many cases did not satisfy the
high expectations made. Moreover, observed functional
improvements observed in the treated tissues did not often
result from the integration of stem cells into existing tissue
architectures. It is evident that transplanted cells contribute
to endogenous tissue repair through paracrine mechanisms
more than by differentiating themselves. For instance, the
success of neural progenitor cell (NPC) engrafting into the
spinal cord of Sprague–Dawley rats, subjected to contusion
at T8–T9 levels, was limited by allodynia due to the death
of transplanted cells [7]. However, injection of conditioned
media recovered from cultured stem cells promoted arterio-
genesis and functional improvement when injected into the
damaged heart [20]. Therefore, it has been postulated that
trophic factors represent the principle mechanism responsi-
ble for tissue repair.

Usual strategies for cell replacement therapy are based on
the isolation of a stem cell source from a donor or the patient,
followed by induction to proliferate and/or differentiate into
tissue types which shall be repaired. Cell death and rejection of
transplanted cells are mostly due to immune responses and the
absence of adequate stem cell niches at the localization of
transplantation. Although mechanisms by which the local
milieu influences stem cell differentiation and tissue engraft-
ment need yet to be elucidated, it seems that the fate of bone
marrow stem cells is determined by the environment in which
they engraft rather than by an intrinsically programmed fate.
As support for such hypothesis, positive inotropic (pharmaco-
logic augmentation of contractility) or chronotropic stimuli
(heart rate increase by exercise) promoted and intensified the
differentiation of bone marrow-derived stem cells into
cardiomyocyte phenotypes [21]. Furthermore, stem cells
secret trophic and immunomodulatory factors controlling
local and systematic inflammatory responses. Such factors,
liberated by, i.e., bone marrow stem cells are therapeutically
important, since they stimulate local tissue regeneration and/
or recruitment of endogenous stem or progenitor cells.
Moreover, some studies have demonstrated that mesenchymal
stem cells (MSC) can diminish the apoptosis degree and
infarct size of the damaged areas by secreting a wide range of
cytoprotective molecules like vascular endothelial growth
factor, basic fibroblast growth factor, insulin-like growth
factor 1, stromal cell-derived factor-1, platelet-derived growth
factor, interleukin-1 beta, or hepatocyte growth factor [22].

Other factors with such therapeutic potential are UTP,
UDP, ADP, and adenosine acting through purinergic
receptors. Nucleotides, released after tissue injury and cell
death and hydrolyzed by ectonucleotidases, also regulate
immune cell function induced by damage-associated mo-
lecular pattern molecules [23]. Moreover, ATP released from
immune cells participates in autocrine as well as in paracrine
feedback loops with regulatory functions during T-cell
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activation in the immune synapse (junction between T cell and
antigen-presenting cell) [24]. During the inflammatory process
following cell transplantation and hindering repair, purines
exert trophic functions and keep several immune functions
under control, including the release of prostanoids, activation
of matrix metalloproteinase-9, cytokines and chemokines,
proliferation, differentiation/maturation and stimulation of
immune cells, endothelial adhesion, free radical production,
degranulation, phagocytosis, fusion, and cell death [25].
Depending on the involved purinergic receptor subtype, ATP
often exerts proinflammatory effects while adenosine induces
mainly anti-inflammatory effects [25]. Several studies demon-
strated that the absence or inhibition of the P2X7 receptor (a
mediator of the pro-inflammatory effects of ATP) results in less
severe outcomes in chronic inflammatory diseases and
enhanced functional recovery [23, 26, 27].

Besides importance of purinergic receptor agonists in
differentiated immune cells, these compounds also modulate
hematopoietic stem cell (HSC) self-renewal, expansion, and
differentiation with implications not only in hematopoiesis,
but also in tissue repair and regenerative medicine [28, 29].
For instance, ATP induces the proliferation of human HSC
and contributed through P2X receptor activation during
inflammation process [29, 30]. UTP also induces prolifera-
tion and migration of HSCs [30, 31] while adenosine
potentiates the stimulatory effect of growth factors and
cytokines on HSC proliferation and differentiation [8].
Moreover, human MSCs at early stages of culture (P0–P5)
spontaneously release ATP reducing cell proliferation.
Increased human MSC proliferation is induced by the
unselective P2 receptor antagonist pyridoxalphosphate-6-
azophenyl-2′,4′-disulfonate (PPADS) and by the selective
P2Y1 receptor antagonist 2′-deoxy-N6-methyladenosine-
3′,5′-bisphosphate (MRS 2179). In summary, ATP modulates
HSC and MSC proliferation and likely acts as one of the
early factors determining their cell fate [32]. Furthermore,
nucleotides also contribute to inflammatory responses and
cell fate decisions occurring in the brain. P2X7 receptors
expressed by NPCs are responsible for cell death, being in
agreement with observations that high levels of extracellular
ATP in inflammatory central nervous system (CNS) lesions
hinder successful NPC engraftment [33].

The extracellular nucleotide/nucleoside availability is
controlled by a highly efficient enzymatic cascade, which
includes the members of the E-NTPDases (NTPDase1–8),
E-NPPs, ecto-alkaline phosphatases, and ecto-5′-nucleotid-
ase/CD73. These enzymes are responsible for nucleotide
hydrolysis (e.g. ATP) into nucleosides (e.g., adenosine) and
represent a powerful mechanism for controlling the effects
mediated by extracellular purines [9, 34]. Although
purinergic signaling has been extensively studied, only
few studies are found in the literature demonstrating the
involvement of extracellular nucleotide metabolizing

enzymes in stem cell biology. Expression and activities of
members of ectonucleotidase families as well as purinergic
receptor subtypes have been detected in different types of
stem and progenitor cells. Recent works have identified the
presence of NTPDase2 in adult mouse hippocampal
progenitors [35] and in type B cells of the subventricular
zone (SVZ) [36], two neurogenic regions of the adult
mammalian brain. In accordance, neurospheres cultured
from the adult mouse SVZ express NTPDase2, the tissue
nonspecific isoform of alkaline phosphatase (TNAP) and
functional P2 receptors in synergism with growth factors
for enhancing cell proliferation [37]. In addition, deletion of
TNAP expression or inhibition of its enzymatic activity in
neural progenitors reduces cell proliferation and differenti-
ation into neurons or oligodendrocytes [38]. These pub-
lished data corroborate the importance of NTPDase2 and
TNAP, two potential ATP scavengers, as novel markers for
progenitor cells both in the adult and developing brain [39].
Reinforcing these results, spontaneous ATP release was
observed in murine NPCs and, interestingly, purinergic
receptors antagonists were able to suppress progenitor cell
proliferation [40]. Moreover, neuronal differentiation was
accompanied by a decrease in ATP release and a loss of
functional P2Y receptors, suggesting that purine nucleo-
tides act as proliferation-inducing factors for NPCs and
downregulators of neuronal differentiation, once again
pointing at the importance of purinergic signaling and
involved enzymes for neurogenesis in the adult brain [40].
These data are in agreement with results of our laboratory
[41], showing down-regulation of P2Y1 receptor expres-
sion and activity in differentiating P19 mouse embryonal
carcinoma cells. This observation is in line with functions
of the P2Y1 subtype in promoting proliferation of undif-
ferentiated cells, but not induction of neuronal differentia-
tion. Finally, the studies presented here demonstrate the
potential participation of ectonucleotidases in the biology of
stem or progenitor cells from different tissues. Initial results
on roles of these ecto-enzymes will encourage more studies
for better understanding of their importance in stem cell
biology, differentiation, and tissue repair. In the following,
we will discuss new trends of stem cell research related to
purinergic signaling and the perspectives of using these
discoveries as tools for future tissue repair in clinical trials
as this new approach develops (see Fig. 1 for a scheme of
the possible therapeutic use of purines in combination with
stem cells).

Purinergic signaling and perspectives in tissue
regeneration

Implications of the purinergic system in stem cell biology
and tissue regeneration will be discussed with emphasis on
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the recent hypothesis that paracrine effects present the most
important mechanisms in this process. Since this idea is
very recent, few data are available directly relating the
purinergic system with stem cell differentiation and tissue
regeneration; however, the authors of this review are
confident that the present article will encourage research
in order to better understand the participation of purinergic
signaling in this context.

Heart injury

The heart is an organ composed basically of fibroblasts and
cardiomyocytes, terminal-differentiated cells which give the
heart the pumping ability. During ischemia and other
injuries, the most affected cells are the cardiomyocytes
because they die and a scar is formed due to the inability of
renewing these cells. The scar stiffens the heart, decreasing
its capability and efficiency in pumping the blood.
Therefore, intense efforts are being made for the restoration
of lost cells by cell therapy and maintenance of cardiac
function in patients with heart injury. Many stem cells types
have been studied in order to select the best model for
cardiac cell therapy. ES cells, iPS cells as well as adult stem
cells (bone marrow, adipose tissue-derived, and cardiac
stem cells) are already tested in animal models and humans
with often promising results [42, 43].

The most promising model is provided by cardiac stem
cells (CSCs) that reside in small populations in the adult
mammalian myocardium and have the potential to differ-
entiate into cardiomyocytes and other cell types, such as
endothelial and vascular smooth muscle cells [44–47].
However, differentiation of these cells is rare under
physiological conditions [48]. For therapeutic purposes,
CSCs can be generated by expanding autologous cells ex
vivo or stimulating the regeneration capacity of these cells
in vivo. Nevertheless, one of the biggest problems
hindering the therapeutic use of stem cells lies still in the
difficulty of keeping stem cells alive following transplan-
tation. Cell death occurs before cells can engraft in their
environment due to inflammation-signaling responses, or
cells do not even identify the injured tissue site for
engraftment. Therefore, signaling factors necessary for cell
establishment at the location of transplantation are being
investigated. Such paracrine factors include ATP and
adenosine and their respective receptor subtypes. P2Y14
receptors expressed by bone marrow HSCs induce migra-
tion of these cells to the localization of injury followed by
induction of differentiation at the site mediated by
activation of other purinergic receptors [49] (Fig. 2).
Adenosine plays many roles in the heart including
regulation of growth, differentiation, angiogenesis, coro-
nary blood flow, cardiac conduction and heart rate, substrate

Fig. 1 Therapeutic potential of stem cells and supposed effects of
purinergic signaling. Stem cells of diverse origins, such as from
adipose, cardiac, and neural tissues can restore and regenerate
damaged tissues by secreting paracrine factors including purines and
pyrimidines. ATP and adenosine interfere with tissue reactions
following transplantation of stem cells of various origins in different
ways. (1) Nucleotides modulate the immune response and thereby
reduce inflammation processes and the risk of transplant rejection and
cell death. (2) Purines and pyrimidines promote proliferation and
differentiation of transplanted and endogenous stem cells by providing

adequate stem cell niches. (3) Purines and pyrimidines induce
migration of endogenous stem cells to the site of injury and increase
engraftment rates. Stem cell types with therapeutic applications are
human induced-pluripotent stem cells (hiPSC), human embryonic
stem cells (hESC), adipose stem cells (ASC), cardiac stem cells
(CSC), neural stem cells (NSC), bone marrow stem cells (BMSC), and
umbilical cord stem cells (UCSC) which are transplanted by using
stereotaxic surgery (SS), intracoronary retrograde infusion through
coronary sinus (IRICS) or intravenous, intramyocardial, or intraperi-
toneal injection or lumbar puncture
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metabolism, and sensitivity to adrenergic stimulation [50],
and also functions as an endogenous determinant of ischemic
tolerance [50]. The two A2 receptor subtypes (A2A and
A2BA) possess important anti-inflammatory and immuno-
modulatory functions, and probably control the impact of
inflammatory processes during ischemic and post-ischemic
damage. Vinten-Johansen and colleagues confirm protective
functions of A2A receptors in cardiac tissue by inhibition of
neutrophil activation and neutrophil–vascular interactions as
seen in Fig. 2 [51, 52].

Extracellular pyridoxal-5′-phosphate (PLP), a synthesis
precursor of PPADS, is considered a P2 receptor antagonist.
When this compound is used in the micromolar concentra-
tion range, it prevents ATP-induced calcium influx in
isolated rat cardiomyocytes, inhibiting the positive inotro-
pic effects of ATP on isolated perfused hearts and blocking
ATP binding to the cardiac sarcolemma. Recent research
suggests that at least part of the protective effect observed
during reperfusion by PLP may be mediated through its
inhibitory action on purinergic receptors. The possible
receptors expressed in cardiomyocytes and subject to
inhibition by PLP are P2Y1, P2Y2, P2Y4, P2Y6, and
P2Y11 subtypes [53]. Taking together, the strategy of cell
therapy following a heart attack could base on activation of
P2Y14 purinergic receptors expressed by bone marrow
stem cells which then would induce migration to the site of
injury and thus could restore heart tissue before the
formation of a scar. Furthermore, concomitant activation
of A2 receptors would decrease the damage caused by
ischemia due to the anti-inflammatory activity of these
receptors in preventing the activation of neutrophils which
may cause further damage tissue. However, reservations

remain regarding stimulation of P2Y receptors in cardio-
myocytes due to their involvement in apoptosis induction.
Taken together, fundamental roles exist for the purinergic
system in cardiac protection and preconditioning suggesting
possible applications together with stem cell therapy.

Bladder dysfunction and glomerular injury

Much effort has been spent for establishing a stem cell
therapy for the regeneration of tissues, including nephron
and bladder. The urinary system is composed basically by
kidneys, ureters, bladder, and urethra, and disorders in any
of these structures can cause much pain and suffering for
the patient. Hemodialysis and implementation of tubes are
usually used for the treatment of patients with urogenital
diseases; however, unfortunately, there is no cure for many
diseases. Different stem cell types have been tested for
therapeutic applications with varying success. For therapy
of bladder dysfunction, Nishijima et al. transplanted bone
marrow stem cells by intrabladder injection resulting in
restored bladder contraction in rats [54]. Huang et al.
transplanted adipose-derived stem cells by intrabladder or
intravenous injection resulting in improved tissue parame-
ters and urodynamics in a rat model of overactive bladder
[55]. Interestingly, De Coppi et al. showed that intrabladder
transplantation of amniotic fluid or bone marrow stem cells
promoted post-injury bladder remodeling by a paracrine
mechanism [56]. According to Hallman et al., the repair of
injured renal epithelium is thought to be mediated by
surviving renal proximal tubular cells that must dedifferen-
tiate to allow for proliferation and migration necessary for
epithelial regeneration. ATP and its intracellular signaling

Fig. 2 ATP-and adenosine-
induced actions following car-
diac ischemic insult. After myo-
cardial injury following an
ischemic insult, dead cells re-
lease ATP into the extracellular
space. The released ATP stimu-
lates P2Y14 receptors expressed
by hematopoietic stem cells and
possibly purinergic receptors on
cardiac stem cells. NTPDases
(ecto-nucleoside triphosphate
diphosphohydrolases) dephos-
phorylate ATP via ADP to AMP,
and 5-nucleotidase (5′-NT) cat-
alyzes the hydrolysis of AMP to
adenosine inducing anti-
inflammatory responses by acti-
vation of A2A and A2B recep-
tors, blocking neutrophil
activation and migration
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have also crucial functions in this regeneration process.
Kartha et al. showed that adenine nucleotides stimulate
migration of kidney epithelial cells in an in vitro
culture resembling wounded kidney. In these experi-
ments, cells were treated with 10 μM of different
adenine nucleotides, and the number of cells that
migrated into the leasioned area of 1 mm2 in size was
counted 24 h later [57]. Increases in migration were
induced by cAMP, adenosine, AMP, and ATP suggesting
purinergic receptors activation; however, P1 receptors
may promote contrary functions in this context, as
adenosine can induce apoptosis in glomerular mesangial
cells causing glomerular injury [58]. Babelova et al.
showed that the secretion of the pro-inflammatory master
cytokine interleukin (IL)-1β during inflammatory renal
injury interacts with purinergic P2X4/P2X7 receptors
[59]. Moreover, P2X7 receptor expression in glomeruli
was augmented tenfold in diabetic and hypertensive rat
models when compared to that of healthy rat glomeruli
[60]. Purinergic signaling has also been related to renal
protection via A2a adenosine receptor activation in
conditions of reperfusion injury [61]. In summary, for
treatment of renal epithelium injury, transplantation of
bone marrow or adipose tissue stem cells are promising.
Migration to the injured sites can be induced by injecting
cAMP, adenosine, AMP, and ATP suggesting purinergic
receptor activation. On the other site, P1 receptor
inhibition is indicated due to the contribution of these
receptors to apoptosis under these conditions.

Parkinson’s disease

Probably most effort has been put into the study of the
applicability of cellular therapy in the nervous system due
to its enormous impact on patient’s life and a lack of
therapeutic strategies to cure neurodegenerative diseases
and spinal cord injuries. We describe here some recent
discoveries related to purinergic signaling with impact on
tissue repair in the neuronal system.

Parkinson’s disease (PD) is a neurodegenerative
illness caused by death of dopaminergic neurons in the
substantia nigra pars, but the underlying mechanisms of
neuronal death remain largely unknown. Dopaminergic
neurons are responsible for dopamine neurotransmitter
secretion and control body movements. The absence of this
molecule in patients with PD generates tremor rigidity,
postural instability, and loss of motor coordination affecting
writing capability among other disturbances. Increased sur-
vival is achieved by surgical therapies and medications,
principally based on administration of L-DOPA, but its
prolonged use may generate uncontrollable movements
known as dyskinesia [63, 64]. Purinergic signaling has
implications in PD, since treatment with ATP enhances the

release of dopamine from dopaminergic neurons of the
substantia nigra. However, at the same time, ATP release
may activate P2X7 receptors expressed by neighboring cells
thereby promoting cell death and contributing to an increase
of the necrotic volume [62–65]. Furthermore, Feuvre et al.
[66] provided evidence that P2X7 receptor activation
following ATP release induces expression of proteins
involved in the inflammatory response followed by liberation
of cytokines. In addition, ATP together with glutamate
released in neurodegenerative disorders may change intra-
cellular Ca2+ homeostasis, mainly in neurons, with major
importance for the disease progress [67].

Primary cultures of rat dopaminergic neurons express
P2X1-7 and P2Y1 receptors together with D1 and D2
dopamine receptors [68]. P2Y receptor antagonists are
potent neuroprotecting agents in the brain cortex, hippo-
campus, and cerebellum by modulating excessive neuro-
transmitter release in brain disorders [69, 70]; however,
these effects would be undesirable in PD, since even
PPADS blocking P2 receptors was shown to decrease
dopamine secretion [71, 72]. A wide range of different
strategies is under investigation for PD treatment, with a
major focus research on stem cell therapy applications.
Exogenous molecules are known to guide neural differen-
tiation and are responsible for the high grade of phenotype
specification, including induction of axonal growth and
establishment of synaptic contact [73]. Milosevic et al.
[74] detected P2Y4, P2Y6, and P2X4 receptor expression
in cultured human NPCs from human fetal midbrain. UTP
and UDP are known as agonists of the P2Y2/P2Y4 and
P2Y6 receptors, respectively [75]. The treatment of
hNPCs with UTP, in the presence of EGF and FGF2,
increases cell proliferation. Moreover, UTP and UDP in
the presence of specific culture medium enhance dopami-
nergic cell differentiation, and these effects are reduced by
antagonists of P2 receptors.

Adenosine A2A receptors are selectively located on
striatopallidal neurons and are capable of forming
functional heteromeric complexes with dopamine D2
and metabotropic glutamate mGlu5 receptors. A2A recep-
tor antagonists have emerged as an attractive nondopa-
minergic target to improve the motor deficits that
characterize PD, based on the regional and unique
cellular distribution of this receptor, being in agreement
with data showing that A2A receptor antagonists improve
motor symptoms in animal models of Parkinson’s disease
and in initial clinical trials. Some experimental data also
indicate that A2A receptor antagonists do not induce
neuroplasticity phenomena which complicate long-term
dopaminergic treatments [76].

These data suggest the involvement of purinergic
signaling in dopaminergic cell differentiation and possible
applications for purinergic receptors in in vitro differenti-
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ation cultures for posterior PD cell therapy [74]. However,
more studies are needed to clarify whether extracellular
nucleotides may contribute to favorable endogenous niches
for stem cell transplantation or even recruit endogenous
NPCs for dopaminergic differentiation.

Alzheimer’s disease

The pathogenicity of Alzheimer’s disease (AD) involves
amyloids plaques and neurofibrillary tangle formation in
the neuron extracellular medium. AD patients present an
elevated production and secretion of the amyloid β
peptide (Aβ) by neurons into the extracellular medium
with progressive deposit of fibrils with high-grade
toxicity, generating neuronal dysfunction and cell death
[77–79]. This initial deposit triggers an inflammatory
process with microglia and astrocyte recruitment to the
injury site. Then, elevating cytokine secretion promotes
Aβ internalization by neurons elevating neuronal damage
[80–82]. ATP is released in high concentrations as result
of cell death and enhances the local inflammatory effects
besides increasing vulnerability of neurons by Aβ [61,
81]. Microglial cells recruited to the injury site showed
elevated increased P2X7 receptor expression, as observed
in animal models and human patients [83, 84]. P2X7
receptor activation by elevated ATP concentration pro-
motes the secretion of the cytokines by microglial cells
and activated oxygen species, increasing inflammation
and stimulating Aβ-plaque formation, which also stim-
ulates ATP liberation [82, 85, 86]. Furthermore, the P2Y1
subtype is expressed in AD typical structures such as Aβ
plaques and neurofibrillary tangles, and receptor immu-
nostaining was notably high in AD brain suggesting that
P2Y1 receptors may participate in signaling events
triggering neurodegenerative processes [61, 81, 82]. A1

and A2A adenosine receptor subtypes are expressed in the
cortex, hippocampus, and microglia in the brain of
patients suffering from AD. The A2A receptor was
suggested to contribute to memory deficits. The adminis-
tration of caffeine, an antagonist of A1 and A2A receptors,
promoted the protection against Aβ-induced neurotoxici-
ty. Moreover, in vivo studies with A2A antagonists resulted
in reduced Aβ production and still protected against Aβ
toxicity [87].

Hippocampus and the subventricular zone are the brain
structures most affected in AD and are also the main sites of
NPC localization. Increased NPC proliferation was observed
in different illness stages; however, subsequent differentiation
of these cells was not detected [88, 89]. NPCs implanted into
the brain of a rat model of migrated to the disease site.
Moreover, the presence of NPCs decreased microgliosis
and the expression and secretion of pro-inflammatory
cytokines, both characteristic conditions for AD. Elevated

neuroprotection was also observed together with augmented
expression of MAP-2, a marker protein for mature neurons.
However, NPCs were nestin–positive and negative for
expression of neuronal marker proteins in immunostaining
assays, indicating that neuronal differentiation did not occur
[90]. Secreted Aβ 1–42, a more toxic form of the amyloid
peptide causing cell death, evoked a reduction of NPC
proliferation [91]. Nowadays, acetylcholinesterase inhibitors
are being used to enhance cholinergic function and induce a
temporary cognition improvement. Implants of NPCs de-
rived from the cholinergic regions of the forebrain, appear to
be a valid approach for cell therapy. ATP, a natural
cotransmitter of acetylcholine, may gain importance in this
context for helping to reestablish defective cholinergic
transmission.

Several cell lines and animal models are used to assess
mechanisms of neural differentiation and the inter-
relationship of action of various metabotropic and iono-
tropic receptors in this process. Trujillo et al. [62] suggested
the intrinsic regulation between purinergic, cholinergic, and
kallikrein–kinin systems for phenotype determination dur-
ing neural differentiation. Using P19 embryonal carcinoma
cells as in vitro model for neuronal differentiation, our
group observed that functional purinergic receptors are
essential for cell differentiation into neurons with functional
cholinergic receptors [41].

According to Delarasse et al. [92], activation of P2X7
receptors stimulates soluble amyloid precursor protein α
release from mouse neuroblastoma cells. In view of that, a
possible treatment for AD could include inhibition of P2
receptors to decrease inflammatory responses, together with
NPC injection secreting factors for reduction of inflammatory
responses. Further studies will also reveal whether stimulation
with ATP will help restoring cholinergic functions.

Epilepsy

Epilepsy is a brain disturbance manifested by frequent seizures
with constant neural activation. It may be accompanied by
massive glial cell proliferation, initiating following neurode-
generative processes. Several anti-epileptic agents inhibit the
ability of astrocytes in transmitting intracellular Ca2+ waves. In
view of that, purinergic receptor antagonists should offer a
novel treatment for blocking Ca2+ wave propagation stimu-
lated by ATP [93]. As further proof for such mechanism,
injection of high doses of ATP into rat cortex promoted an
increase in seizure occurrence, which could be antagonized by
suramin [94]. Hippocampi from chronic epileptic rats
demonstrated elevated P2X7 receptor expression and abnor-
mal responses to ATP, suggesting a possible participation of
this system in the pathophysiology of epilepsy [95]. Potent
drugs are administrated in high doses in rats and mice to
promote sequential seizures and behavioral and electrographic
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changes [62]. In a rat epilepsy model, kainate application
elevated microglial purinergic receptor expression, mainly
P2X7 and P2Y12 receptor subtypes. Both receptors are
associated with the active state of microglia, inducing
inflammatory responses and microglia migration, respectively
[95]. In a temporal lobe epilepsy model induced by
pilocarpine injection, P2X4 receptor expression was signifi-
cantly reduced in pyramidal neurons reflecting a neuronal loss
in a chronic status, while elevated P2X7 receptor expression
was observed in glial cells suggesting again its participation in
the inflammatory response [95]. Oses [96] observed a
decrease in P2X receptor expression in rat hippocampus
following convulsive periods which may be associated with
progressing neurodegeneration and seizure worsening during
epilepsy. However, adenosine acting through A1 receptors in
an epilepsy model induced by pilocarpine promoted signifi-
cant protection against seizures [95, 97]. As a possible
mechanism, adenosine participates in cell proliferation regu-
lation and apoptosis eliminating useless and damaged cells
during repair, without the necessity of neurotoxic mediators or
immunomodulators. Furthermore, adenosine can control
astrocyte proliferation triggered by other purine nucleotides
[98].

Cell transplantation strategies have been employed for
the treatment of epileptic disorders, but the effect of
exogenous neural stem cells is unknown. Chua et al.
evaluated possible anti-epileptogenic effect of NSCs in
adult rats with status epilepticus and showed that NSCs
differentiate into inhibitory interneurons and decrease
neuronal excitability, preventing spontaneous recurrent
seizure formation in adult rats with pilocarpine-induced
temporal lobe epilespy [99]. Therefore, a novel cellular
source for the local therapeutic delivery of adenosine, a
stem cell-based delivery system for adenosine, was gener-
ated by disruption of both alleles of adenosine kinase (AK)
in mouse ES cells. These Ak−/− ES cells were differenti-
ated into glial precursor cells and released significant
amounts of adenosine. Rats with adenosine releasing Ak−/
− ES cell-derived implants displayed transient protection
against convulsive seizures and a profound reduction of
after-discharge activity in EEG recordings, providing a
proof-of-principle evidence that Ak−/− ES cell-derived
brain implants suppress seizure activity by a paracrine
mode of action [100]. In summary, stem cell therapy may
be successful for epilepsy if transplanted NSCs feature a
paracrine effect by releasing adenosine, which decreases the
number of seizures, besides their ability to differentiate into
inhibitory interneurons.

Trauma, ischemia, and hypoxia in the CNS

During several injury conditions such as trauma, ischemia,
and hypoxia, ATP secretion is an important signaling

molecule involved in repair of damaged tissue. After spinal
cord injury, a large peritraumatic region sustains patholog-
ical processes to keep high ATP concentrations in the
extracellular medium [61] involving P2X7 receptor activa-
tion and cell death as already discussed in this review. For
instance, P2X7 receptors are expressed in neurons, astro-
cytes, and microglia of brain tissue suffering from ischemic
conditions [82, 101]. Accordingly, administration of P2
receptor antagonists improved cell function and reduced
cell death in the peritraumatic zone [81]. Moreover, after
lesions in the peripheral nervous system. P2X3 receptor
expression in intact neurons, suggesting a role for this
receptor in post-traumatic repair [102]. Following trauma,
astrocytes increased expression of P2X4 receptors thereby
inducing trombospondin-1 secretion, which constitutes an
extracellular molecule for synapse formation contributing to
CNS remodeling [81, 103]. However, as already said, ATP
also promotes neuronal apoptosis, necrosis and astrocytic
death after traumatic events. P2 receptors promote the
recruitment of microglial cells from distal areas to the
traumatic core [104]. In vivo studies showed that P2X4 and
P2Y12 receptors stimulated migration of microglial cells to
the injury area after trauma, followed by expression of
P2Y6 receptors favoring the secondary damage moment,
the debris phagocytosis [82]. Experimental evidence indi-
cates liberation of adenosine into the extracellular medium
after tissue damage together with down-regulation of AK
expression, leading to adenosine accumulation and neuro-
protection following injury [105]. ATP in the extracellular
medium may attract astrocytes and microglia to the site of
injury in order to assist tissue repair [106]. In the normal
adult brain, ATP secreted by astrocytes stimulates NPC
proliferation and migration, while P2Y receptor antagonists
reversed this effect by inhibiting proliferation. During the
neurogenesis process, NPCs revealed NTPDase activity for
controlling ATP concentration and subsequently directing
neuronal and glial differentiation [40]. In summary,
treatment of spinal cord injury and other traumatic and
ischemic disorders of the CNS would benefit from P2
receptor inhibition in order to reduce cell death, followed
by activation of P2X3 and P2X4 receptors for induction of
synapse formation. Thereby, extracellular adenosine accu-
mulation leads to neuroprotection during injury while ATP
may attract astrocytes and microglia to the site of injury to
assist tissue repair. In vitro NPC differentiation is directed
by P2Y receptors; such mechanism should be further
validated in animal models.

Skin injury

Skin is a stratified epithelium, where the epidermis is the
outermost part of this tissue and dermis is innermost.
Epidermis is mainly constituted by keratinocytes (90–95%)
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and these cells are arranged in continuous layers from the
inside towards outer layers: the basal layer, the stratum
spinosum, the granular layer and stratum corneum. The
epidermis is capable of self-renewal by presenting adult stem
cells, which proliferate and can originate a new epidermis to
cover all body surfaces. These stem cells are located in a
portion of the follicle hair known as bulge migrating upwards
to the proliferative basal layer. Keratinocytes migrate from the
basal layer to the skin surface with concomitant differentiation
[107–109]. In physiological and in pathological conditions,
many kind of cells related to nervous and immune systems,
can generate ATP extravasation and accumulation in the
extracellular medium of keratinocytes. Two important
functions are attributed to this nucleotide such as modulation
of keratinocyte proliferation and differentiation [110]. Many
studies have shown that these effects are mediated by ATP
action through P2X and P2Y receptor subtypes, and it is
known that the epidermis expresses P2X5, P2X7, P2Y1, and
P2Y2 subtypes with diverse functions [111–113].

P2Y1 and P2Y2 receptors expressed in basal layers of the
fetal and adult epidermis [111, 113] were immune colocalized
with the cell proliferation markers Ki67 and PCNA
(proliferation cell nuclear antigen) [111]. The P2Y1 receptor
agonist 2-methylthio-ADP (P2Y1 agonist) and UTP activat-
ing P2Y2 receptors induced proliferation in cell cultures of
basal keratinocytes [113]. P2Y1 and P2Y2 subtypes are
coupled to Phospholipase C via Gq/11 proteins with gener-
ation of Inositol 3-phosphate and, in sequence, induce
intracellular calcium mobilization [113] leading to Cl−

conductance and starting keratinocyte differentiation [112].
In an in vivo wound-healing model, the P2Y1 receptor is
expressed in epidermal basal layers and the wound edge,
while the P2Y2 subtype is expressed in basal and suprabasal
layers, but is not expressed in the wound edge. Alterations of
distribution patterns of purinergic receptors occur during
phenotype changes as keratinocytes become migratory cells
in the wound-healing process [110]. P2X5 receptors are
expressed in undifferentiated basal and intermediate layers of
fetal epidermis with high immunoreactivity for cytokeratin-
10, an initial differentiation marker [111]. In wounded
epidermis, keratinocytes of the wound edge increase P2X5
receptor expression [111]. P2X7 receptor expression was
detected together with labeling for caspase-3 and TUNEL,
markers for terminal differentiation and apoptosis, respec-
tively, suggesting that this receptor eliminates not any more
needed cells during final epidermis development [111].
Furthermore, the P2X7 subtype is also expressed in corneum
stratum in adult epidermis suggesting its participation in
apoptotic control [111, 113]. During wound healing process-
es, P2X7 receptor expression was not detected [111]. ATP is
released by keratinocytes into the extracellular space by
mechanical stress and external damage and achieves elevated
extracellular, cytotoxic levels. Elevated ATP concentrations

(300 μM) were applied together with UV radiation as
external damage model in cultured human epidermal
keratinocytes. Both situations augmented significantly
P2X7 receptor and reduced P2Y2 receptor expression while
P2X5 and P2Y1 subtype expression levels were not altered.
These events associated with elevated extracellular ATP
concentration result in skin inflammation, demonstrating the
role of purinergic signaling in skin physiology and disease
induction [112]. Purinergic signaling could promote skin
injury therapy by selective activation of P2Y1 and P2Y2
receptors favoring the phenotype of migratory cells without
induction of inflammatory responses.

Pulmonary epithelium injury

The airway epithelium is exposed to environmental
pollutants, allergens and pathogens that might lead to tissue
damage or the development of a variety of infectious and
inflammatory diseases such as chronic bronchitis, chronic
obstructive pulmonary disease, asthma, and fibrosis. In this
context, stem and progenitor cells are involved in lung
regeneration. They are located within the basal layer of the
upper airways, within or near pulmonary neuroendocrine
cell rests, at the bronchoalveolar junction, and within the
epithelial surface [114–116]. The airway epithelium repre-
sents the first barrier to inhaled particles and pathogens and
because of this, it suffers constant damages. Thus, the
mechanism of the repair of damaged epithelium has been
widely studied. Epithelial progenitors termed Clara cells
(transit-amplifying cells) are broadly distributed and after
injury differentiate into ciliated cells [117, 118]. In addition
to Clara cells, bronchiolar airways have also rare stem cells
that contribute to repair of the tissue [119]. Both Clara and
stem cells present the CD45neg CD31neg CD34neg Scal low

phenotype. However, it is possible to distinguish between
the two cell types based on high (AFhigh) and low
autofluorescence (AFlow), respectively [120]. Clara-like
cells are another cell type that exhibits many features of
pluripotent stem cells and apparently contributes to epithe-
lial regeneration [120–122]. They can be discriminated
from Clara cells by their resistance to naphthalene and their
close association with pulmonary neuroepithelial bodies
(NEBs) [123, 124]. ATP released from secretory vesicles of
rodent NEBs [125] in response to depolarization in lung
slices promotes paracrine effects on surrounding Clara-like
cells by activation of P2Y2 receptors. Considering the stem
cell-like characteristics of Clara-like cells, this purinergic
signaling might be of great importance for airway epithelial
repair after injury [123].

Furthermore, ATP regulates diverse processes involved in
host defense such as anion transport, ciliary function and
mucin expression and is also suggested to function in wound
repair [126–128]. ATP-mediated P2 purinergic receptor
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activation promotes bronchial epithelial migration and epi-
thelial repair. This is suggested to occur after activation of
dual oxidase 1 mediated by release of ATP during injury
[123]. In addition, adenosine also stimulates cell migration,
proliferation, and angiogenesis [129, 130]. Experimental
evidence suggests that adenosine evokes wound closure via
A2A receptor activation, since A2A agonists promote early
wound closure while A2A antagonists impede the healing
process [131]. The continuous denudation and repair of
airway epithelium occurs especially in inflammatory airways
diseases such as asthma [132]. Asthma is a chronic
inflammatory airway disease orchestrated by eosinophils,
mast cells, Th2 lymphocytes, and dendritic cells (DCs) [133].
ATP is reported to be important for the genesis and
maintenance of this disease. For instance, ATP triggers and
maintains asthmatic inflammation by activating DCs and
enhancing its Th2-priming capacity [134, 135]. Another
study demonstrated that this allergic inflammation in humans
and mice is associated with the functional up-regulation of
P2X7 receptor expression on immune cells (macrophages and
eosinophils) and that P2X7 receptor signaling (e.g., via
modulating of DC function) is involved in ATP-mediated
pro-asthmatic effects [136]. P2X7 receptor −/− knock-out
animals or animals treated with a selective P2X7 receptor
antagonist showed a strong reduction in all cardinal features
of acute allergic airway inflammation including airway
eosinophilia, goblet cell hyperplasia, and bronchial hyper-
responsiveness to methacholine [137]. Thus, P2X7 receptor
antagonists might be a new therapeutic option for the

treatment of severe asthma. Moreover, adenosine is also
important in asthmatic inflammation. Inhaled adenosine
induced bronchoconstriction in patients suffering from
chronic asthma or obstructive pulmonary disorder (COPD),
and adenosine receptor blockade prevented this bronchocon-
striction [138]. Adenosine-mediated effects through A2B and
A3 receptor activation play key roles in mast cells producing
pro-inflammatory mediators (histamine, IL-8, and degranula-
tion) [139, 140]. Therefore, CVT-6883, an A2B receptor
antagonist, is being evaluated in phase I clinical studies for
the management of asthma and COPD in human patients.
Mobilization of hematopoietic progenitor cells from the bone
marrow comprises also a feature of asthmatic inflammation
[141–143]. However, in the airway, these progenitor cells
have the potential to generate in situ mature inflammatory
cells, principally eosinophils [142, 144]. Moreover, it has
been suggested that purinergic signaling in HSCs is important
for genesis of asthma. Some studies indicate that this allergy
is transferable and curable with allogeneic hematopoietic cell
transplantation, but more studies are still necessary [144,
145]. In summary, for pulmonary epithelium repair, promo-
tion of P2 purinergic receptor-mediated effects inducing
bronchial epithelial migration and epithelial repair would be
a valid strategy, while adenosine stimulates migration,
proliferation and angiogenesis. Hematopoietic progenitor
cells from the bone marrow have the potential to generate
in situ mature inflammatory cells; therefore, it would be
necessary to inhibit this effect while the epithelium is
regenerating.

Table 1 Functions of purinergic receptor in stem cells and tissue repair

Tissue/cell Purinergic receptors Action

Kidney epithelial cells ↑P2R Induction of cell migration in wounded kidney

Kidney ↑P1 A2aR Protection during reperfusion (ischemia)

Heart ↑P1 A2A and A2BR Anti-inflammatory function (ischemia)

Heart ↓P2Y1, P2Y2, P2Y4, P2Y6,
P2Y11R

Protection during reperfusion (ischemia)

Substantia nigra ↑P2X7R Induction of cell death (Parkinson’s Disease)

Brain cortex, hippocampus and
cerebellum

↑P2YR Modulation of neurotransmitter release (healthy tissue)

Human neural progenitor cell ↑P2Y4, P2Y6R Induction of proliferation/dopaminergic differentiation of NPCs

Brain ↑P2X7R Cytokine secretion by microglial (increasing inflammation)

Brain ↓A1, A2AR Protection against Αβ plaque-mediated neurotoxicity (Alzheimer’s
disease)

Skin ↑P2Y1, P2Y2R Induction of proliferation / migration of basal keratinocytes
(wounded tissue)

Epidermis ↑P2X5R Induction of differentiation to keratinocytes (wounded tissue)

Epithelial pulmonary cells ↑P2Y2R Activation of Clara-like cells for tissue repair (tissue damage)

Bronchial epithelial cells ↑P1 A2AR Activation of cell migration and wound repair

↑ upregulation and ↓ downregulation of purinergic receptor expression
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Conclusions

Stem cell transplantation and engraftment depends on the
secretion of anti-inflammatory molecules, in addition to
extrinsic and endogenous factors promoting differentiation
into distinct cell types depending on the injury site. While
adenosine receptors often, but not every time, exert
beneficial effects in providing adequate stem cell niches,
functions of P2Y and P2X receptors depend very much on
the tissue and the expression pattern of these receptors (see
Table 1). Therapeutic applications based on activation of
purinergic signaling are foreseen for kidney and heart
muscle regeneration, while other disease conditions will yet
need further investigation. While nucleotides have been
shown to promote differentiation of dopaminergic neurons
destroyed in Parkinson’s disease, other neuronal diseases
involve excitatory cell damage mostly due to P2X7 receptor
action. Therapeutic inhibition of such receptor activity
would be required for improving disease conditions.
Finally, the need of P2Y2 and A2A receptor activation
during Clara-like cell differentiation into pulmonary and
bronchial epithelial cells just corroborates the fact that
purinergic signaling is well involved in tissue repair,
specially mediated by stem cells. More work need to be
done for elucidation of crucial concepts which could
revolutionize cell therapy.
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