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Abstract Purinergic signaling plays a unique role in the brain
by integrating neuronal and glial cellular circuits. The metab-
otropic P1 adenosine receptors and P2Y nucleotide receptors
and ionotropic P2X receptors control numerous physiological
functions of neuronal and glial cells and have been implicated
in a wide variety of neuropathologies. Emerging research
suggests that purinergic receptor interactions between cells
of the central nervous system (CNS) have relevance in the
prevention and attenuation of neurodegenerative diseases
resulting from chronic inflammation. CNS responses to
chronic inflammation are largely dependent on interactions
between different cell types (i.e., neurons and glia) and acti-
vation of signaling molecules including P2X and P2Y recep-
tors. Whereas numerous P2 receptors contribute to functions
of the CNS, the P2Y2 receptor is believed to play an important
role in neuroprotection under inflammatory conditions. While
acute inflammation is necessary for tissue repair due to injury,
chronic inflammation contributes to neurodegeneration in

Alzheimer’s disease and occurs when glial cells undergo
prolonged activation resulting in extended release of proin-
flammatory cytokines and nucleotides. This review describes
cell-specific and tissue-integrated functions of P2 receptors in
the CNS with an emphasis on P2Y2 receptor signaling path-
ways in neurons, glia, and endothelium and their role in
neuroprotection.
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Introduction

It has become apparent that P2 receptors for extracellular
nucleotides are ubiquitously expressed in a wide variety of
tissues, and the complexity of responses to nucleotides is
due in large part to the presence of multiple subtypes of P2X
receptor ligand-gated ion channels and G protein-coupled
P2Y receptors [1–7]. This functional complexity is well
manifested in the central nervous system (CNS) where 7
P2X and 8 P2Y receptor subtypes are expressed under a
range of conditions in several different interacting cell types
[6, 8–12]. Accordingly, studies on P2 receptor functions in
the brain must consider the combined contributions of P2X
and P2Y receptors expressed in neurons, microglial cells,
astrocytes, and endothelium [10, 13–15]. In addition, the
major ligand that activates many of these P2 receptor sub-
types is ATP, released in the course of neurotransmission or
under proinflammatory or cell apoptotic conditions [1,
16–18]. Since ATP or its degradative products activate most
of the P2 nucleotide and P1 adenosine receptor subtypes
identified in the CNS [1], unraveling the effects of ATP in
vivo is difficult. This analysis can be simplified using ani-
mal models with selective knockout of specific P2 receptor
subtypes or subtype-selective agonists/antagonists when
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available. Another approach is to analyze the effects of
uridine nucleotides (i.e., UTP/UDP) that only activate Gq-
coupled P2Y2, P2Y4, and P2Y6 receptors among the known
P2 receptor subtypes [2, 4, 19, 20]. Among these three
receptors, the P2Y2 receptor (P2Y2R) has unique motifs that
promote interactions with integrins and growth factor recep-
tors, thereby enabling activation of signaling pathways be-
yond Gq-dependent phospholipase C (PLC) [21–24].
Furthermore, the contribution of the P2Y2R subtype to
CNS functions is becoming better understood [14, 15, 25]
and appears to be most important under pathophysiological
conditions, such as inflammation and bacterial infection [15,
26]. In addition, the availability of the P2Y2R knockout
mouse has provided a valuable tool to dissect functional
interactions between P2Y2Rs and other P2 receptors
expressed in cell types of the CNS under various conditions
[27, 28].

This review focuses on cell-specific and tissue-integrated
functions of P2Y2Rs in the CNS with an emphasis on
P2Y2R signaling pathways in neurons, glia, and endotheli-
um that comprise the structure of the brain. In addition, we
describe mechanisms whereby the P2Y2R activates cellular
responses under proinflammatory conditions associated
with neurodegenerative diseases, such as Alzheimer’s dis-
ease (AD), and postulate a role for these receptors in the
regulation of neuroprotective responses.

P2 receptors in the CNS

Purinergic receptors are expressed in many mammalian cell
types and are activated by extracellular adenine and uridine
nucleotides or nucleosides [6, 29–31]. Both P1 receptors for
adenosine and P2 receptors (P2Rs) for adenine and/or uri-
dine nucleotides are expressed in cells comprising the CNS
and have been shown to regulate important physiological
and pathophysiological functions, including neurotransmis-
sion, inflammation, cell growth, and apoptosis [11, 31–33].
The P2R agonist ATP is a neuro- and gliotransmitter re-
leased by exocytosis from neurons and by diffusion through
hemichannels, pannexins, and voltage-gated channels in
various cell types [12, 17, 34–37]. P2Rs (both P2X ligand-
gated cation channels and P2Y G protein-coupled receptors)
[1, 4, 6] are expressed in neuroglia (astrocytes, oligoden-
drocytes) and microglia of the CNS [14], where they regu-
late differentiation, nociceptive transmission, cytokine
release, apoptosis, and metalloprotease-dependent degrada-
tion of amyloid precursor protein (APP) [16, 27, 31, 38–40].
Among cell types that comprise the CNS, mRNAs for
P2X1–7 and P2Y1,2,4,6,11,12,13,14 receptor subtypes have
been identified in primary rat astrocytes [4, 41–44], and
their expression patterns can vary with the age of the animal
[45, 46]. Neurons express mRNAs for P2X3, 5–7 and

P2Y1,2,4,6,12,13 receptors [12, 47–49]. Multiple subtypes of
P2Rs are expressed in monocytes (P2X1,4,7 and
P2Y1,2,4,6,11,12,13 receptors) [50] and human endothelial
cells (P2X4 and P2Y1,2,4,6,11 receptors) [51]. The role of
P1 and P2 receptors in the function of immune cells (e.g.,
neutrophils, eosinophils, monocytes, macrophages, mast
cells, and lymphocytes) has been well described [26,
52–57], and the studies suggest that these receptors regulate
cellular responses associated with inflammatory diseases.
P2Rs are expressed at presynaptic nerve terminals where
P2X1, P2X2, and P2X3 receptors have facilitatory, whereas
P2Y1, P2Y2, and P2Y4 receptors have inhibitory roles in
synaptic transmission [10, 58–62]. Studies also have shown
that postsynaptic P2 receptors including P2X3, P2Y4, and
P2Y1 receptors are involved in neuromodulation [10,
63–65], where they regulate either transmitter release or
postsynaptic sensitivity to other neurotransmitters.

Among the G protein-coupled P2YRs, the Gq-coupled
P2Y2R subtype is expressed in neurons and glial cells [13,
15, 48, 66–68]. Our studies using in situ hybridization and
reverse transcriptase polymerase chain reaction with rodent
brain slices have shown high levels of P2Y2R expression in
the hippocampus and cerebellum [20], and P2Y2R expres-
sion can be significantly upregulated in mouse cortical
neurons by the proinflammatory cytokine interleukin-1β
(IL-1β) [48]. P2YRs have been shown to be coupled either
directly or indirectly to Gq, Gi, Go, and G12 protein activa-
tion and downstream signaling pathways associated with
alterations in PLC or adenylyl cyclase activities [1, 20,
69–71]. The agonist selectivity of P2YR subtypes varies
widely, in contrast to P2X receptors [1]; for example, the
P2Y2, P2Y4, P2Y6, and P2Y14 receptor subtypes can be
activated by uridine nucleotides or UDP-glucose that are
ineffective agonists of all P2X and four P2Y receptor sub-
types [1, 4, 19, 20, 56, 70, 72–74].

Interactions have been reported between different P2
receptor subtypes in cells of the CNS. For example, activa-
tion of both astrocytic P2YRs and P2X7Rs occurs in brain
lesions during the functional remodeling that accompanies
astrogliosis and neuroinflammation [72]. Interactions be-
tween P2X7R and P2Y2R signaling pathways mediate glial
cell-dependent neuroprotective responses [15, 75, 76] in
which P2X7R activation in microglial cells leads to the
release of nucleotides and cytokines, including IL-1β [75],
that enhance the functional expression of P2Y2Rs in neu-
rons [48]. P2Y1R activation in astrocytes of hippocampal
cultures also provides neuroprotection from oxidative stress
by increasing IL-6 release [77]. P2Y2 and P2Y6 receptors
have been suggested to play complementary roles in the
regulation of apoptosis, since P2Y6R activation inhibits
tumor necrosis factor-α (TNF-α) receptor signaling [78]
and P2Y2R activation upregulates anti-apoptotic proteins
[79] to promote survival mechanisms in astrocytic cells.
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P2YR functions associated with the pathogenesis of in-
flammation in the CNS, a process involving astrocyte and
microglial cell proliferation and migration to a site of injury
(i.e., gliosis), can be induced by a variety of conditions (e.g.,
oxidative stress or excessive β-amyloid (Aβ) peptide produc-
tion) that stimulate the release of proinflammatory mediators,
including cytokines [15, 75, 76, 80–86]. Among these medi-
ators, ATP and other nucleotides also can be released into the
extracellular space due to cell damage, oxidative stress, hyp-
oxia, ischemia, or mechanical stress [17, 81–84], whereupon
the nucleotides activate P2X and P2Y receptors expressed in
surrounding cells. Several studies have proposed the involve-
ment of P2Rs, including the P2X7R and P2Y2R, in proin-
flammatory responses mediated by glial cells that are
associated with neurodegenerative diseases [15, 20, 57, 75,
76, 85]. In the absence of inflammation, P2Y2R expression
levels are low in neurons, but the presence of IL-1β upregu-
lates P2Y2R expression [48]. As mentioned above, we will
focus on the role of P2Y2Rs in the regulation of neuroprotec-
tive responses associated with inflammation.

P2Y2 receptor signaling pathways

Activation of the Gq-coupled P2Y2R by ATP or UTP
(EC50∼1–6 μM) [7, 74] is linked to the stimulation of
PLC leading to an increase in the production of inositol
1,4,5 trisphosphate (IP3) and diacylglycerol that elevates
the intracellular Ca2+ concentration, [Ca2+]i, and activates
protein kinase C (PKC), respectively [73, 87]. Recent stud-
ies have demonstrated that the P2Y2R can activate signaling
pathways independent of coupling to Gq protein. Although
P2Y2R-mediated activation of mitogen-activated protein
(MAP) kinases is stimulated by Gq-dependent increases in
[Ca2+]i, P2Y2R activation also stimulates epidermal growth
factor receptor (EGFR) phosphorylation and significantly
enhances the activities of the MAP kinases ERK1/2 and
related adhesion focal tyrosine kinase (RAFTK) via a mech-
anism involving Src and Shc/Grb2 [21, 88]. Other studies
have shown that the P2Y2R contains 2 Src-homology-3
(SH3) binding domains in the intracellular C terminus that
facilitate the binding of Src and the association of the
P2Y2R with the EGFR, thereby enabling nucleotides to
induce Src-dependent phosphorylation of the EFGR [22,
89]. This P2Y2R-mediated transactivation of growth factor
receptors has implications in the regulation of cell growth,
motility, differentiation, and cytoskeleton-associated mor-
phological changes [22, 89]. Studies also have shown that
P2Y2Rs in the presence of nerve growth factor co-localize
with tyrosine receptor kinase A via a Src-dependent event
that promotes neurite outgrowth and cell division [27]. This
pathway leads to the activation of p38 and ERK1/2 MAP
kinases and is inhibited by siRNA directed against P2Y2R

mRNA. P2Y2R-mediated activation of PI3-kinase/Akt and
MAP kinases has been shown to inhibit apoptosis in PC12
pheochromocytoma cells and dorsal root ganglion neurons
[90]. In smooth muscle cells of human chorionic arteries,
transactivation of the EGFR by the P2Y2R can activate RhoA
and Rac1, a pathway that is dependent on clustering of these
molecules in lipid rafts and internalization of the P2Y2R [91].

P2Y2Rs in endothelial cells can activate vascular endothe-
lial growth factor receptor-2 (VEGFR-2) that has been shown
to lead to the upregulation of vascular cell adhesion molecule-
1 (VCAM-1) and an increase in the binding of monocytic cells
to endothelium [89]. Deletion of the SH3-binding domains in
the P2Y2R prevented nucleotides from activating VEGFR-2-
dependent VCAM-1 upregulation [22, 89]. VCAM-1 expres-
sion in endothelial cells also was found to be dependent on
increases in [Ca2+]i and p38 and Rho kinase activation but was
independent of ERK1/2 activity [92]. Similarly, lymphocyte
binding to epithelium is stimulated by P2Y2R activation in
epithelial cells via EGFR-dependent VCAM-1 upregulation
[93]. However, this pathway was found to be Src-independent
and required the release of growth factors by P2Y2R-depen-
dent activation of matrix metalloproteases (MMPs) [94].

The human and mouse P2Y2Rs contain an integrin-
binding Arg-Gly-Asp (RGD) motif in the first extracellular
loop that enables nucleotides to activate integrin signaling
pathways [23, 24, 95]. In contrast, the rat P2Y2R homolog
contains Gln-Gly-Asp (QGD) instead of RGD [96], al-
though this is considered to be a conservative substitution
that maintains integrin-binding affinity [23, 97]. Although
the presence of a RGD motif in a G protein-coupled receptor
is rare, its functional significance has not been extensively
investigated. Studies have shown that the RGD sequence in
the P2Y2R promotes its interaction with αvβ3/5 integrins
[23], and following P2Y2R activation by UTP, there is an
increase in the activation of monomeric Go and G12 proteins
and the subsequent stimulation of the small GTPases Rho
and Rac [24, 95]. Results indicate that mutation of the RGD
sequence to Arg-Gly-Glu (RGE), a motif that does not bind
well to integrins [98], prevented the binding of the P2Y2R to
αvβ3/5 integrins and inhibited nucleotide-induced Go, G12,
Rho, and Rac activation [24, 95]. Go-dependent Rac and
G12-dependent Rho activation are known to mediate cyto-
skeletal rearrangements and cell migration through a mech-
anism involving the activation of LIM kinase-dependent
cofilin phosphorylation, a key regulator of actin polymeri-
zation [99], and studies indicate that activation of the P2Y2R
promotes cytoskeletal rearrangements and cell migration
that are abolished by mutation of the RGD motif to RGE
[24, 95]. Thus, it appears that the ability of the P2Y2R to
increase cell chemokinesis is dependent upon P2Y2R asso-
ciation with αvβ3/5 integrins that stimulates signaling path-
ways involved in cytoskeletal reorganization required for
cell motility.
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The C-terminal domain of the P2Y2R has been shown to
bind filamin A (FLNa), an actin-binding protein that regulates
cytoskeletal dynamics [100]. Using the yeast 2-hybrid system,
an 11-amino acid stretch including the SH3-binding domains
in the C-terminal tail of the P2Y2R was found to regulate
FLNa binding to the P2Y2R and nucleotide-induced increases
in cell migration and spreading [100]. Since both P2Y2R-
mediated transactivation of growth factor receptors and integ-
rins contribute to cell migration [21, 24, 91], it is intriguing to
postulate that FLNa binding to the SH3-binding domains of
the P2Y2R links nucleotide-induced EGFR transactivation to
the RGD-dependent integrin signaling pathway that regulates
cytoskeletal rearrangements required to increase cell motility.
In other studies, P2Y2R-mediated monocyte diapedesis (i.e.,
transendothelial migration) has been shown to occur by dis-
ruption of intercellular adherens junctions, suggesting that
cytoskeletal rearrangements promoted by the P2Y2R also
can affect cell polarization [89, 93, 95, 101–103]. Therefore,
these data suggest a mechanism whereby the tropism of
monocytic cells (e.g., microglia) into damaged areas of the
CNS can be induced by activation of P2Y2Rs.

Activation of P2Y2Rs expressed in human astrocytoma
cells or rat primary cortical neurons (rPCNs) stimulates α-
secretases, i.e., the MMPs adamalysin 10/17 (ADAM10/17),
that mediate the proteolytic processing of APP to generate the
non-amyloidogenic soluble APPα (sAPPα) peptide [38, 48].
P2Y2R-mediated α-secretase activity is dependent on activa-
tion of the PI3-kinase/Akt pathway and partially dependent on
activation of PKC and ERK1/2. Recent data with rat cortical
astrocytes indicate that both P2Y2 and P2Y4 receptor activa-
tion can increase the production and release of APP via
activation of ERK and p38 [40]. In rPCNs, P2Y2R expression
is relatively low but is significantly upregulated by IL-1β via a
pathway that involves the activation of the transcription factor
NF-κB [48]. Indeed, it has been shown that the P2Y2R pro-
moter contains a NF-κB binding sequence that is required for
inflammation-induced P2Y2R upregulation, a pathway that
can be blocked by Bay-11-7085, a specific inhibitor of the
phosphorylation of IκB-α, the endogenous regulator of NF-
κB activity [104]. Thus, it seems likely that the co-release of
IL-1β and nucleotides mediated by ATP-induced P2X7R
activation in microglia [16, 75, 105] provides an in vivo
mechanism for both the upregulation and activation of
P2Y2Rs in neurons and other cell types. ATP release also
occurs from activated microglia and astrocytes under oxida-
tive stress [15] and following neuronal excitation [17, 106] via
volume-activated anion channels [106], P2X7Rs [107], and
pannexin hemichannels [37, 108] or upon exposure to fibrillar
or oligomeric Aβ1–42 [14, 75, 109]. Clearly, the proinflamma-
tory effects of cytokine and ATP release in the CNS can be
coordinately regulated by the P2X7 and P2Y2 receptors.

The P2Y2R is known to desensitize and internalize follow-
ing activation [110, 111], which can be inhibited by deletion of

segments of the C terminus of the receptor [110]. Depletion of
intracellular calcium stores is another mechanism by which
further G protein-coupled receptor (GPCR)-induced elevations
in [Ca2+]i in microglia can be desensitized [112]. Following
agonist-induced GPCR desensitization, receptor internaliza-
tion occurs, a process that is regarded both as a resensitization
step and as a means to link a GPCR to intracellular signaling
pathways [113]. GPCR internalization often requires arrestin
binding to the desensitized receptor that provides a scaffold for
multiple protein–protein interactions [113, 114]. A role for
arrestin-2 in cell migration has been reported [115], and
arrestin has been shown to associate with LIM kinase/cofilin
[116] and FLNa [117] providing a mechanism for activation of
arrestins by a GPCR, such as the P2Y2R. The β1-adrenergic
receptor-mediated transactivation of the EGFR is mediated by
arrestin 1 and 2 following G protein receptor kinase 5/6-de-
pendent phosphorylation of the β1 receptor [118]. These inter-
actions lead to Src-dependent activation of MMPs and
consequent release of the HB-EGF ligand to enable autocrine
activation of the EGFR [119]. Since Gq-coupled P2Y2R acti-
vation can induce Src-dependent activation of the EGFR [21,
22, 88, 89], activation of the MMPs α-secretases [38], and
integrin-dependent increases in cell motility [24, 95], it is
intriguing to speculate that arrestins and receptor internaliza-
tion play a role in these processes. Signaling pathways known
to be coupled to P2Y2R activation are shown in Fig. 1.

P2Y2 receptors in glial cells

The major glial cells in the brain are astrocytes, oligoden-
drocytes, and microglia. Astrocytes are derived from the
ectoderm and contribute to the maintenance of the blood–
brain barrier (BBB) [120–122], which prevents invasion of
pathogenic substances into the brain from the circulation
[123]. Astrocytes also release neurotrophic factors that play
an important role in neuronal survival and sprouting and
supply energy substrates to neurons [124]. Oligodendro-
cytes are involved in the insulation of axons in the CNS,
and it has been shown that oligodendrocyte precursor cells
express P2Y1, P2Y2, and P2Y4 receptors [12], but these
cells do not appear to have a significant role in glial cell
activation due to brain injury [123]. P2Y2R interactions with
integrins have been shown to promote migration of astro-
cytes [68]. P2Y1Rs and P2Y2Rs mediate astroglial calcium
signals at the gliovascular interface by two distinct forms of
P2R-dependent negative feedback mechanisms that differ-
entially control Ca2+ signaling in astrocytes, suggesting
divergent roles for these receptor subtypes in downstream
signal transduction [125]. Functional studies with astrocytes
and oligodendrocytes have demonstrated a role for both
P2Y1 and P2Y2 receptors in mediating ATP-evoked and
IP3-dependent increases in [Ca2+]i [20, 80]. P2Y2Rs are
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upregulated in reactive astrocytes of the cortex and nucleus
accumbens in rat due to mechanical injury, suggesting a role
in modulating responses to trauma [126]. Furthermore, stud-
ies with astrocytic cells also suggest that P2Y2Rs play a role
in astrocyte survival after injury [13, 79].

Microglial cells, in contrast to astrocytes and oligodendro-
cytes, belong to the myelomonocytic lineage and become
parenchymal cells in the CNS at early stages of embryonic
development [127]. Microglial cells are originally derived
from themesoderm and possess functions similar to peripheral
monocytes/macrophages [120, 128]. Microglia have impor-
tant immunoregulatory functions in the CNS. Injury or other
disturbances to the CNS trigger rapid transformation of ram-
ified (quiescent) microglia into activated phenotypes that fur-
ther develop into phagocytic macrophages [129, 130].
Activated microglia can be either neuroprotective [130–134]
or neurotoxic [131, 135–137]. Although the CNS is consid-
ered to be an immune-privileged site because the BBB limits

entry of blood-borne cells and proteins, recent findings indi-
cate that peripheral leukocytes have important physiological
and pathophysiological functions in the CNS [138]. Discrete
populations of blood-borne leukocytes are recruited into the
CNS by traversing the BBB under normal conditions or in
response to injury or disease [139]. Similarly, hematopoietic
cells can cross the BBB and enter the CNS whereupon they
differentiate into microglia [140]. In fact, these peripheral
macrophages have been shown to be more adept than resident
microglia in the phagocytosis of neurotoxic Aβ in animal
models of AD [138]. Peripheral macrophages have a dynamic
life cycle and can enter and exit the CNS [141] to engulf and
digest significant amounts of cellular debris and pathogens
[138].

Microglial cell activation by the proinflammatory cyto-
kines TNF-α, IL-1β, and IL-6 is accompanied by partial
rounding and increased cell motility and proliferation [142].
The P2Y2R agonists UTP and ATP, released from apoptotic
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Fig. 1 P2Y2R signaling pathways. Upon activation with ATP or UTP,
the Gq-coupled P2Y2R stimulates Gqα-dependent phospholipase C
(PLC) activity which generates inositol 1,4,5 trisphosphate (IP3) and
diacylglycerol (DAG) resulting in an elevation in the intracellular
calcium concentration via IP3-dependent calcium release from intra-
cellular stores and DAG-dependent activation of protein kinase C
(PKC), respectively. The P2Y2R via an extracellularly oriented RGD
domain can interact with αVβ3/5 integrins to regulate the activities of
G12-dependent Rho, Go-dependent Rac, LIM kinase, and cofilin, pro-
teins that regulate actin cytoskeletal rearrangements. Src-homology-3
binding domains (PXXP) within the C terminus of the P2Y2R bind Src

to enable ATP or UTP to transactivate growth factor receptors and
related adhesion focal tyrosine kinase (RAFTK; also known as Pyk2)
and downstream MAP kinases. P2Y2R-mediated transactivation of
growth factor receptors leads to upregulation of vascular cell adhesion
molecule 1 (VCAM-1). The C terminus of the P2Y2R also has been
shown to interact with the actin-binding protein filamin A (FLNa).
P2Y2R activation can stimulate the activity of matrix metalloproteases
(e.g., ADAM10 and ADAM17) leading to the α-secretase-dependent
processing of APP to the non-amyloidogenic peptide sAPPα [38, 48]
and release of growth factors (e.g., NRG1) [94]
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cells as a result of caspase 3/7 activation, also have been
shown to induce cell migration of phagocytic cells [143]. In
an in vivo model of cell migration, supernatants from apop-
totic cells produced a three-fold greater recruitment of
monocytes and macrophages than supernatants from control
cells and depletion of nucleotides in the apoptotic cell super-
natants diminished cell migration [143]. Extracellular
nucleotides also have been shown to promote human mono-
cyte migration in vitro by co-activation of P2Y2 and P2Y6

receptors that enhances TLR1/2-induced IL-8 release,
whereas the innate immune response resulting from
P2Y2R and P2Y6R activation in vivo was shown to be
dependent upon TLR2 [56]. It has been reported that following
injury or neuroinflammation, P2Y6Rs are functionally upregu-
lated in microglial cells and their activation by UDP triggers
phagocytosis [144]. Our data with mouse primary microglial
cells indicate that P2Y2R activation enhances microglial cell
migration (Table 1) and their uptake and degradation of neu-
rotoxic oligomeric Aβ1–42 (Table 2), responses that were
markedly decreased in microglia from P2Y2R

−/− cells [145].
Microglial cell migration at early stages of local CNS

injury has been suggested to be regulated by P2Y12R ex-
pression, which is robust in the resting stage, but decreases
upon microglial cell activation [146]. It also has been shown
that activated microglia attach to and engulf myelinated
axons in the dorsal horn after a peripheral nerve injury,
and P2Y12R inhibition suppresses engulfment of these my-
elinated axons by activated microglia [147]. P2Y12 and
P2X4 receptor activation has been shown to induce migra-
tion of ramified microglia, attracting them to regions of high
ATP concentrations [148, 149]. Studies using peritoneal
macrophages in mice have shown that stimulation of P2Y2

and P2Y12 receptors induces the formation of lamellipodial
membrane protrusions that leads to cell spreading and effi-
cient directional motility of cells [150]. Taken together,
these findings support the hypothesis that extracellular
nucleotides serve as endogenous danger signals that activate
microglia during the innate immune response.

P2Y2 receptors in neurons

P2Y2Rs are expressed in neurons of the central and periph-
eral nervous systems [1], but expression levels are relatively
low, as compared to other tissues [48, 151, 152]. P2Y2R
expression in mouse primary cortical neurons can be upre-
gulated in response to the proinflammatory cytokine IL-1β
[16, 48], the levels of which are elevated in the AD brain
[153]. Activation of the P2X7R in microglia promotes the
release of IL-1β, TNF-α, and ATP [16, 75, 105, 154–156],
suggesting a mechanism whereby the P2X7R regulates
functional P2Y2R expression in neurons and other cells.
The finding that P2Y2R expression under proinflammatory
conditions is regulated by NF-κB binding to the P2Y2R
promoter [104] is consistent with the established role of
NF-κB activation in the induction of inflammation [157].

Other studies suggest a role for P2Y2Rs in the regulation
of neuroprotective responses. As discussed above, P2Y2R/
αv integrin interaction enables nucleotides to stimulate Rac
and Rho and induce cytoskeletal rearrangements [24, 95],
well-established signaling pathways that regulate the out-
growth and stabilization of dendritic spines [99, 158]. The
P2Y2R agonist UTP has been shown to increase levels of
neurofilament M and neurofilaments that promote neurite
outgrowth [159]. In neural progenitor cells isolated from the
subventricular zone of adult mouse brain, P2Y2R activation
was shown to induce rapid and transient activation of the
EGFR, ERK1/2, and CREB [160]. P2Y2R mRNA levels
also were shown to increase during the acute and chronic
stages of spinal cord injury [161] and with brain ischemia,
mechanical injury to the nucleus accumbens, and brain
trauma, an acute inflammatory response suggested to pro-
vide neuroprotection [126]. Other potential neuroprotective
responses linked to P2Y2R function in primary cortical
neurons include the activation of non-amyloidogenic APP
processing [48]. The P2Y2R also has been suggested to
contribute to synaptic transmission through the regulation
of intracellular calcium waves in astrocytes [162].

Table 1 Role of the P2Y2R in cell migration

Control Wild type P2Y2R
−/−

oAβ1–42 – + – – + – –

ATP – – + – – + –

UTP – – – + – – +

Cell motility
(fold over controls)

3-fold increase** 6-fold increase** 7-fold increase** ∼ same as control ∼ same as control ∼ same as control

Briefly, primary microglial cells (1×106 ) from WT or P2Y2R
−/− mice were seeded in the upper chamber of Transwell inserts that were then placed

in six-well plates, and cells were treated for 6 h with or without oligomeric Aβ1–42 (1 μM) or ATP or UTP (100 μM) in the lower chamber. Cells
that migrated across the membrane were counted under a microscope, and cell motility was expressed as fold increase over untreated control. Data
represent means ± SEM (n04)

**p<0.01 indicates a significant difference from untreated control
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P2Y2Rs in peripheral neurons can regulate the sensation
of bladder distension in response to stretch-induced ATP
release [163]. P2Y1, P2Y2, and A2 adenosine receptors have
been suggested to regulate smell via the plasma membrane
localization of olfactory receptor M71 in olfactory neurons
[164]. Interactions between activated P2Y2Rs and the
capsaicin-sensitive TRPV1 channel in peripheral neurons
have been suggested to modulate pain sensation [165].
P2Y2R activation in retinal neurons has been shown to
stimulate subretinal fluid reabsorption, inhibit retinal folding
and apoptosis, and increase the rate of retinal reattachment
in rat and rabbit models of experimental retinal detachment
[166]. Thus, the P2Y2R appears to play a neuroprotective
and/or reparative function under a variety of conditions
associated with tissue injury, such as inflammation, pain,
and mechanical damage.

Glial–neuronal interactions involving P2Y2 receptors

Over the past three decades, our understanding of intercel-
lular communication in the CNS has evolved, and it has
become widely accepted that glial cells act as organized
networks rather than single cells. In vitro studies indicate
that neurons require help from glia to form and maintain
proper synaptic connections, and it is hypothesized that
development of neuronal synapses is influenced by the
differentiation of surrounding glial cells [167]. For example,
astrocytes release gliotransmitters, including glutamate,
ATP, and D-serine that exert direct effects on synaptic plas-
ticity [168–170]. Microglial cells also have relevance
to neuronal function in various types of brain injury and
disease, such as ischemic trauma and AD. Activation of
microglia under pathological conditions results in their
transformation to amoeboid morphology, migration toward
the site of injury/damage, and release of neuroactive com-
pounds that can have either neurotoxic or neuroprotective

effects [171, 172]. In vivo two-photon imaging revealed that
resting microglia make brief but direct contacts with synap-
ses without undergoing complete transformation/activation
associated with a pathological phenotype [173, 174]. In
contrast, prolonged microglial cell contact with neurons
can initiate a cascade of events that results in synaptic
stripping and functional impairment of neuronal circuits
[175, 176]. Ca2+ waves in astrocytes can extend hundreds
of micrometers from their site of initiation (e.g., an injury)
and have been suggested to serve as a long range signal for
recruitment of microglia from uninjured to injured areas of
the brain [177]. Ca2+ waves initiated in astrocytes can prop-
agate into microglia by an ATP-dependent pathway [177,
178]. Microglia–neuronal interactions are known to be me-
diated by release of a variety of cell signaling molecules
from microglia or neurons that activate cell surface receptors
[179–183]. Some of the chemoattractant signals released at
synapses include glutamate, nucleosides, nucleotides, brain-
derived growth factor, dopamine, noradrenaline, and che-
mokines [146, 184–186]. Both adenine and uridine nucleo-
tides increase the motility of microglial cells [146, 187], and
P2Y2 and P2Y12 receptors have been shown to mediate
these effects [146, 184, 187]. Extracellular ATP release
significantly increases process extension toward an injury
site for resting or activated microglia [148]. Astrocytes
under pathological conditions also can release ATP to acti-
vate P2Rs in neighboring cells [18, 188, 189], and inflam-
mation in vivo can elevate extracellular ATP levels
sufficiently to activate P2 receptors [18].

The specific contributions of individual P2R subtypes to
functional responses in tissues are difficult to discern, par-
ticularly when multiple P2R subtypes are co-expressed at
different levels and since individual subtypes can be acti-
vated at different agonist concentrations [190, 191]. Also,
activation of individual P2R subtypes can increase [Ca2+]i to
differing extents [80], and there can be significant diver-
gence in the intracellular signaling pathways coupled to

Table 2 Role of the P2Y2R in Aβ1–42 uptake and degradation

Control Wild type P2Y2R
−/−

ATP 100 μM – – + – + –

UTP 100 μM – – – + – +

Aβ1–42 uptake (pg/mg protein) 1800 2000 3800** 4500** 2000 2100

Aβ1–42 degradation 47 % 78 %* 80 %* 50 % 48 %

Primary microglial cells fromWTor P2Y2R
−/− mice were treated with ATP or UTP (100 μM) followed by oligomeric Aβ1–42 (1 μM) for 1 h. Control

cells fromWT P2Y2R
−/− were treated with oligomeric Aβ1–42 without ATP or UTP, and the values represent average of two control groups. Cell lysates

were analyzed for intracellular Aβ1–42 uptake by ELISA. Data represent means ± SEM (n03). To determine P2Y2R-mediated Aβ1–42 degradation, cells
were incubated with Aβ1–42 for 1 h, the medium was removed, cells were washed, and fresh media containing ATP or UTP (100 μM) was added. After
24 h, cell lysates were analyzed for intracellular Aβ1–42 levels by ELISA. Levels of Aβ1–42 remaining in the cell lysates after 24 h were divided by Aβ1–

42 levels in cell lysates after 1 h to calculate the percentage of Aβ1–42 degradation. Data represent means ± SEM (n04)

*p<0.05 indicates a significant difference from untreated control; **p<0.01 indicates a significant difference from untreated control
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each P2R subtype. Additional sources of complexity include
interactive effects of nucleotides with other ligands and
variability of P2Y2R-mediated responses with cell type
or experimental condition. Microglia express both iono-
tropic P2X and metabotropic P2Y receptors [60, 66], and
stimulation of these P2X and P2Y receptors by ATP
increases [Ca2+]i via extracellular Ca2+ influx or release
of Ca2+ from intracellular stores, respectively [191]. How-
ever, responses downstream of P2X and P2Y receptor
activation can vary widely. For example, Ca2+ influx
and associated changes in membrane conductance accom-
panying activation of P2XRs trigger the opening of
voltage-gated and Ca2+-dependent K+ channels [192],
whereas P2Y receptor activation is coupled to a variety
of G protein-dependent and G protein-independent signal-
ing pathways, as described above.

Accumulation of proinflammatory cytokines and neuro-
toxic oligomeric Aβ peptide is associated with the progres-
sion of AD [193]. As shown in Fig. 2, Aβ exposure in glial
cells causes ATP release which activates the P2X7R to

increase the release of nucleotides and cytokines, including
IL-1β [75], which enhances the functional expression of
P2Y2Rs in neurons [48] and glial cells (unpublished results).
P2Y2R activation in glial cells increases their proliferation
and migration by transactivation of growth factor receptors
and integrins [20, 68]. We postulate that under proinflam-
matory conditions, IL-1β-dependent P2Y2R upregulation in
neurons and P2Y2R activation by released ATP or UTP
regulates neuroprotective responses, such as the non-
amyloidogenic processing of APP, rather than Aβ genera-
tion, and the stimulation of integrin-dependent dendritic
spine growth (see Fig. 2). Furthermore, P2Y2R activation
in microglial cells in response to released nucleotides is
postulated to provide neuroprotection by increasing micro-
glial cell migration toward sites of Aβ release followed by
P2Y2R-mediated Aβ phagocytosis and degradation by the
activated microglia (see Fig. 3). Thus, P2Y2R upregulation
in response to inflammation likely serves a neuroprotective
function in the CNS that requires contributions from both
glial and neuronal P2Y2Rs.

P2Y2R Upregulation

ATP P2Y2R Upregulation

Neuronal 
Damage

IL-1β

P2Y2R

ADAM 10/17

sAPPα

Integrin αV

Aβ Exposure

Cytoskeletal 
Modifications

(i.e., neurite extension)  

Increased
α-secretase

Activity

IL-1β and 
ATP Release

Cytoskeletal 
Modifications

(i.e., phagocytosis)

Cell Proliferation

Aβ Degradation  

P2X7R

P2Y2R

Growth
Factor

Receptor

Integrin αV 

Neuron Glia

Cell Migration

ATP

Aβ Uptake  

Fig. 2 Neuronal–glial cell interactions involving the P2Y2R in the
CNS. Extracellular ATP, released via neuronal damage, microglial cell
exposure to Aβ, or tissue inflammation or injury, activates P2X7Rs on
microglial cells that stimulate the release of IL-1β and additional ATP.
Exposure of neurons to IL-1β upregulates the P2Y2R, whereas subse-
quent P2Y2R activation increases ADAM10/17 activity to increase

non-amyloidogenic APP processing. P2Y2R interaction with integrins
induces cytoskeletal rearrangements involved in neurite extension.
P2Y2R activation in microglia increases their proliferation and migra-
tion by transactivation of growth factor receptors and integrins. P2Y2R
activation in microglia also increases Aβ phagocytosis and degradation
(see Fig. 3)
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P2Y2Rs in CNS inflammation

Inflammation is an early response to injury, although it
remains controversial whether the inflammatory response
is beneficial or detrimental to brain tissue [194, 195]. Chron-
ic inflammation damages cells and is thought to be a key
player in neurodegenerative disorders, such as AD [193].
The point at which acute inflammation turns chronic is
unclear. However, it has been suggested that sustained ox-
idative stress on cells of the CNS, associated with activation
of NADPH oxidase and production of reactive oxygen
species, leads to amyloidogenic Aβ production and cell
death in AD [196–199]. Early neuroinflammation is thought
to have a protective effect in the brain by activating glial
cells that secrete cytokines, chemokines, and growth factors
at the site of injury [200], which fits well with our model on
the role of ATP release and P2Y2R activation as a neuro-
protective response in inflammation (see Fig. 2). In CNS
injury, the upregulation and activation of MMPs, a known
component of the P2Y2R signaling pathway [38], can be
either beneficial or detrimental depending on the length of
time after the injury, the profile of the inflammatory cells at
the injury site, and the substrates present [201]. During
neuroinflammation, astrocytes undergo morphological and
functional changes (i.e., reactive gliosis) characterized by
hypertrophy, proliferation, upregulation of the intermediate
filament protein glial fibrillary acidic protein, accumulation
of activated glial cells around plaques, adhesion of cells to
Aβ peptides, internalization and degradation of Aβ peptides
by activated glial cells, expression of proteinases required
for Aβ peptide catabolism, production of arachidonic acid

and related proinflammatory substances in the vicinity of
plaques, and regulation of regenerative processes in the
brain [202–206]. Activated glia have been shown to produce
neurotrophic factors [207, 208] and stimulate neuronal out-
growth during development and repair of damaged brain
cells in the adult [209]. P2Y2Rs regulate many of these
responses associated with reactive gliosis [13, 15, 20, 68,
79, 126].

Purinergic signaling has been shown to influence the
initiation, progression, and downregulation of an inflamma-
tory response [210], and the P2Y2R is an important mediator
of neuroinflammation [15]. As described above, IL-1β reg-
ulates the expression of the P2Y2R in neurons [48] and other
proinflammatory mediators in the AD brain [134, 211], and
overexpression of IL-1β has been associated with head
trauma, epilepsy, genetic polymorphisms, and age-related
damage [212, 213]. In AD, IL-1β increases with Aβ plaque
accumulation and dystrophic neurite formation [200]. Al-
though the endogenous expression of P2Y2Rs has been
reported in mouse microglia [67, 214], it seems likely that
increased levels of proinflammatory cytokines should fur-
ther increase P2Y2R expression in glial cells in vivo. Our
recent in vitro data show that treatment of mouse primary
oligomeric/oligomeric Aβ1–42 upregulates P2Y2R expres-
sion [145] via a pathway likely involving P2X7R-
mediated IL-1β release [16, 75, 105, 154–156]. It also has
been determined that P2X7R activation increases P2Y2R
expression in rat astrocytes [215]. IL-1β has been shown
to stimulate neuronal synthesis of APP, leading to the in-
creased production of neurotoxic Aβ, which in turn acti-
vates microglia and further enhances IL-1β production

1. Microglia 
Activation

2. ATP and Cytokine
Release

5. Recruitment of 
Monocyte-derived 

Microglia

6. P2Y2R-enhanced 
Phagocytosis 

4. P2Y2R-enhanced
Cytokine Release

3. P2Y2R
Upregulation 
and Activation

Quiescent 
MG

Oligomeric Aβ

MG

MG

MG

MG
MG

Fibrillar Aβ

Fig. 3 The P2Y2R contributes
to microglia-mediated uptake
and degradation of Aβ. In
response to oligomeric Aβ1–42

exposure, microglial cells (MG)
become activated (1), release
cytokines and ATP (2), and the
P2Y2R is upregulated (3).
Subsequent P2Y2R activation
by released ATP can enhance
Aβ-induced cytokine release
(4), which increases monocyte-
derived microglial cell recruit-
ment from the blood (5). The
P2Y2R also plays a role in
phagocytosis and degradation
of fibrillar and oligomeric
Aβ1–42 (6)
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[216]. Since IL-1β also upregulates P2Y2R expression in
neurons to promote non-neurotoxic APP processing [48],
we postulate that P2Y2R upregulation can counteract the
deleterious effects of increased APP synthesis induced by
IL-1β. Accordingly, we suggest that a major effect of
P2Y2R upregulation in the CNS is to delay the progres-
sion of neurodegeneration that occurs with chronic
inflammation.

It is known that activated astrocytes and microglia inter-
nalize and degrade Aβ [217–221], a mechanism that
reduces Aβ toxicity in neurons, which is postulated to cause
neuronal death in AD. Recruitment of activated microglia to
sites of inflammation enhances the phagocytosis of aggre-
gated Aβ via the Fc receptor [222, 223]. Studies have shown
that microglial cells exposed to Aβ release ATP [75, 224].
Our recent data indicate that primary microglial cells ex-
posed to oligomeric Aβ1–42 have 3–4-fold increased levels
of TNF-α and IL-1β release, as compared to control cells
without Aβ1–42 treatment (Table 3). In addition, there was a
significant reduction in cytokine release in response to Aβ1–

42 in microglial cells from P2Y2R
−/− mice (Table 3) or in

apyrase-treated microglial cells (not shown).
Figure 3 summarizes the postulated role of the P2Y2R in

microglial cell-mediated phagocytosis and degradation of
Aβ. Phagocytosis also plays a major role in controlling
inflammation and antigen-cross presentation via uptake of
apoptotic bodies from dying cells. The P2R agonists ATP,
ADP, α,β-methylene ATP, 3′-O-(4-benzoyl) benzoyl ATP,
UTP, and UDP have been shown to increase phagocytosis in
macrophages [225], suggesting that multiple P2Rs contrib-
ute to phagocytosis in the myelomonocytic lineage. We
postulate that P2Y2Rs can contribute to the phagocytosis
of apoptotic debris generated due to ATP release and cell
apoptosis previously linked to P2X7R activation [226, 227].

Proinflammatory P2Y2R functions in endothelium

It has been shown that monocytic cell infiltration across the
BBB augments the resident microglial cell population of the

AD brain due to differentiation of the infiltrating monocytes
into microglia [109]. Our previous studies provide strong
evidence that P2Y2Rs in endothelial cells regulate the bind-
ing and the transendothelial migration (i.e., diapedesis) of
monocytic cells. As described above, P2Y2Rs mediate the
Src-dependent transactivation of the vascular endothelial
growth factor receptor-2 (VEGFR-2) in endothelial cells
that promotes upregulation of monocyte-binding proteins
(e.g., VCAM-1) and a decrease in endothelial adherens
junction integrity [22, 89, 92, 101, 102]. Other studies have
shown that microglia are attracted to and surround Aβ
plaques in both human AD brain and rodent transgenic
models that develop AD-like symptoms [228–237]. Al-
though the role of microglial cells in AD (i.e., neurotoxic
vs. neuroprotective) is controversial, recent work has shown
that the majority of microglia that surround amyloid plaques
in an AD mouse model are derived from monocytes origi-
nating in bone marrow [233, 238] and thus must pass from
the bone marrow into the bloodstream through the vascula-
ture and across the BBB to reach sites of plaque formation in
the brain. Furthermore, these bone marrow-derived micro-
glia (to a greater extent than resident microglia in the brain)
were shown to eliminate Aβ deposits by phagocytosis in
AD mice [238], strongly suggesting that bone marrow-
derived microglia serve a neuroprotective role in restricting
AD progression. Previous in vivo work by us and others
indicates that the P2Y2R is important for the recruitment of
leukocytes (monocytes, neutrophils, and eosinophils) to
sites of sterile surgical injury [101] and tissue infected with
allergens or bacteria [239–241]. The process of leukocyte
recruitment involves several steps: the emigration of leuko-
cytes from bone marrow into the circulation, adhesion of
circulating leukocytes to vascular endothelial cells, and di-
apedesis of leukocytes towards chemoattractants released at
the site of injury or infection. Although the leukocyte
P2Y2R is important for controlling the leukocyte migration
step [143, 239, 240], other studies indicate that the endothe-
lial P2Y2R promotes both the leukocyte adhesion step, by
increasing the expression of VCAM-1 in endothelial cells
[22, 89, 92] and the diapedesis step [102]. A postulated
pathway for the regulation of leukocyte diapedesis by the
P2Y2R is shown in Fig. 4.

It is known that signal transduction in endothelial cells
(e.g., increases in [Ca2+]i, phosphorylation of myosin light
chain, and RhoA activation) occurs in response to adhesion
of activated leukocytes and that these events are required for
leukocyte diapedesis [242, 243]. However, mechanisms by
which endothelial cells promote leukocyte diapedesis are
less clear. In a recent in vitro diapedesis study, expression
of the endothelial P2Y2R was found to be important for the
transendothelial migration of neutrophils toward lipopoly-
saccharide (LPS), a chemoattractive component of gram-
negative bacteria [102]. This study also demonstrated that

Table 3 Role of the P2Y2R in proinflammatory cytokine release

oAβ1–42 (1 μM) TNF-α (pg/ml) IL-1β (pg/ml)

Control – 20 28

Wild type + 95** 115**

P2Y2R
−/− + 35 41

WT and P2Y2R
−/− mouse primary microglial cells were treated with

oAβ1–42 (1 μM), incubated for 24 h, and supernatants were collected
and analyzed for TNF-α and IL-1β by ELISA. Data represent means ±
SEM (n03)

**p<0.01 indicates a significant difference from untreated control
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diapedesis of neutrophils toward LPS required Rho kinase
activity and was potentiated by treatment with UTP [102].
Nucleotides are released from leukocytes migrating toward
chemoattractants [239], including Aβ1–42 [224], and in-
creased expression of P2Y2Rs in vascular endothelium of
damaged tissue [244] regulates nucleotide-induced increases
in [Ca2+]i, phosphorylation of myosin light chain, and acti-
vation of Rho kinases [24, 95]. Thus, it seems plausible that
the P2Y2R in microvascular endothelium of the brain should
contribute to monocyte binding, diapedesis, and accumula-
tion of bone marrow-derived microglia around brain tissue
burdened with Aβ plaques whereupon the loss of this
mechanism should limit Aβ clearance and proinflammatory
neuroprotection in the AD brain.

Leukocyte diapedesis and the increase in microvascular
permeability to macromolecules that occurs during an in-
flammatory event are controlled by the formation and dis-
sociation of endothelial cell adhesion structures comprised
of adherens junctions, tight junctions, and gap junctions
[245]. It is well-known that Rho family GTPases regulate
the endothelial permeability barrier by affecting the stability

of these junctional structures [246]. For example, endothe-
lial Rho GTPase and Rho kinase promote the sealing of
intercellular junctions by controlling phosphorylation of
myosin light chain [247], whereas dominant negative Rac
enhances thrombin-induced permeability of macromole-
cules [248]. Many compounds, including thrombin, VEGF,
TNF-α, and histamine, have been found to alter the endo-
thelial permeability barrier due to modulation of the activi-
ties of Rho GTPases and protein distribution in adherens
junctions [249–256]. Extracellular nucleotides also have
been shown to play a role in regulating blood vessel perme-
ability properties [257, 258], and the P2Y2R, in particular,
has been shown to stimulate leukocyte recruitment [101,
239] and Rho GTPase activity through a mechanism involv-
ing P2Y2R interaction with αvβ3/5 integrins [24, 95]. In
addition, the endothelial P2Y2R has been linked to other
proinflammatory responses, including vasodilation of rat
cerebral arteries through a Ca2+-dependent mechanism in-
volving the production of nitric oxide and endothelium-
derived hyperpolarizing factor [259]; production of prosta-
cyclin, an effective vasodilator and inhibitor of platelet
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Fig. 4 Proposed role of the endothelial P2Y2R in paracellular leuko-
cyte diapedesis. Tissue damage or infection causes the local release of
inflammatory signals that upregulate the endothelial P2Y2R as well as
adhesion molecules required for leukocyte adhesion to vascular endo-
thelium. These leukocytes begin migrating toward chemoattractants
released from the damaged/infected site and, in so doing, release a
burst of ATP from their leading edge [239]. We hypothesize that ATP
released from adherent leukocytes activates the endothelial P2Y2R
causing trafficking or relocation of this receptor to endothelial adherens
junctions, possibly through interaction of the P2Y2R with Src,

VEGFR-2, and the actin-binding protein, filamin A [22, 89, 100]. We
also hypothesize that endothelial P2Y2R relocation to adherens junc-
tions assists in the transient disruption of endothelial junctions and
escorts leukocytes to endothelial borders for paracellular diapedesis,
possibly through association of the P2Y2R with the αVβ3 integrin.
This integrin is known to form a complex with the P2Y2R [23] and
with JAM-1 [276], a junctional adhesion molecule in endothelial cells
that interacts with the leukocyte integrin, LFA-1, and is important for
both leukocyte adhesion and diapedesis [277]
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activation [73]; and the upregulation of tissue factor, an
initiator of platelet aggregation [260]. Recently, we found
that activation of the P2Y2R in human coronary artery
endothelial cells causes a rapid translocation of the receptor
to cell–cell junctional zones where it interacts with VE-
cadherin (unpublished results), a protein found specifically
in endothelial adherens junctions that is important for main-
taining the vascular permeability barrier. Furthermore, we
found that luminal application of UTP increases microvascu-
lar permeability of albumin in wild type, but not P2Y2R

−/−,
mice (unpublished results), indicating that the P2Y2R controls
the microvascular barrier function in vivo. Therefore, we
hypothesize that the endothelial P2Y2R assists in monocyte
diapedesis by interacting with VE-cadherin and disrupting
endothelial junctions localized at the site of leukocyte passage.
VE-cadherin has beenwell recognized for its role in regulating
the endothelial permeability barrier and leukocyte recruitment
[261–267]. The N-terminal extracellular domain of VE-
cadherin provides tight adhesion between endothelial cells
through Ca2+-dependent homophilic interaction, whereas the
cytoplasmic domain interacts with various intracellular
binding partners, including α-, β-, and p120 catenins,
providing a linkage to the actin cytoskeleton [268]. Mod-
ulation of cell–cell contacts that regulate cell adhesion and
cell motility likely requires interactions between cadherins
and catenins, and it has been shown that p120 catenin
regulates actin cytoskeletal organization and cell motility
by activation of Rho GTPases [269–271]. In addition, VE-
cadherin associates with VEGFR-2, known to be trans-
activated by the P2Y2R [20, 89], and also with Src, Shc,
Csk [272, 273], and the vascular endothelial protein tyro-
sine phosphatase, VE-PTP [274]. VEGFR-2 activation in
endothelial cells has been shown to stimulate the tyrosine
phosphorylation of VE-cadherin, β- and p120-catenins,
plakoglobin, and PECAM-1 [254]. These interactions
may be important for regulating cell–cell contacts, cell
adhesion, and growth factor signaling [275].

Conclusion

This review evaluates the role of P2Y2Rs in the CNS with an
emphasis on brain functions. P2Y2Rs are expressed in glial
cells (i.e., astrocytes and microglia), neurons, and endotheli-
um, primary cell types comprising the CNS. The P2Y2R has
been shown to play a role in the activation of astrocytes and
microglia and the phagocytosis of apoptotic cell debris.
P2Y2R expression is upregulated under proinflammatory con-
ditions in neurons and glial cells. The Gq-coupled P2Y2R has
structural motifs that have been shown to facilitate interactions
with growth factor receptors, integrins, and filamin A that
activate signaling pathways beyond those regulated by Gq

protein activation alone. Results indicate that under

proinflammatory conditions associated with neurodegenera-
tive diseases, such as AD, the release of cytokines, including
IL-1β, upregulates P2Y2R expression through activation of
NF-κB and its binding to the P2Y2R promoter. Upregulation
of the P2Y2R by proinflammatory cytokines in neurons ena-
bles P2Y2R activation to promote neuroprotective responses,
such as the metalloprotease-dependent non-amyloidogenic
processing of APP and integrin-dependent neurite outgrowth.
In addition, activation of P2Y2Rs expressed in glial cells can
increase cell migration and phagocytosis and degradation of
neurotoxic Aβ. Furthermore, P2Y2Rs in endothelium pro-
mote the binding of monocytes and their diapedesis, which
is postulated to increase the neuroprotective microglial cell
population in the brain. Taken together, current research sug-
gests that the P2Y2R plays a neuroprotective role during
inflammation in the CNS and indicates mechanisms that
should be further investigated as promising targets for the
treatment of neurodegenerative diseases, including AD.
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