
REVIEW

Vesicular and conductive mechanisms of nucleotide release

Eduardo R. Lazarowski

Received: 1 September 2011 /Accepted: 21 January 2012 /Published online: 12 April 2012
# Springer Science+Business Media B.V. 2012

Abstract Extracellular nucleotides and nucleosides promote
a vast range of physiological responses, via activation of cell
surface purinergic receptors. Virtually all tissues and cell types
exhibit regulated release of ATP, which, in many cases, is
accompanied by the release of uridine nucleotides. Given the
relevance of extracellular nucleotide/nucleoside-evoked
responses, understanding how ATP and other nucleotides are
released from cells is an important physiological question. By
facilitating the entry of cytosolic nucleotides into the secretory
pathway, recently identified vesicular nucleotide and nucleo-
tide–sugar transporters contribute to the exocytotic release of
ATP and UDP-sugars not only from endocrine/exocrine
tissues, but also from cell types in which secretory granules
have not been biochemically characterized. In addition, plas-
ma membrane connexin hemichannels, pannexin channels,
and less-well molecularly defined ATP conducting anion
channels have been shown to contribute to the release of
ATP (and UTP) under a variety of conditions.
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Abbreviations
SLC Solute carrier
VNUT Vesicular nucleotide transporter

Panx Pannexin
Cx Connexin
siRNA Small interfering RNA
shRNA Short hairpin RNA
BAPTA 1,2-Bis(o-aminophenoxy)ethane-N,N,N′,N′-

tetraacetic acid
DIDS 4,4′-Diisothiocyanostilbene-2,2′-disulfonate
NBPP 5-Nitro-2-(3-phenylpropylamino)benzoic acid
fMLP Formyl-Met-Leu-Phe

Introduction

At least 19 nucleotide/nucleoside-activated cell surface puri-
nergic receptors exist in the human genome, and remarkably
broad and varied physiological responses occur downstream
of purinergic receptor activation [1]. Purinergic receptors
comprise three subfamilies (Table 1): (1) ATP-gated ion
channel P2X receptors [2]; (2) G protein-coupled P2Y
receptors, which are activated by ATP, ADP, UTP, UDP,
and UDP-sugars [3]; and (3) G protein-coupled adenosine
receptors [4]. Responses to nucleotides and nucleosides are
observed in the CNS and all peripheral tissues, indicating
that nucleotide release underlies many important physiolog-
ical processes. Virtually all tissues and cell types exhibit
regulated release of ATP, which, in many cases is accompa-
nied by the release of UTP and UDP-sugars (reviewed in
[5–10]). Ubiquitously distributed cell surface and secreted
ecto-enzymes control nucleotide actions by catalyzing their
breakdown and interconversion and providing a mechanism
for the formation of ADP, UDP, and adenosine [5, 11–13].

Given the relevance of extracellular nucleotide/nucleoside-
evoked responses, understanding how ATP and other nucleo-
tides are released from cells is an important physiological
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question. The initial observation that ATP is stored within
(and released from) secretory granules in neuroexcitatory
tissues [14] led to the perception that nucleotide release
occurs, predominantly, via exocytotic pathways. However,
conductive/transport mechanisms of nucleotide release also
exist (and sometimes co-exist with exocytotic mechanisms) in
many tissues and cell types. Progress in identifying compo-
nents of the vesicular and conductive nucleotide release mech-
anisms is discussed in this review article.

Cellular release of nucleotides from the secretory
pathway

Exocytotic ATP release from neuroendocrine and exocrine
cells

It has been long known that ATP, neurotransmitters, and
other extracellular mediators are packed in specialized gran-
ules in neuroendocrine tissues and circulating platelets and
released from cells via regulated exocytosis [14–23]. For
example, catecholamines, serotonin, and ATP are trans-
ported and co-stored in chromaffin granules, using the elec-
trochemical potential (Δψ) and a pH gradient provided by
the V-type H+-ATPase (V/H+-ATPase) of the granule mem-
brane [19, 20, 24–27]. Stimulation of chromaffin cells by
preganglionic sympathetic neurons results in granule trans-
port along the filaments of the cytoskeleton network to the
subplasma membrane compartment, fusion of the granule
with the plasma membrane, and release of contents (e.g.,
ATP) into the extracellular space, in a Ca2+-dependent man-
ner [28]. In addition, release of ATP has been associated
with regulated exocytosis of specialized granules in pancre-
atic acinar cells, goblet epithelial cells, mast cells, pancreatic
β islets, and other exocrine/endocrine tissues [13].

The process of regulated exocytosis encompasses the co-
ordinated action of the SNARE [soluble N-ethyl maleimide-
sensitive factor attachment protein (SNAP) receptor] family of
proteins (Rothman, 1994). Accordingly, vesicle associated
v-SNARE proteins pair with corresponding members of the

t-SNARE family of proteins located on the target membrane
to determine the specificity of vesicle targeting, docking, and
fusion. Major components of the SNARE machinery include
the t-SNAREs syntaxin and SNAP-25 and the v-SNARE
synaptobrevin, also known as VAMP. The synaptic fusion
complex is initiated by formation of a ternary (synaptobrevin,
syntaxin, SNAP-25) complex, but additional proteins, including
Rabs and Muncs, function at steps up-stream of the SNARE
complex formation. During the late step of neurotransmitter
release, syntaxin/SNAP 25 binds to the vesicle protein synapto-
tagmin, a Ca2+ sensor, triggering fusion of the presynaptic
vesicle with the plasma membrane [29–33].

In many cells, evidence for exocytotic mechanisms of
ATP release have been largely based on the inhibitory effect
of Ca2+ chelators (e.g., BAPTA [1,2-bis(o-aminophenoxy)
ethane-N,N,N′,N′-tetraacetic acid]) and reagents that disrupt
the secretory pathway, e.g., cytoskeletal venoms (cytocha-
lasins, nocodazole), Golgi inhibitors (brefeldin A), and
tetanus neurotoxin (which cleaves synaptobrevin/VAMPII).
However, these reagents do not discern between vesicular
ATP release and vesicular insertion of ATP transporters/
channels to the plasma membrane. An additional (although
indirect) probe for the involvement of secretory pathways in
the release of ATP is bafilomycin A1, a well-characterized
inhibitor of the V/H+-ATPase that provides the electrochem-
ical gradient for the uptake of ATP (and other molecules)
into vesicles/granules [26] (Fig. 1).

The molecular identification of the transporter that trans-
fers cytosolic ATP into secretory granules has provided a
more conclusive approach to associate ATP release with
vesicle/granule exocytosis. Solute carrier (SLC) 17A9, a
member of the SLC17 family of ion transporters [34–36],
was recently de-orphaned and characterized as a vesicular
nucleotide transporter (thereafter named VNUT) that con-
tributes to the release of ATP from a variety of tissues.
SLC17A9 is predicted to encode a 430 residue-long protein

Table 1 Agonists acting at functionally defined purinergic receptors
(the most potent naturally occurring agonists acting on human P2Y,
P2X, and adenosine receptors are indicated)

Agonist Receptor

ATP P2X1-P2X7, P2Y2, P2Y11

ADP P2Y1, P2Y12, P2Y13

UTP P2Y2, P2Y4

UDP P2Y6, P2Y14

UDP-glucose P2Y14

Adenosine A1, A2A, A2B, A3

Fig. 1 Vesicular nucleotide transporter. Schematic representation of
SLC17A9/VNUT displaying its predicted 12 transmembrane-spanning
domains. VNUT transports ATP to the lumen of secretory granules,
using the electrochemical gradient provided by the bafilomycin A1

(Bafi)-sensitive proton pump V-ATPase. In specialized tissues, ATP
containing granules are secreted via Ca2+-regulated exocytosis
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with 12 transmembrane domains and N and C termini located
in the cytosol (Fig. 1) [37]. Sawada et al. elegantly demon-
strated that liposomes reconstituted with purified, recombi-
nant SLC17A9 exhibited pharmacological and biochemical
properties similar to the ATP transporter endogenously
expressed in chromaffin cells, e.g.,Δψ-driven Cl−-dependent
ATP transport activity that was inhibited by 4,4′-diisothiocya-
nostilbene-2,2′-disulfonate (DIDS) [37]. Furthermore, strong
SLC17A9 immunoreactivity that co-localized with synapto-
tagmin (a secretory granule marker) was observed in
chromaffin-like PC12 cells. Knocking down SLC17A9 by
small interfering RNA (siRNA) decreased KCl-triggered
ATP release in PC12 cells [37]. In situ hybridization studies
indicated that SLC17A9 transcripts are widely expressed in
the brain, with particularly high levels of expression in regions
of the hippocampus known to display purinergic neurotrans-
mission [35].

Relatively high levels of VNUT mRNA and/or VNUT
immunoreactivity are present in the stomach, intestine, liver,
lung, skeletal muscle, thyroid, spleen, blood cells, chemosen-
sory epithelial cells, and keratinocytes [35, 37–40], suggesting
that VNUT-mediated nucleotide entry into the secretory path-
way is not restricted to the brain and neuroendocrine tissues.
Indeed, VNUT has emerged as a widely expressed nucleotide
transporter responsible for the uptake of ATP into secretory
granules and vesicles, consequently, contributing to the release
of ATP (and likely other nucleotides) from the secretory path-
way in a variety of physiologically relevant conditions.

In the pancreatic acini, cholinergic stimulation causes re-
lease of ATP onto the lumen [23], potentially leading to up-
regulation of secretin-evoked bicarbonate and fluid secretion
in pancreatic ducts [41]. The fact that (1) ATP was released
concomitantly with digestive enzymes during stimulation of
the pancreatic acini, and (2) zymogen granules (ZG) can be
fluorescently labelled with quinacrine (which labels ATP-rich
compartments, acid compartments, and secretory organelles
[42–46]) and MANT-ATP, suggested that ATP is stored into
(and released from) ZG [23]. This hypothesis was recently
confirmed by directly measuring ATP uptake into isolated ZG
[47]. ATP transport to ZG exhibited kinetics and pharmaco-
logical properties consistent with VNUT-mediated transport.
That is, ATP uptake was inhibited by bafiloimycin A1 and
stimulated by Cl−, and exhibited Km values, pH dependence,
and susceptibility to inhibitors similar to VNUT [47]. Western
blot analysis indicated strong VNUT immunoreactivity in
isolated zymogen granules [47].

In the airways, extracellular nucleotides are key compo-
nents of the mucociliary clearance machinery that traps and
removes microorganisms from the lung. Nucleotides/
nucleosides within the airway surface liquid promote mucin
secretion, via activation of P2Y2 receptors in mucous
(goblet) cells, and stimulate ciliary beating and mucin
hydration via A2B and P2Y2 receptor activation in ciliated

cells [48]. Since goblet cells lack ion transport activities
necessary for the proper hydration of released mucins, un-
derstanding the mechanisms by which mucin-secreting cells
signal toward ciliated cells to promote water transport into
the airway lumen is highly relevant. Recent studies demon-
strated that mucin secretion provides a pathway for ATP
release. Real-time confocal microscopic analyses of goblet-
like Calu-3 cells revealed that mucin granules labeled with
the fluorophore FM 1–43 (a probe for vesicle exocytosis) or
quinacrine underwent Ca2+-regulated exocytosis, exhibiting
kinetics overlapping with that of ATP release. Ca2+-promoted
ATP release was markedly reduced by bafilomycin A1 [49].
Primary cultures of human bronchial epithelial (HBE) cells,
which were induced to develop goblet cell metaplasia by
infection with respiratory syncytial virus or treatment with
interleukin-13, displayed enhanced mucin secretion, which
was accompanied by increased rates of ATP release. Intracel-
lular calcium chelation or disruption of the secretory pathway
decreased both mucin secretion and ATP release in goblet cell
metaplastic HBE cell cultures [50]. Furthermore, mucin gran-
ules isolated via density gradients were enriched with ATP,
ADP, and AMP. A marked increase of extracellular ADP/
AMP accumulation accompanied that of ATP on Calu-3 cells
stimulated with the mucin secretagogue thrombin [51]. These
findings, together with the observation that SLC17A9/VNUT
transcripts are abundantly expressed in Calu-3 and goblet cell-
rich HBE cell cultures (Sesma J and Lazarowski E, unpub-
lished), support the hypothesis that goblet cells utilize a mech-
anism of ATP storage in mucin granules similar to that
described above for zymogen and chromaffin granules.

The potential involvement of VNUT in the uptake of
nucleotides into specialized granules in cells in which ATP
release via Ca2+-regulated exocytosis has been documented,
e.g., mucin granules in goblet cells (see above), insulin
granules in pancreatic β cells [52–56], histamine granules
in mast cells [22, 57–59], and dense core granules in plate-
lets [18] has yet to be assessed.

VNUT-dependent ATP release from orphan vesicles

VNUT has emerged as a useful tool to assess the involve-
ment of the secretory pathway in the release of ATP from
tissues and cell types in which specialized granules have not
been biochemically characterized. Activation of T cell
receptors (TCR) results in rapid and robust release of ATP
from lymphocytes, leading to P2X receptor-evoked
responses, e.g., cell proliferation [60–63]. Initial studies
suggested that TRC-promoted ATP release encompasses a
conductive pathway (see Pannexins, further below), but a
recent report by Tokunaga et al. [38] suggested that the
secretory pathway represents an additional source of ATP
release in activated T cells. TCR-activated T lymphocytes
and T cell-derived Jurkat lymphoma cells displayed robust
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Ca2+-dependent ATP release that was reduced (although not
abolished) by inhibitors of vesicle trafficking/exocytosis and
by bafilomycin A1. Knocking down SLC17A9 (via shRNA)
markedly reduced TCR-evoked ATP release from Jurkat
cells. ATP release from cholangiocytes contributes to bile
formation and stimulation of biliary secretion. Hypotonic
cell swelling of human Mz-ChA-1 cholangiocarcinoma cells
resulted in abrupt increase in exocytosis, which was accom-
panied by increased rates of ATP release [64]. Cholangio-
cytes loaded with quinacrine exhibited a subpopulation of
fluorescently labeled small (<0.99 μm) vesicles susceptible
to hypotonic cell swelling-promoted exocytosis. VNUT
siRNA decreased the number of quinacrine-labeled small
vesicles and reduced cell swelling-evoked ATP release [65].

In sum, T lymphocytes and cholangiocytes store and
release ATP via Ca2+-regulated exocytotic mechanisms sim-
ilar to those described above with secretory cells. It will now
be important to assess the contribution of VNUT to the
release of ATP in other tissues in which evidence of exocy-
totic release of ATP has been reported, e.g., astrocytes
[66–70], hepatocytes [64, 71, 72], alveolar A549 and intes-
tinal 407 epithelial cells [73–77], osteoblasts [78], and
esophageal keratinocytes [40]. It will be also important to
biochemically and functionally identify the ATP-rich com-
partment(s) contributing to VNUT-dependent ATP release
from non-endocrine/exocrine cell types exhibiting vesicular
release of ATP.

Release of UDP-sugars from the secretory pathway

The identification of the P2Y14-R as a Gi-coupled receptor
that is potently activated by UDP-glucose and other UDP-
sugars [79] suggested that, in addition to their vital role in
metabolic processes, nucleotide–sugars are released from
cells to play extracellular signaling roles. P2Y14-R is func-
tionally expressed in brain glia and peripheral leucocytes,
including neutrophils, lymphocytes, and mast cells [80–83],
suggesting that UDP-sugar release contributes to inflamma-
tory responses. Quantification of endogenous UDP-glucose in
extracellular solutions indicated that UDP-glucose release
accompanies the release of ATP under resting and stimulated
conditions in a number of cells [49, 84, 85]. Similarly to ATP,
enhanced release of UDP-glucose has been associated with
mucin secretion from airway epithelial goblet cells [49, 50].
Notably, relatively high concentrations of UDP-glucose (i.e.,
capable of promoting P2Y14 receptor activation) were
observed in lung secretions from patients with cystic fibrosis
(CF), a chronic lung disease characterized by progressive
goblet cell metaplasia, mucus plugs, and neutrophil inflam-
mation [86].

UDP-sugars are abundantly present in the lumen of the
ER and Golgi apparatus, serving as sugar donors in glyco-
sylation reactions. The entry of UDP-sugars to the ER/Golgi

is mediated by nucleotide–sugar transporters that utilize
luminal UMP as antiporter substrate. UDP-sugar/UMP
translocators belong to the family of SLC35 ER/Golgi nu-
cleotide–sugar transporters [87]. Since UDP-sugars entering
the lumen of the ER/Golgi are not transported back to the
cytosol, they may be retained within vesicles and exocytoti-
caly released as co-cargo with exported glycoproteins [8].
Sesma et al. tested this hypothesis by examining the effect of
removing/overexpressing endoplasmic reticulum (ER)/Golgi-
resident UDP-sugar transporters on the release of their cog-
nate substrate. Deletion of the YEA4 gene, which encodes the
UDP-N-acetylglucosamine transporter1 in yeast, resulted in
decreased release of this UDP-sugar; complementing the
mutant strain with the WT YEA4 gene re-established the
UDP-N-acetylglucosamine release function [86]. Further-
more, human bronchial epithelial 16HBE14o− cells stably
overexpressing SLC35D2 (a human Golgi UDP-N-acetylglu-
cosamine transporter also known as HFRC1) displayed
increased rate of brefeldin A-sensitive mucosal release of
UDP-N-acetylglucosamine [86]. These results indicate that,
by regulating the entry of nucleotides to the ER/Golgi, SLC35
UDP-sugar transporters contribute to the cellular release of
their cognate substrates via the constitutive pathway (Fig. 2).
It is worth noting that ER/Golgi ATP/AMP trasnslocator
activities have been described [88, 89], but the molecular
identity of the putative ER/Golgi ATP transporter (different
from VNUT) has remained elusive (Fig. 2).

Conductive release of nucleotides

In many cells, nucleotide release occurs in the absence of
apparent vesicle exocytosis and is not or only partially
affected by bafilomycin A1 and by inhibitors of vesicle
trafficking/fusion. The multidrug resistance (MDR)-1 pro-
tein, the CF transmembrane conductance regulator (CFTR)
Cl− channel, and the mitochondrial voltage-dependent anion
channel-1 (VDAC-1) were initially proposed as ATP release
pathways or facilitators of ATP release in various cell types,
but the involvement of these proteins in an ATP release
function could not be corroborated by a number of studies
[90–96]; for a critical review on these proposed pathways,
see [8, 97].

More recently, two classes of plasma membrane channels
have been associated with an ATP conductive activity: (1) Cl−

channels such as maxi anion channels, volume-regulated ion
channels, and tweety; and (2) pore forming connexins, pannex-
ins, and P2X7 receptors.

1 The identity of the Golgi UDP-glucose/UMP translocator is not
known, but UDP-N-acetylglucosamine/UMP translocators have been
cloned and characterized [87].
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ATP conducting Cl− channels

AnATP-conductive large conductance anion channel was first
described in murine mammary C127i cells and subsequently
found in a variety of tissues and cell types, including cardio-
myocytes, astrocytes, and kidney macula densa (reviewed in
[97, 98]). Maxi anion channels exhibit large single-channel
conductance of 300–400 pS, have a wide pore (effective
radius of ~1.3 nm), discriminate between Na+ and halides,
and allow the passage of small organic anions, including
signaling molecules such as glutamate, ATP, and UTP
[97–100]. Maxi anion channels are activated by osmotic cell
swelling, ischemia/hypoxia, and in response to excision of the
membrane patch, and are inhibited by Gd3+ and by a number
of anion channel blockers of relative selectivity, such as DIDS,
NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid], SITS
(4-acetamido-4′-isothiocyanatostilben-2,2′-disulfonate), and
DPC (diphenylamine-2-carboxylate), but not by glybencla-
mide [98]. The involvement of maxi ion channels in the
cellular release of ATP is supported by the observation that
cells exhibiting maxi ion channel activity display osmotic cell
swelling-evoked release of ATP, in a SITS-, NPPB-, and
Gd3+-sensitive manner [98]. The molecular identity of the
maxi anion channel is not known.

Volume-regulated anion channels (VRAC) are predicted
to be permeable to organic anions, including amino acids
and ATP [97, 101–104]. VRAC Cl− channel activity is
activated in response to osmotic cell swelling and inhibited
by a broad spectrum of reagents, including glibenclamide,

verapamil, tamoxifen, fluoxetine, nordihydroguaiaretic acid,
dideoxyforskolin, niflumic acid, quinine, NPPB, DIDS, and
SITS [101, 105]. VRAC inhibitors suppressed ATP release
in aortic endothelial cells [102] and 1321N1 astrocytoma
cells [105], but not in Intestine 407 cells [106] or alveolar or
airway epithelial cells [73]. Recently, bradykinin-stimulated
astrocytes exhibited VRAC-like activity that was associated
with the release of glutamate but not ATP [107]. The rather
low selectivity of the reagents used to inhibit VRAC activity
and the fact that the molecular identity of VRAC is not
known have prevented unambiguously assessing the puta-
tive ATP release activity of this channel.

TTYH1, TTYH2, and TTYH3, the human homologues to
the Drosophila flightless gene tweety are predicted to encode
large-conductance Cl− channels with properties similar to the
maxi anion channel described above [108]. The potential
contribution of TTYH1 and TTYH2 to ATP release has not
been investigated. However, two splice variants of TTHY1
(TTYH1-SV and TTYH1-E) failed to produce maxi anion
channel currents in excised patches when expressed in null
cells [98]. Interestingly, TTHY3 exhibits Ca2+-activated
Cl− channel activity [108], and has been recently implied in
the release of ATP from chemo-attractant-stimulated neutro-
phils; knocking down TTHY3 via shRNA markedly de-
creased ATP release from HL60 cells stimulated with the
formyl-bacterial peptide fMLP [109].

Connexins

Connexin (Cx) subunits are the building blocks of vertebrate
gap junction channels [110–113]. More than 20 human
connexin isoforms have been identified, with predicted size
of individual species ranging from 23 to 62 kDa and, ac-
cordingly, referred as to Cxn, where n denotes the molecular
weight (e.g., Cx30, Cx43). Connexin subunits display a
predicted structure of four transmembrane domains, with
N and C termini located in the cytosol (however, recent
X-ray structure analysis of Cx26 suggested that the N ter-
minus of this proteins is embedded within the plasma mem-
brane [114]). Hemichannel assemblies composed of
connexin subunits are known as connexons. Connexons
from two adjacent cells align and bind to each other, form-
ing an intercellular gap that allows the passage of small
cytosolic molecules between cells. In addition, some con-
nexons may localize to non-junctional regions of the plasma
membrane, thus forming functional plasma membrane hem-
ichannels that are not involved in cell contact. Most hemi-
channels exhibit permeability to ATP and small dyes (e.g.,
propidium and ethidium iodide, carboxyfluorescein, YoPro,
and Lucifer Yellow). Opening of connexins can be induced
by membrane depolarization, typically in the 40–60 mV
range. Connexin hemichannels are non-selectively inhibited
by α-glycyrrhetinic acid, flufenamic acid, carbenoxolone

Fig. 2 Potential pathways for nucleotide release. Several candidate
ATP conducting channels, including Panx1 and connexins (Cx) efflux
cytosolic ATP and UTP out of the cells. VNUT transports ATP into
dense-core granules and vesicles competent for Ca2+ regulated exocy-
tosis. UDP-glucose (UDPG) and possibly ATP, enter the secretory
pathway via ER/Golgi-resident SLC35-like transporters, using UMP
and AMP as antiporter substrates, respectively. ER/Golgi nucleotides
serving in glycosylation and energy-driven reactions and their luminal
metabolites are released as residual cargo molecules via the constitu-
tive secretory pathway
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(20–100 μM range), alkanols, and synthetic peptides that
mimic segments of connexin extracellular loops [110, 115].
Some connexin hemichannels are activated by lowering the
extracellular Ca2+ concentration, likely due to Ca2+-induced
conformational changes leading to pore closure [116].

The involvement of connexin hemichannels in the release
of ATP was first suggested by Nedergaard and co-workers,
who observed that C6 rat glioma cells expressing human
Cx32 or Cx43 (but not WT C6 cells), displayed increased
release of ATP in response to extracellular Ca2+ removal
[117]. Lowering the extracellular Ca2+ concentration pro-
moted the uptake of the hemichannel probe propidium io-
dide, as well as ATP release, in astrocytes, endothelial cells,
bronchial epithelial cells, and Cx43-overexpressing C6
(Cx43-C6) cells [118]. Cx43-C6 cells exhibited ATP release
events (assessed by real-time bioluminescence imaging) that
temporally coincided with hemichannel opening; excised
Cx43-expressing patches displayed ATP conductance
[119]. Romanello et al. [120] suggested that the involvement
of Cx43 in the release of ATP triggered by lowering the
extracellular Ca2+ concentration may be cell specific, since
Cx43 overexpression did not affect this response in human
HOBIT osteoblastic cells.

De Vuyst et al. [121, 122] reported that controlled increase
of intracellular Ca2+ resulted in enhanced ATP release and
propidium iodide uptake in Cx32- and Cx43-overexpressing
(but not WT) cells. Based on this and other considerations,
these authors proposed that intracellular Ca2+ triggers connexin
hemichannel opening via multiple signaling steps, including
Ca2+/calmodulin-dependent pathways [121, 122].

Connexin subtype-specific knockdown approaches have
been recently shown to reduce the release of ATP from various
cell types. For example, cultured glomerular endothelial cells
displayed ATP release-dependent Ca2+ waves in response to
mechanical stress. Both ATP release and Ca2+ wave propaga-
tion were markedly reduced by Cx40 siRNA, suggesting that
interendothelial calcium signaling in the juxtaglomerular vas-
culature is mediated by Cx40-dependent ATP release and
subsequent activation of purinergic receptors [123]. ATP re-
lease from cerebellar granule neurons exposed to depolarizing
conditions was reduced after knocking down connexin 36
expression via siRNA [124].

Connexin-mediated ATP release has been linked to
(patho)physiological responses in a variety of tissues. Using
an in vitro model of hypoxia in the ventral surface of the
medulla oblongata (VMS), Huckstepp et al. illustrated that
CO2-triggered ATP release was accompanied by the uptake
of hemichannel dyes and inhibited by connexin hemichan-
nel inhibitors. Cx26 is expressed in astrocytes in areas of
VMS displaying CO2-dependent dye uptake, suggesting that
Cx26-mediated release of ATP contributes to central respi-
ratory chemosensitivity ([125] and see comment in [126]).
The involvement of connexin hemichannels in the release of

ATP from astrocytes during ischemia and epilepsy has been
recently reviewed [127].

Connexin-deficient mice have been useful tools to
associate connexin-mediated ATP release with specific
phenotypes. In the inner ear, ATP-evoked Ca2+ wave
propagation has been linked to noise-induced hearing
loss and development of hair cell-afferent synapses.
Ca2+ wave propagation in cochlear organotypic cells
reflects hemichannel opening-mediated ATP release [128].
Cochlear organotypic cultures from Cx26 (tissue-targeted)-
or Cx30-deficient (but not pannexin 1-deficient) mice
exhibited reduced ATP release, impaired Ca2+ wave propaga-
tion, and reduced dye efflux (from calcein-loaded cultures),
suggesting that Cx26 and Cx30 operate as ATP conduits in the
inner ear [128].

Cx30-deficient mice exhibited impaired ATP release
from epithelial cells in the distal nephron. Microperfused
cortical collecting ducts from WT mice displayed flow- and
hypotonicity-evoked ATP release (from intercalated cells),
which were impaired in Cx30−/− animals [129]. Urine output
and urinary Na+ secretion in response to increased arterial
pressure (following ligating the distal aorta) were greater in
WT relative to Cx30−/− mice. Cx30−/− mice exhibited salt-
sensitive elevation in mean arterial pressure. The data suggest
that ATP release via Cx30 controls salt and water reabsorption
at the collecting ducts, regulating pressure natriuresis and
diuresis [129]. In another study, increasing Na+ intake resulted
in enhanced urinary ATP secretion, which was robust in WT
mice but modest in Cx30−/− animals. Conversely, epithelial
Na+ channel (ENaC) activity was greater in Cx30-deffcient
animals, likely reflecting decreased ATP release-promoted
P2Y2 receptor-evoked ENaC inhibition [130].

ATP release in response to inflammatory mediators is a
fundamental mechanism required for neutrophil activation
and immune defense [109, 131–133]. Neutrophils isolated
from Cx43 knockout mice exhibited impaired release of
ATP in response to leukotriene B4 [132]. In the same study,
ATP release from human neutrophils exposed to the formyl
peptide fMLP was inhibited by connexin inhibitors and
Cx43 blocking peptides [132]. However, the involvement
of Cx43 in the release of ATP from human neutrophils has
been recently challenged [109].

Phenotypes associated with connexin gene deletion or
knockdown should be interpreted with caution. Cx43
may form complexes with membrane receptors, cell
signaling molecules, scaffolding proteins, cytoskeleton
components, and other proteins independently of Cx43
hemichannel activity [134–138]. Deletion of genes encoding
Cx32, Cx36, or Cx43 affected the transcription of unrelated
genes [139, 140]. Nevertheless, physiological, pharmacolog-
ical, and genetic evidence support the hypothesis that con-
nexin hemichannels contribute to ATP release in a variety of
cell types.
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Pannexins

Pannexins comprise three gene products, pannexin 1 (Panx1),
Panx2, and Panx3. Pannexins are not related to connexins, but
pannexin and connexin proteins share a predicted four trans-
membrane spanning topology. Like connexins, six2 pannexin
subunits are predicted to form a channel (pannexon), are
permeable to small dyes, and exhibit ATP conductance
[110]. Unlike connexins, pannexons in mammalian cells do
not readily assemble into the plaque-like ensembles that typify
gap junctions; glycosylation of pannexin subunits likely
prevents the docking between pannexons on adjacent cells
[142, 143]. Pannexin gating is not affected by external Ca2+

[144]. In addition, while connexins open at supraphysiological
depolarization conditions (>+40 mV), Panx1 opens at normal
resting potentials [110, 145]. Pannexin inhibitors (of relative
selectivity) include carbenoxolone (<10 μM), DIDS, NPPB,
and probenecid [146, 147], as well as peptides mimicking
segments of the extracellular loops of Panx1 [115, 146, 148].

Dahl and co-workers provided initial evidence that Panx 1
functions as an ATP channel by illustrating that expression of
human Panx1 in Xenopus oocytes resulted in large unitary
conductance channel activity that exhibited ATP permeability
[149]. Conditions favoring Panx1 channel opening (high K+)
enhanced ATP release from Panx1-expressing oocytes [149].
This group also showed that human erythrocytes exhibited
mechanosensitive large conductance channel activity consis-
tent with Panx1, and that red cells exposed to either high K+ or
hypotonic stress displayed enhanced ATP release and dye
uptake, in a carbenoxolone-sensitive manner [150]. A number
of studies followed indicating that pharmacological inhibitors
of Panx1 reduced ATP release in a broad range of cells,
including lung epithelial cells [151–153], hypoxic red cells
[154–156], bovine ciliary epithelial cells [157], retina and
trabecular meshwork (TM5) cells [158, 159], skeletal muscle
[160], taste bud cells [161], T lymphocytes [61, 62, 162], and
human neutrophils [109]. Panx1 knockdown (siRNA or
shRNA) reduced nucleotide release in hypotonic-stress-
stimulated airway epithelial cells [151, 152], stretched cardi-
omyocytes [163], apoptotic T lymphocytes [162] and T cells
undergoing HIV infection [164], TM5 cells [159], and astro-
cytes [165]. Conversely, overexpression of Panx1 resulted in
enhanced release of ATP from apoptotic Jurkat cells [162] and
hypotonically swollen human embryonic kidney (HEK) 293
cells [159]. Panx1 siRNA and Panx1-GFP overexpression
reduced and increased, respectively, phenylephrine-induced
constriction of thoracodorsal resistance arteries, a response
considered to be mediated by released ATP [166].

The involvement of Panx1 in ATP release in airway epi-
thelia, erythrocytes, and thymocytes was further illustrated

using Panx1−/− mouse models. Primary cultures of human
airway epithelial cells exhibited hypotonic cell swelling-
promoted ATP release and propidium iodide uptake with over-
lapping kinetics [152] and sensitivity to Panx1 inhibitors and
Panx1 shRNAs [151, 152]. Utilizing a perfusion approach to
assess ATP levels in tracheal luminal secretions under con-
trolled flow conditions, Seminario-Vidal et al. showed that
ATP release fromWT tracheas increased up to sixfold follow-
ing a brief exposure to hypotonicity. In contrast, Panx1−/−

animals exhibited impaired hypotonicity-evoked ATP release
(Fig. 3 and [152]). Furthermore, primary cultures of murine
tracheal epithelial cells from Panx1−/− mice exhibited both
impaired hypotonic stress-evoked dye uptake [152] and de-
creased ATP release (Okada S. and Lazarowski E.R,
unpublished).

Qiu et al. [167] reported that murine red blood cells
release ATP when exposed to hypotonic K+ solutions, and
that this release was reduced in cells isolated from Panx1−/−

mice. Interestingly, ATP release pathways additional to
Panx1 are present in murine erythrocytes since (1) signifi-
cant residual ATP release was observed in Panx1−/− animals
challenged with hypotonic K+, and (2) iloprost-promoted
ATP release from erythrocytes was not different between
wild-type and Panx1−/− mice.

Ravichandran and co-workers demonstrated that apoptotic
T-lymphocytes release ATP and UTP as “find me” signals to
recruit phagocytes via activation of P2Y2 receptors in mono-
cytes and macrophages [168]. They also showed that ATP and
UTP release from apoptotic T cells was markedly reduced by
Panx1 inhibitors and Panx1 siRNA ([162] and see below). Qu
et al. verified and expanded these observations by demonstrat-
ing that thymocytes from Panx1−/− mice displayed deficient
dye uptake and impaired ATP release during early stages of
apoptosis (induced by dexamethasone). Consistent with the

2 A recent study suggests that Panx2 forms octamers rather than
hexamers [141].

Fig. 3 Reduced ATP release from Panx1−/− tracheas. Tracheas excised
from WT and Panx1−/− littermates were perfused with isotonic buffer
for 45 min and then exposed to hypotonic solutions (from [152])
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involvement of Panx1 in the release of nucleotide “find me”
signals, supernatants from dexamethasone-treated WT (but
not Panx1−/−) thymocytes promoted macrophage chemotaxis
[169].

Regulation of Panx1-mediated ATP release in non-apoptotic
cells

A body of evidence supports the involvement of Panx1 in
the release of ATP from living cells under a broad spectrum
of physiologically relevant conditions. It could be argued
that opening of such as a large, non-selective channel as
Panx1 may collapse the ion gradients, resulting in cell death.
Therefore, an important question is whether physiological
(non-apoptotic) responses associated with Panx1 pore open-
ing in mammalian living cells reflect reversible processes.
Measurements of dye uptake in cells undergoing Panx1-
mediated ATP release are consistent with the “reversible”
hypothesis. That is, airway epithelial cells exposed to hypo-
tonicity exhibited enhanced propidium iodide uptake only if
the dye was added concurrently with the hypotonic chal-
lenge, i.e., no changes in dye uptake were observed if the
dye was added to cells after isotonic conditions were re-
stored [152] (Fig. 4). Thus, opening of the propidium iodide
permeable channel/pore during hypotonic cell swelling
reflected a transient (i.e., regulated) phenomenon rather than
irreversible plasma membrane damage.

Recent studies suggest clues on potential mechanisms
that may control Panx1-mediated responses under non-
lytic conditions:

Cytosolic Ca2+ Co-expressing Panx1 with P2Y1 or P2Y2

receptors conferred ATP-evoked Panx1 currents to Xenopus
oocytes, a response that was also observed in Panx1-
expressing oocytes stimulated with Ca2+ ionophores. In the
same study, application of calcium to the cytoplasmic face
of excised inside-out membrane patches from murine
Panx1-expressing oocytes resulted in channel activity that
ceased upon calcium removal. These results led to hypoth-
esize that Panx1 activity is sensitive to changes in cytosolic
Ca2+ levels [170]. Consistent with this hypothesis, activa-
tion of the Ca2+ mobilizing ryanodine receptor with caffeine
or administration of P2Y or P2X receptor agonists resulted
in Panx1-like large conductance channel activity in cardiac
myocytes [171]. However, Panx1 sensitivity to cytosolic
Ca2+ changes may be a cell-specific phenomenon. Studies
with HEK cells overexpressing Panx1 showed that Panx1
currents were not affected by BAPTA-AM or by dialyzing
the cells with either low or high Ca2+ solutions [146].
Recent studies with human lung epithelial cells also indi-
cated no correlation between Ca2+ signaling and Panx1-
associated ATP release/dye uptake respsones. That is,
Ca2+ signaling (triggered with ionomycin or P2Y2 recep-
tor activation) was not sufficient to promote ATP release
or propidium iodide uptake in these cells [50, 152].

ATP as an allosteric inhibitor of Panx1 Based on the ob-
servation that submillimolar concentrations of extracellular
ATP blocked Panx1-associated currents in Xenopus oocytes
[172] and HEK cells [146], Qiu and Dahl proposed that ATP
release acts as negative feedback on Panx1, binding to and
preventing deleterious, long-lasting opening of the channel
[172]. By performing mutational analysis, these authors
identified R75 in the putative first extracellular loop of
Panx1 to be critical for ATP inhibition of currents in oocytes
expressing murine Panx1. Inhibition of Panx1 by extracel-
lular ATP may be important in atrial myocytes, which dis-
play large conductance cation channel activity that
resembles Panx1 and is inhibited by 2 mM ATP [171].

Redox potentials and protein-protein interactions The potas-
sium channel subunit Kvβ3, was identified as a potential
interaction partner of the C-terminus of Panx1 using an
Escherichia coli two-hybrid system. Interestingly, adminis-
tration of the reducing agent tris(2-carboxyethyl) phosphine
(TCEP) to Panx1-expressing oocytes attenuated Panx1 cur-
rent amplitude, but the effect of TCEP was negligible in
oocytes co-expressing Panx1 with Kvβ3 [173]. Panx1 and
Kvβ3 co-distribute within discrete areas of the hippocampus
and cerebellum, and they co-precipitated and co-localized
when co-expressed as recombinant proteins in Neuro2A
neuroblastoma cells [173]. Based on these observations, it
could be speculated that the electrophysiological properties
of Panx1 are affected by changes in redox potentials and that

Fig. 4 Dye uptake in human bronchial epithelial cells reflects a revers-
ible phenomenon. Representative images of propidium iodide uptake in
primary cultures of human bronchial epithelial cells that were incubated
for 5 min with isotonic (iso) or hypotonic (hypo) solutions in the presence
of propidium iodide (a, b) or in its absence (c, d). Isotonicity was restored
in d, and propidium iodide subsequently added to c and d for additional
5 min (from [152])
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Kvβ3 modulates the susceptibility of Panx1 to inhibition by
reducing conditions. Cysteine residues within the putative
cytosolic domains of Panx1 seemed to be not involved in the
inhibition of the channel by TCEP [174]. Independently of
Kvβ3, a cysteine to serine substitution at the C terminal
position of Panx1 (Panx1-C346S) resulted in constitutively
leaky channels in both injected oocytes and transfected
Neuro2A cells, suggesting that cysteine 346 is important
in regulating Panx1 channel properties in living cells [174].

Laird and co-workers have illustrated that Panx1 co-
immunoprecipitatedwithβ-actin and that the carboxyl terminal
tail of Panx1 directly interacts with F actin [175], suggesting
that the cytoskeleton plays an important role in the assembly
and/or functional properties of Panx1.

A recent study showed that Panx1 natively expressed
in thoracodorsal resistance arteries was pulled-down by
an anti-α1 adrenergic receptor antibody, and that phen-
ylephrine promoted constrictive responses that were at-
tributed to Panx1-mediated ATP released [166]. The
mechanistic details of these findings remain to be
elucidated.

Rho signaling Studies from our lab indicated that Panx1-
mediated ATP release and dye uptake in airway epithe-
lial cells was associated with Rho activation and myosin
light change (MLC) phosphorylation. Specifically, cells
exposed to the protease-activated receptor (PAR) agonist
thrombin or hypotonic cell swelling displayed increased
RhoA-GTP formation, which was accompanied by MLC
phosphorylation, and carbenoxolone-sensitive propidium
iodide uptake and ATP release. Disrupting Rho signal-
ing (via RhoA dominant negative mutants or Rho kinase
inhibitors) or incubating the cells with MLC kinase
inhibitors markedly decreased MLC phosphorylation,
propidium iodide uptake, and ATP release evoked by
thrombin or hypotonicity [152, 153]. Given the involve-
ment of Rho/Rho kinase in cytoskeleton rearrangements,
one speculation would be that Rho activation facilitates
Panx1 translocation to the plasma membrane and/or its
interaction with regulatory proteins.

In conclusion, a number of published studies support
the notion that Panx1 is involved in the regulated re-
lease of ATP from viable mammalian cells. However,
how tight control of Panx1 pore gating is ensured to
prevent collapses of the ion gradients and cell death
remains incompletely defined. An alternative possibility
is that Panx1 interacts with a different ATP/dye channel
or transporter, as suggested [77, 148].

Panx1 and cell death

Panx1 activation has been associated with cell death in
ischemic hippocampal and cortical neurons [176], aberrant

bursting in N-methyl-D-aspartate receptor (NMDAR)-stim-
ulated pyramidal neurons [177], and spontaneous and
stretch-triggered action potentials and arrhythmogenic ac-
tivities in cardiac myocytes [163, 171]. It has been also
suggested that Panx1 forms a large pore contributing to cell
death during prolonged activation of the P2X7 receptor
[148, 178]. As mentioned above, apoptotic lymphocytes
(anti-Fas-exposed T cells) release ATP and UTP. Nucleotide
release from apoptotic T cells was inhibited by a cell-
permeable pan-caspase inhibitor [168] and by carbenoxo-
lone, probenecid, and Panx1 knockdown. Conversely,
Panx1-overexpression enhanced the release of nucleotides
from apoptotic Jurkat cells [162]. Whole cell patch-clamp
recording of single-cell channel activity indicated the pres-
ence Panx1-dependent carbenoxolone-sensitive currents in
apoptotic (but not control, “living”) cells. In agreement with
these findings, thymocytes isolated from Panx1−/− mice
displayed impaired release of ATP in response to the apo-
ptotic drug dexamethasone, as mentioned above [169]. A
caspase-cleavage site within the C terminus of Panx1
(DVVD at residues 376–379) was crucial for the induction
of Panx1-associated responses during apoptosis. That is,
mutating aspartic acid to either alanine or glutamic acid
rendered Panx1 resistant to caspase, resulting in the loss of
currents, impaired dye uptake, and reduced ATP release in
apoptotic cells. Conversely, a truncation mutant that mimics
the cleavage of Panx1 at DVVD 376–379 exhibited en-
hanced dye uptake and current–voltage relationship (in
non-apoptotic cells) that resembles that of activated WT
Panx1, suggesting that removal of the C terminus of Panx1
resulted in constitutively active Panx1 [162]. Thus, the C
terminus may function as a dominant-negative domain within
Panx1. Removal of the caspase cleavage site in the C terminus
of Panx1 is necessary for the induction of Panx1-mediated
plasma membrane permeability during apoptosis.

Pannexin 3

Unlike widely distributed Panx1, Panx3 expression is re-
stricted to a few tissues, including the skin, cochlea, and
developing cartilage and bone [142, 179, 180]. Although
Panx3 has been shown to be expressed as a glycoprotein at
the cell surface and form dye permeable pores [142, 179],
little is known about the functional properties of plasma
membrane Panx3. A recent study indicated that Panx3-
transfected ATDC5 chondrocytes and undifferentiated
C2C12A osteoblasts displayed enhanced KGlu-promoted
ATP release, which was reduced by a Panx3 antibody and
a Panx3 mimicking peptide [180, 181]. Suppression of
endogenous Panx3 by shRNA inhibited ATP release in
differentiated C2C12 cells [181]. Further research is re-
quired to delineate in more detail the potential contribution
of Panx3 to ATP release.
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P2X7 Receptor

P2X7 receptor activation results in large pore formation that
allows the passage of melecules up to 900 Da [182, 183], and
facilitates the release of ATP [184, 185]. Since the P2X7
receptor is associated with Panx1 [148], Panx1 may have been
the actual conduit for ATP release in response to P2X7 receptor
activation. However, Qu et al. [169] recently demonstrated that
macrophages from Panx1−/− mice exhibited P2X7 receptor-
dependent uptake of the 375 Da dye Yo-Pro-1, which was
indistinguishable from wild type (WT) mice, indicating that
in these cells, P2X7 receptor activation results in formation of
pores that are, at least, the size of Yo-Pro-1.Whether the Panx1-
independent, P2X7 receptor-associated pore allows the efflux
of cytosolic ATP was not examined. Given the relatively high
concentration of extracellular ATP needed to activate the P2X7
receptor [169], the relevance of ATP-promoted P2X7 receptor
activation-dependent ATP release is unclear.

TRPV4 as a mechano/osmotic sensor upstream of ATP
release

The TRPV4 channel is a widely expressed cation channel
(relatively selective for Ca2+ and to lesser extent Na+) that
acts as a sensor of various physical stimuli such as heat,
osmotic/shear stresses, and stretch [186–188]. Several lines
of evidence suggest that TRPV4 transduces physical stimuli
into ATP release. For example, Mochizuki et al. illustrated
that TRPV4 senses distension of the bladder urothelium,
which is converted to an ATP signal in the micturition reflex
pathway during urine storage. These authors demonstrated
that urothelial cell stretching caused a marked release of
ATP, which was abrogated in the TRPV4 knockout mouse
[189]. Similarly, Gevaert et al. [190] demonstrated that
intravesical stretch-evoked ATP release was reduced in iso-
lated whole bladders from TRPV4−/− mice, relative to WT
animals. In the thick ascending limb of the renal medulla,
TRPV4 siRNA and TRPV4 inhibitors reduced ATP release
in response to osmotic stress [191]. In a recent study with
primary cultures of esophageal keratinocytes, heat-evoked
Ca2+-dependent release of ATP was reduced in cells from
TRPV4−/− mice [40]. The fact that in these studies ATP
release was associated with TRPV4-dependent Ca2+ eleva-
tion suggests that TRPV4 transduced physical stimuli into
Ca2+-dependent ATP release, e.g., via Ca2+-regulated exo-
cytosis. Consistent with this hypothesis, esophageal kerati-
nocytes express VNUT and exhibit Ca2+-dependent ATP
release in response to the TRPV4 activator GSK1016790A,
a response that was inhibited by brefeldin A and abrogated
in TRPV4−/− keratinocytes [40].

A TRPV4-dependent mechanism that involves Panx1-
mediated ATP release has been recently proposed. In human

airway epithelial cells, TRPV4 shRNA and the highly selective
TRPV4 inhibitor HC67047 reduced hypotonic stress-evoked
ATP and propidium iodide uptake. Notably, HC67047 also
abolished RhoA activation in hypotonicity-challenged cells,
suggesting that TRPV4 channels transduce hypotonic cell
swelling into Rho activation, upstream, of Panx1 channel
activation [152].

Summary

The last few years have witnessed important advances in the
identification and characterization of key components of the
nucleotide release mechanisms that contribute to the variety
of physiological responses triggered by extracellular ATP,
ADP, adenosine, UTP, UDP, and UDP-sugars. The oc-
currence of exocytotic ATP release is firmly supported
by the demonstration that secretory granules isolated
from exocrine/neuroendocrine tissues store ATP. The
observation that ATP release from cells exhibiting ves-
icle/granule exocytosis is negatively affected by knock-
ing down the vesicular ATP transporter SLC17A9/
VNUT has provided further insights into the molecular
processes that control ATP entry into secretory granules
and vesicles. The finding that VNUT displays UTP
transport activity, in addition to ATP, suggests that the
secretory pathway could also be a source of released
uridine nucleotides. A separate class of SLC transporters
(SLC35 nucleotide–sugar transporters) are expressed in
the ER and Golgi apparatus and translocate UDP-sugars
from the cytosol to these organelles, using UMP as
luminal antiporter substrate. Golgi-resident SLC35D2
and other nucleotide–sugar translocators contribute to
the cellular release of UDP-sugars, via the constitutive
secretory pathway.

In addition to exocytotic pathways, less well-characterized
conductive mechanisms of nucleotide release exist. They in-
clude members of the connexin family of gap junction hemi-
channels, non-junctional pannexin channels, and molecularly
elusive ATP conducting anion channels. Important challenges
to the field are the elucidation of mechanisms regulating
connexin and pannexin channel opening/closing activities in
living cells and the molecular identification of maxi anion
channels and volume-regulated anion channels. The finding
that the C terminus of Panx1 contains a proteolysis-sensitive
inhibitory domain suggests an additional degree of complexity
in the regulation of this channel in apoptotic cells.
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