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Abstract
Gastric intestinal symptoms common among diabetic 
patients are often caused by intestinal motility abnor-
malities related to enteric neuropathy. It has recently 
been demonstrated that the nitrergic subpopulation 
of myenteric neurons are especially susceptible to the 
development of diabetic neuropathy. Additionally, dif-
ferent susceptibility of nitrergic neurons located in 
different intestinal segments to diabetic damage and 
their different levels of responsiveness to insulin treat-
ment have been revealed. These findings indicate the 
importance of the neuronal microenvironment in the 
pathogenesis of diabetic nitrergic neuropathy. The main 
focus of this review therefore was to summarize recent 
advances related to the diabetes-related selective ni-
trergic neuropathy and associated motility disturbances. 
Special attention was given to the findings on capillary 
endothelium and enteric glial cells. Growing evidence 
indicates that capillary endothelium adjacent to the 
myenteric ganglia and enteric glial cells surrounding 
them are determinative in establishing the ganglionic 
microenvironment. Additionally, recent advances in the 
development of new strategies to improve glycemic 
control in type 1 and type 2 diabetes mellitus are also 
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considered in this review. Finally, looking to the future, 
the recent and promising results of metagenomics for 
the characterization of the gut microbiome in health 
and disease such as diabetes are highlighted.
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INTRODUCTION
The gastrointestinal (GI) tract accomplishes a remark-
able variety of  functions, such as transport of  luminal 
content, secretion and absorption of  ions, water and 
nutrients, defence against pathogens and elimination of  
waste and/or noxious substances. Digestive functions are 
regulated by a complex neural network, known as the en-
teric nervous system (ENS), endowed in the gut wall and 
extending throughout its length from the esophagus to 
the internal anal sphincter[1-11]. The ENS derives from the 
neural crest[4-11] and consists of  neurons distributed in two 
ganglionated plexuses, myenteric (Auerbach’s) and sub-
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mucosal (Meissner’s), located within the gut wall. Enteric 
neurons can be identified according to their function, 
location, neurochemistry, shape, projections, quantitative 
properties and connections. After intensive research from 
several laboratories over the past two decades, a full de-
scription of  all functional classes of  enteric neurons has 
been recently achieved in the guinea pig and the mouse 
intestine[11-17].

GI motility disorders, such as vomiting, constipation, 
diarrhea and fecal incontinence, often accompany type-1 
diabetes, both in patients and in animal models[18-20]. Dur-
ing the past decade, a growing amount of  evidence has 
indicated[21-22] that the nitrergic subpopulation of  myen-
teric neurons are the main points of  attack of  diabetic 
insults in the gut. Additionally, different susceptibility of  
nitrergic neurons located in different intestinal segments 
to diabetic damage and their different levels of  respon-
siveness to insulin treatment have been revealed[22]. These 
findings implied that the development of  diabetic nitrer-
gic neuropathy is more complicated than suggested ear-
lier[21] and that it differs from segment to segment along 
the GI tract. These findings initiated the investigation 
of  the capillary endothelium within the gut wall and the 
glial cells surrounding enteric ganglia. The most recent 
evidence accumulating from these studies[23-25] prove that 
these cells play a determinative role creating the proper 
microenvironment for the ENS. Therefore, knowing the 
diabetes-related changes of  these cells is important, not 
only with respect to pathogenesis, but also to therapeutic 
points.

FUNCTIONAL AND NEUROCHEMICAL 
CLASSES OF ENTERIC NEURONS
In functional terms, intrinsic primary afferent neurons are 
determinative in the generation of  intrinsic GI reflexes 
and also participate in the reflexes between the gut tube 
and accessory glands like the pancreas and liver[26-28].

There are five main types of  enteric motor neuron: 
excitatory and inhibitory muscle motor neurons, motor 
neurons innervating endocrine cells, secretomotor/va-
sodilator neurons and simple secretomotor neurons[12]. 
Excitatory muscle motor neurons release acetylcholine 
and tachykinins, while inhibitory muscle motor neurons 
release nitric oxide (NO), adenosine triphosphate and 
vasoactive intestinal peptide. Besides muscle motor neu-
rons, one type of  orally directed (ascending) and three 
types of  anally directed (descending) interneurons have 
been identified in the small intestine of  the guinea pig[12].

All classes of  enteric neurons are integrated in a con-
tinuous overlapping network along the GI tract. Small 
rings of  circular muscle can contract independently; these 
rings and the associated enteric neurons can be regarded 
as functional modules. The spatiotemporal coordination 
of  these interconnected modules is the determining fac-
tor for the generation of  the rich repertoire of  motor 
patterns[15,17].

ENS is also referred to as the “second brain” because 

of  its capability to function in the absence of  nerve in-
puts from the central nervous system[29]. However, extrin-
sic nerve pathways contribute to the regulatory mecha-
nisms underlying gut functions[2,30-32].

NON-NEURONAL CELLS IN THE ENS
Enteric glial cells (EGCs) represent an extensive but 
relatively poorly described cell population within the 
GI tract. The EGCs network has trophic and protective 
functions toward enteric neurons and is fully implicated 
in the integration and the modulation of  neuronal ac-
tivities[33-35]. In addition, EGCs within the ENS have a 
significant role in forming a diffusion barrier around the 
capillaries surrounding ganglia similar to that of  blood-
brain barrier[3,15,36-38].

Interstitial cells of  Cajal (ICCs) are also related to the 
ENS and are electrically coupled to the smooth muscle 
cells. These pacemaker cells generate spontaneous elec-
trical slow waves and mediate inputs from motor neu-
rons[3,39-42]. ICCs are associated with afferent innervation 
and peristalsis of  the stomach, suggestive of  a key role in 
the pathophysiology of  gastroparesis[43-47].

NITRERGIC NEURONS
Nerve cells where transmission is mediated by NO are 
called nitrergic neurons[48-50]. In many organs of  the 
urogenital, GI and cardiovascular systems, nitrergic neu-
rotransmission plays a significant role as a major non-
adrenergic non-cholinergic (NANC) neurotransmitter[51]. 
Nitrergic neurons in the myenteric plexus (MP) are in-
hibitory muscle motor neurons and descending interneu-
rons[12,52,53].

There have already been numerous investigations of  
the density and spatial distribution of  nitrergic myenteric 
neurons[54-56]. In the MP of  different mammalian species, 
nitric oxide synthase (NOS)-immunoreactive neurons(NOS)-immunoreactive neuronsNOS)-immunoreactive neurons)-immunoreactive neurons-immunoreactive neurons 
constitutes approximately 25%-40% of  the total my-
enteric neurons[14,56,57]. It is well established that within 
the ENS the neuronal NOS (nNOS) corresponds toNOS (nNOS) corresponds to(nNOS) corresponds to 
nicotinamide adenine dinucleotide phosphate-diaphorase 
(NADPH-d); therefore, NADPH-d histochemistry is 
used to label nitrergic enteric neurons (Figure 1).ure 1). 1).

Various reports have described the plastic remodel-
ing of  the nitrergic neurons during development[55,58,59], 
aging[60] and pathological conditions[22,61]. Several studies 
have suggested that nitrergic myenteric neurons are es-
pecially susceptible to the development of  neuropathy in 
digestive tract diseases, like diabetes[22,62-65], chronic etha-
nol consumption[66-68] and inflammation[69].

NITRERGIC ENTERIC NEUROPATHY IN 
DIABETES
Diabetes-related abnormalities in the ENS were reviewed 
in 2007[70]. Recent studies on the ENS in diabetes are 
summarized in Table 1.
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Quantitative changes of enteric neurons
The combination of  intracellular signaling disorders with 
quantitative and neurochemical changes of  the enteric 
neurons can be related to the neuronal loss and relevant 
clinical problems of  the neurological manifestations 
of  diabetes mellitus, such as dilatation of  the stomach, 
small and large intestines, constipation and diabetic diar-
rhea[71,72]. A recent study found a significant decrease in 
ganglion size in diabetic patients compared with normal 
individuals and enhanced apoptosis of  the enteric neu-
rons[72]. There is also evidence of  damage to the enteric 
neurons in animal models of  diabetes[73-78].

Subpopulation of nitrergic neurons
Different subpopulations of  myenteric neurons are dif-
ferentially susceptible to the development of  neuropathy 
in diabetes. Zandecki et al[18] characterized the myenteric 
neuropathy in the jejunum of  spontaneously diabetic 
BioBreeding rats. Their results provide evidence for a 
selective nitrergic motor dysfunction in the jejunum of  
these diabetic rats. The underlying mechanism involved 
decreased nNOS protein expression, while the purinergic 
NANC transmission was not affected.

In animal models of  type-1 diabetes, damage of  the 
vagus nerve also contributes to changes in the ENS[79,80]. 
As nNOS expression is not controlled by the vagus nerve 
in the jejunum of  rat, the nitrergic neuropathy is believed 
to result from a primary dysfunction in the ENS rather 
than from vagal dysfunction[18].

Regionality of nitrergic neuropathy
The available reports focusing only on single segments 
of  the GI tract are somewhat contradictory. In our earlier 
study[22], the streptozotocin- (STZ) induced diabetic rat 
model was used to investigate the relationship between 
the deranged gut motility and the segment-specific quan-
titative changes in the nitrergic myenteric neurons. Ad-
ditionally, we studied the effectiveness of  early insulin 
replacement to prevent the development of  diabetes-
induced changes. The NADPH-d-stained cells were con-
sidered to be nitrergic neurons when they were double-

labeled with HuC/HuD used as a pan-neuronal marker 
(Figure 2A). The duodenum of the diabetic rats was theure 2A). The duodenum of the diabetic rats was the 2A). The duodenum of  the diabetic rats was the 
only gut segment where the number of  nitrergic neurons 
was decreased, while the total neuronal number was not 
altered. In the jejunum, ileum and colon, both the total 
and the nitrergic neuronal cell number decreased signifi-
cantly (Figure 2B and C). Immediate insulin replacementure 2B and C). Immediate insulin replacement2B and C). Immediate insulin replacement and C). Immediate insulin replacement C). Immediate insulin replacement 
did not prevent the nitrergic cell loss significantly in the 
duodenum and jejunum, but it did prevent it significantly 
in the ileum and colon. These findings comprise the first 
evidence that the nitrergic neurons located in different 
intestinal segments exhibit different susceptibilities to 
a diabetic state and different responsiveness to insulin 
treatment[22].

Other results also showed that nitrergic neuropathy 
appears to be more pronounced in the colon compared 
with the proximal gut[75,81-82]. The strict regionality of  
pathological processes called attention to the importance 
of  the molecular differences in the neuronal microenvi-
ronment along the GI tract. Since myenteric ganglia are 
not vascularized capillaries, adjacent to them must be 
responsible to provide the ganglionic microenvironment, 
including the proper oxidative circumstances.

Sex dependency of enteric neuropathy
Literary data report about sex-dependent sensibility of  
enteric neurons to the diabetic state[83-84]. Apoptosis of  
enteric neurons was characteristic in diabetic males, but 
not in female rats[83]. Another study provides evidence 
that females may have a greater dependency on the ni-
trergic mechanisms in health. After induction of  diabetes, 
gastric emptying was delayed in both male and female 
rats, but females exhibited significantly delayed gastric 
emptying compared to males. Furthermore, diabetes 
seems to affect the nitrergic system to a greater extent in 
females than in males. Together, these changes may ac-
count for the greater vulnerability of  females to diabetic 
gastric dysfunction. These data are consistent with clini-
cal observation that diabetic gastroparesis predominantly 
affects women[84].

Two phases of nitrergic degeneration
Some studies have mentioned an increase in number 
and size of  NOS neurons as well as fiber thickness[85-88]. 
Cellek’s biphasic model of  nitrergic neuropathy can offer 
a good explanation for these contradictory results[21,65]. 
According to this model, nitrergic neurons innervat-
ing the urogenital and GI organs undergo a degenera-
tive process in two phases in diabetes. The first phase is 
characterized by an insulin-reversible decrease in nNOS 
expression in the axons, while in the second phase, apop-
totic cell death occurs in the nitrergic neurons which is 
not reversible by insulin treatment.

Effects of oxidative stress
The nitrergic neurons are not a homogeneous cell popu-
lation. Some of  the nNOS-containing neurons also con-
tain heme oxygenase-2 (HO-2). Double-labeling studies 

Figure 1 Representative micrograph of whole-mount preparation of the 
myenteric plexus of the colon from control rat labeled with nicotinamide 
adenine dinucleotide phosphate-diaphorase. The calibration bar denotes 40 µm.
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revealed that approximately 50% of  nNOS-containing 
neurons also contained HO-2 and that the diabetes-
induced change in size was confined to nNOS-immuno-
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Figure 2 Diabetes-related quantitative changes in the density of total and 
nitrergic myenteric neurons. Representative micrograph of whole-mount 
preparation of the myenteric plexus of the duodenum from control rat double-
labeled with HuC/HuD and nicotinamide adenine dinucleotide phosphate-diaph-
orase (A). All nitrergic neurons were double-labeled for the two markers. The 
calibration bar denotes 50 μm. Densities of HuC/HuD-immunoreactive myen-
teric neurons (B) and nicotinamide adenine dinucleotide phosphate-diaphorase-
positive myenteric neurons (C) in the duodenum, jejunum, ileum and colon of 
control, diabetic and insulin-treated diabetic rats. Data are expressed as mean 
± SE. aP < 0.05, bP < 0.01, cP < 0.001 vs the control group; dP < 0.05, eP < 0.001 vs 
untreated diabetic group. NADPH: Nicotinamide adenine dinucleotide phosphate.

reactive neurons that did not contain HO-2. No change 
in the size and the distribution occurred in neurons in 
which nNOS and HO-2 were colocalized. This indicates 
that the antioxidant HO-2 protects those NOS-contain-
ing neurons in which it is colocalized against oxidative 
stress, pointing to the importance of  oxidative stress in 
the development of  diabetes-related neuropathies[89].

There is convincing evidence that the generation of  
reactive oxygen species (ROS) is increased in both type 
1 and type 2 diabetes; that the onset of  diabetes and its 
complications are closely associated with oxidative stress; 
and treatment with antioxidants minimizes or prevents 
development of  these complications in diabetic pa-
tients[77-78]. In the non-obese diabetic model of  type 1 dia-
betes, increased oxidative stress has been shown to lead 
to development of  gastroparesis and colonic motor dys-
function[72]. Induction of  HO-1, the inducible isoform of  
HO, at the same time has been identified as an important 
cellular defence mechanism against oxidative stress[90]. 
The HO-1 pathway prevents and reverses cellular chang-
es that lead to development of  GI complications of  
diabetes. Induction of  HO-1 by hemin decreased ROS, 
rapidly restored nNOS expression, and completely nor-
malized gastric emptying in mice. Inhibition of  HO-1 ac-
tivity with normal gastric emptying caused development 
of  diabetic gastroparesis[50].

It was earlier found that in the GI tract the colon was 
more susceptible to damage by oxidative stress[91], and in 
the colon the apoptosis of  the enteric neurons was in-
creased. Detailed analysis of  neuronal subtypes from the 
diabetic and normal colon revealed a selective susceptibil-
ity of  the inhibitory neuronal sub-populations like nNOS 
in diabetic patients[90]. The sensitivity of  colonic tissue to 
oxidative stress may arise due to antioxidant or reductant 
deficiencies. It was observed that colons from diabetic 
patients had decreased amounts of  the non-enzymatic 
antioxidant reduced glutathione that correlated well with 
the duration of  diabetes. There was also an increased 
expression of  superoxide dismutase, possibly as a com-
pensatory mechanism to match the increase in levels of  
various free radical scavengers or reductants[72].

ROS can be generated as a result of  auto-oxidation 
of  glucose and formation of  advanced glycosylation end 
products (AGEs). AGEs are a group of  heterogeneous 
compounds formed by the non-enzymatic reactions be-
tween aldehydic group of  reducing sugars with proteins, 
lipids or nucleic acids. Formation and accumulation of  
AGEs are related to the aging process and accelerated 
in diabetes. The pathogenic role of  AGEs in vascular 
diabetic complications is widely recognised[92]. AGEs 
elicit oxidative stress generation and subsequently cause 
inflammatory and thrombogenic reactions in various 
types of  cells via interaction with a receptor for AGEs. In 
addition, mitochondrial superoxide generation has been 
shown to play an important role in the formation and ac-
cumulation of  AGEs under diabetic conditions[80].

AGEs in the serum and tissues of  diabetic rats in-
creases gradually throughout the two phases of  diabetes, 
but the AGEs accumulation in the tissues seems to begin 
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at the time point when the nNOS depletion becomes ir-
reversible. This model suggests that irreversible rise in 
the serum and accumulation of  AGEs in the tissues is 
the trigger for nitrergic apoptosis. The time point where 
the two phases are separated was called “the point of  no 
return”[65]. The selective nitrergic neuropathy[63] is most 
probably due to the fact that endogenous NO and ac-
cumulated AGEs synergistically cause oxidative stress 
within the nitrergic neuron, which leads to apoptosis[65].

MOTILITY DISORDERS IN DIABETES
GI motility disorders, such as gastroparesis, constipation 
and diarrhea, often accompany diabetes, both in patients 
and in animal models. Population-based studies have 
shown that 2%-19% of  diabetic patients report upper GI 
symptoms and 48%-65% of those with abdominal symp-%-65% of those with abdominal symp--65% of  those with abdominal symp-
toms have delayed gastric emptying[93-97].

Motility disorders in diabetes are traditionally con-
sidered to originate from visceral autonomic neuropathy, 
especially changes in vagal innervation. However, increas-
ing evidence from animal models points towards changes 
in the ENS as the underlying mechanism for these mo-
tility disturbances[18,79,98-100]. Changes in adrenergic and 
cholinergic neurotransmission have been reported[101-102] 
but recent studies have focused on altered NANC inner-
vation[18].

Nitrergic control was impaired in diabetic rats as a 
consequence of  both decreased smooth muscle respon-
siveness to NO and decreased nNOS protein expres-
sion. Nitrergic enteric neuropathy in diabetes may be a 
primary dysfunction, occurring independently from vagal 
dysfunction[18]. Results indicate that the colonic peristaltic 
reflex is enhanced by impairment of  enteric nitrergic in-

hibitory neurons in spontaneously diabetic rats[75].
Loss of  nitrergic neurons in diabetes can result in 

delayed gastric emptying due to the loss of  neurons in 
the pylorus and accelerated intestinal transit due to the 
loss of  influence of  these neurons in the small and large 
intestine[103].

Diabetic gastroparesis was initially described by Kas-
sander in 1958 as “gastroparesis diabeticorum” in a 
patient with type 1 diabetes, but it is increasingly being 
recognized in patients with type 2 diabetes. Gastroparesis 
is defined as a syndrome characterized by abnormal gas-
tric function resulting in delayed gastric emptying in the 
absence of  mechanical obstruction[44,104]. The pathogen-
esis of  diabetic gastroparesis is multifactorial and results 
in a neuromyopathy[97]. Most data from recent animal and 
human studies suggest that the two main findings in dia-
betic gastroparesis are the loss of  ICCs and reduced ex-
pression of  nNOS[44,50,73,105,106]. Experimental data indicate 
that in diabetes, increased oxidative stress due to the low 
HO-1 level in addition to reduced insulin and insulin-like 
growth factor-1 signaling, not hyperglycemia, is respon-
sible for the loss of  the ICCs. The depletion of  ICCs 
causes abnormalities in gastric slow waves, absence of  
peristalsis and atrophy of  gastric smooth muscle[50,97,107].

Our results[22] showed that the STZ-induced diabetic 
rats displayed faster small intestinal and colonic transit, 
as observed by others in different rat models of  diabe-
tes[108-110]. We therefore infer that our observations in this 
model with regard to the changes in the total myenteric 
neurons and the nitrergic subpopulation furnish data on 
the pathogenesis of  diabetic diarrhea, which is a serious 
complication of  diabetes in approximately 10% of  dia-
betic patients.

Colorectal dysfunction is also common in diabetes. 

Table 1  Summary of recent publications on the enteric nervous system in diabetes

Location of change Type of change References Species

Stomach Gastroparesis, oxidative stress Choi et al[50] Mouse
Duodenum, jejunum, ileum, colon Region specific nitrergic neuronal loss,

gastrointestinal motility disorders
Izbéki et al[22] Rat

Esophagus, stomach, intestine Loss of ICCs Ördög[46] Human, mouse, rat

Ileum Loss of enteric neurons Pereira et al[78] Rat
Jejunum Decreased NO responsiveness,

decreased nNOS protein expression
Zandecki et al[18] Rat

Duodenum Loss of enteric neurons De Mello et al[88] Rat
Esophagus, stomach, intestine Diabetic gastroenteropathy Ördög et al[47] Human, mouse, rat
Stomach Gastroparesis, regional injury of ICCs Wang et al[43] Rat
Colon Reduction in GFAP and neurotrophins Liu et al[82] Rat
Small intestine Loss of enteric neurons,

gastrointestinal motility disorders
Nezami and Srinivasan[3] Human, mouse, rat

Colon Gastrointestinal motility disorders,
loss of enteric neurons,
increased oxidative stress

Chandrasekharan et al[72] Human

Stomach Gastroparesis Hasler et al[106] Human
Stomach, intestine Oxidative stress Kashyap et al[90] Human, mouse, rat
Stomach Gastroparesis Tang et al[97] Human
Duodenum, cecum Loss of enteric neurons Zanoni et al[156] Rat

ICCs: Interstitial cells of Cajal; NO: Nitric oxide; nNOS: Neuronal nitric oxide synthase; GFAP: Glial fibrillary acidic protein.
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Of  patients attending specialized diabetes clinics, up to 
60% reported constipation, 22% had diarrhea and 20% 
had fecal incontinence[111]. In diabetic rodents, constipa-
tion was accompanied by reduced neuromuscular neuro-
transmission in the distal colon, whereas a paradoxical in-
crease in contractile and underlying spike complex activity 
was noted in the proximal colon. The latter occurred in 
the absence of  reduced inhibitory control and may have 
reflected functional compensation or a response to small 
intestinal bacterial overgrowth. ICCs were reduced in the 
colon of  mice with both type 1- and type 2-like diabetes, 
as well as in type 2 diabetic patients[46,112-115].

CARDIOVASCULAR RISK FACTORS AND 
IMPAIRED NEURONAL FUNCTIONS
Both type 1 and type 2 diabetes mellitus have long been 
recognized as an independent risk factor for cardiovas-
cular disease (CVD), including coronary artery disease, 
stroke, peripheral arterial disease, cardiomyopathy and 
congestive heart failure. CVD is the leading cause of  
comorbidity and death in patients with diabetes[116-118]. 
Vascular complications of  diabetes also extend to mi-
crovascular disease, manifested as diabetic nephropathy, 
neuropathy and retinopathy. Chronic hyperglycemia plays 
a major role in the initiation of  diabetic vascular compli-
cations[119-120]; however, the mechanisms through which 
hyperglycemia promotes the development of  vascular 
diseases remain incompletely understood.

Multiple mechanisms for this relationship between 
glucose and atherosclerosis have been proposed. Hyper-
glycemia may activate nuclear factor-κB, a key mediator 
that regulates proinflammatory and proatherosclerotic 
target genes in endothelial cells, vascular smooth muscle 
cells and macrophages[121]. Hyperglycemia can also foster 
the non-enzymatic formation of  AGEs, protein cross-
linking and ROS formation[122]. Hyperglycemia stimulates 
oxidative stress, which appears to be a driving force in 
atherosclerosis[123]. Common final pathways among most, 
if  not all, of  these various mechanisms are stimulation 
of  inflammation, arterial remodeling and tissue dam-
age[124,125]. In addition to systemic factors, organ-specific 
factors also appear to be important in the development 
of  vascular disease. For example, in the kidney, stimula-
tion of  mesangial matrix production by hyperglycemia, 
activation of  protein kinase C and an increasing degree 
of  intraglomerular hypertension may contribute to glo-
merular injury[126]. Other factors associated with the de-
velopment of  vascular disease in type 2 diabetes include 
impaired endothelial-dependent relaxation, increased pro-
liferation of  vascular smooth muscle cells and increased 
non-enzymatic collagen glycation[127]. Hyperglycemia 
may also activate matrix-degrading metalloproteinases, 
enzymes implicated in plaque rupture and arterial re-
modeling, inducing similar responses in vascular smooth 
muscles[128].

Although intensive glycemic control has reduced the 
risks of  micro- and macrovascular complications, this 

strategy is not successful in all patients; therefore, cardio-
vascular events remain the leading risk factor for mortal-
ity of  diabetic patients worldwide[129-130]. Glycemic control 
in the context of  type 2 diabetes, as well as pre-diabetes, 
is also intertwined with cardiovascular risk factors such 
as obesity, hypertriglyceridemia and blood pressure cont-idemia and blood pressure cont-
rol[131-133]. Similarly, major issues and concerns have arisen 
around the cardiovascular safety of  antidiabetic thera-
py[134-136]. Together, these issues have focused attention 
on the need to understand the cardiovascular effects of  
current treatments for diabetes and the optimal strategies 
for care of  patients with this disease.

Endothelial dysfunction in the gut wall
Since endothelium is the primary physiological source 
of  endothelial NOS (eNOS) which then produce NO to 
regulate cardio- and cerebrovascular homeostasis, loss of  
the modulatory role of  the endothelium may be a critical 
and initiating factor in the development of  diabetic vas-
cular disease. Impaired function of  the vascular system 
then leads to ischemia, stroke and consequently hypoxia 
and neuropathy[137-139]. Because of  their dominant clinical 
incidence, the diabetes-induced alterations in the capillary 
endothelium of  retina[140-143] and renal glomerulus[144,145] 
have been the focus of  a vast number of  studies, while 
except for an early case report on microangiopathy in 
a bowel biopsy[146], the impact of  diabetes on capillar-
ies within the intestinal wall has been almost completely 
overlooked until now. The myenteric ganglia are not 
vascularized; accordingly, the capillaries adjacent to the 
MP have the role to supply them. Therefore, knowing 
the mechanisms by which diabetes inflicts structural, 
functional and molecular changes in these capillaries may 
open new directions in diabetes research and then offer 
alternative mechanisms to treat the complications associ-
ated with hyperglycemia. Due to the growing incidence 
of  insulin resistance, it is becoming increasingly impor-
tant for clinicians to introduce alternative therapies and 
be aware of  diabetes-related vascular complications[130].

In our ongoing research, we provided evidence[25] 
that endothelial cells in capillaries adjacent to the MP are 
direct targets of  diabetic damage. The microvessels in a 
particular gut segment were affected differentially by the 
pathophysiological conditions, allowing neurons in one 
intestinal region to survive, while causing them to die 
in another. Furthermore, we proved that structural and 
functional alterations which influence the permeability of  
these capillaries[25] coincide with the enteric neuropathy 
demonstrated in STZ-induced diabetic rats[22]. Investiga-
tions are currently in progress in our laboratory to ex-
plain the molecular background of  the diabetes-related 
changes in capillaries supplying the MP.

Vascular permeability and the expression of  cell adhe-
sion molecules are regulated by many complex signaling 
pathways within endothelial cells[138,147,148]. The major neg-
ative regulatory protein for eNOS is caveolin-1 (Cav-1). 
The pathways which involve the regulation of  eNOS 
by Cav-1 in different vascular beds[149] are the focus of  
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research. Now, we want to know whether the diabetes-
induced alterations in the microvasculature of  the retina, 
renal glomerulus and nerves are accompanied by changes 
in the capillaries supplying the MP and whether such 
changes can result in an impairment of  the strict control 
of  capillary permeability, which then gives rise to the gut 
region-specific nitrergic neuropathy demonstrated in the 
MP of  rats with STZ-induced diabetes[22].

Although the metabolic and cellular mechanisms 
leading to severe macro- and microvascular diseases may 
differ between type 1 and type 2 diabetes, both share a 
decreased NO bioavailability and altered vascular perme-
ability[150]. A deficit in bioavailable NO could result from 
an impairment of  the eNOS function or the inactiva-
tion of  NO by oxidative stress. eNOS is a membrane-
associated NOS isoform, and the proper localization 
of  eNOS is therefore necessary for its interactions with 
other regulatory proteins (scaffolds, chaperones and ki-
nases) that fine-tune the cycles of  eNOS activation and 
inactivation[151,152]. Recent studies with Cav-1-deficient 
mouse models suggest that they may be profoundly im-
portant for postnatal cardiovascular functions, including 
the endothelial barrier function and the regulation of  NO 
synthesis[151-153]. It has also been demonstrated that insulin 
regulates the distribution of  Cav and stimulates the phos-
phorylation of  Cav protein[115].

ENTERIC GLIA
Enteric neurons are surrounded and outnumbered by 
EGCs. Recent data suggest that EGCs play an impor-
tant role in the maintenance of  tissue integrity in the 
GI tract[78,82,154]. Several lines of  evidence implicate that 
the secretion of  neurotrophic factors by EGCs may be 
a part of  glial regulation of  gut homeostasis. The secre-
tion of  glia cell-derived neurotrophic factor (GDNF), 
nerve growth factor (NGF) and transforming growth 
factor-beta contribute to the maintenance of  endothelial 
integrity and vasodilatation[82]. Evidence is accumulat-
ing that EGCs share the ability of  astrocytes to regulate 
tight-junction integrity and cellular interactions compa-
rable with those maintaining the blood-brain barrier and 
creating the proper microenvironment for enteric neu-
rons[36,38]. To know the exact mechanisms of  how EGCs 
contribute to gut homeostasis under physiological and 
pathophysiological conditions is therefore important to 
work out new therapeutic strategies and to be aware of  
diabetes-related vascular complications.

Several authors have shown that autonomic neuropa-
thy caused chronically by diabetes mellitus is related to 
quantitative and morphometric changes in the enteric 
neurons in various GI segments[22,77,155,156]. However, 
studies on the number and area of  glial cells in diabetes 
mellitus are scarce. Recent data proves that, unlike the 
neurons, the diabetic condition in rats did not reduce the 
glial density per unit area of  the intestine. This glial pres-
ervation may be attributable to the resistance of  the glia 
cell population and a defense mechanism exerted by glia 
in an attempt to promote the maintenance of  neurons 

that remain viable after the development of  peripheral 
diabetic neuropathy[78]. Nerve cells cannot synthesize glu-
tathione, the major endogenous cellular antioxidant, be-
cause they do not contain the enzyme gamma-glutamyl-
cystein-synthetase which is responsible for formation of  
a peptide bond between cysteine and glutamate[157]. Thus, 
neurons depend directly on glial cells for glutathione 
synthesis. This dependence that neurons have on glial 
cells becomes even more important in diabetes, because 
changes in glutathione metabolism are common in dia-
betic patients and associated with reduced levels of  these 
antioxidants[158]. Furthermore, glial cells directly promote 
neuronal protection by increasing the intracellular content 
of  total glutathione in their own cells. Oxidative stress 
increases expression of  the enzyme gamma-glutamyl-cys-
tein-synthetase in glial cells, which promotes a neuropro-
tective mechanism by release of  glutathione to neurons 
that survive diabetic neuropathy[159]. This increase in glu-
tathione in glial cells is also a defence mechanism because 
it protects against the diabetes-induced death of  glial cells 
by inhibition of  lipid peroxidation reactions[78].

The area of  the glial cells was decreased in the dia-
betic rats compared to the controls. This decrease may be 
related to a reduction in the expression of  neurotrophic 
factors or neurotrophins responsible for promoting the 
survival and maintenance of  neurons[78]. This hypothesis 
is consistent with other studies. The induction of  diabetes 
is associated with a reduction in glial fibrillary acidic pro-
tein (GFAP) and neurotrophins expression in the colon, 
which may affect the role of  EGCs and neurotrophins in 
the enteric plexuses. The changes of  GFAP expression 
in glial cells could be the consequence of  unviable extra-
cellular conditions such as hyperosmolarity, low nutrient 
availability or increased oxidative stress. Immunostaining 
and western blot showed that diabetes induced a decrease 
in the intensity of  staining of  GFAP-positive EGCs and 
GFAP protein levels at 4 wk and attenuated GFAP ex-
pression were more evident at 12 wk[82].

Moreover, mRNA and protein analysis indicated that 
the levels of  NGF were down-regulated in diabetic rats. 
These findings suggest that the induction of  diabetes is 
associated with a reduction in GFAP and neurotrophins 
expression in the colon, which may affect the role of  
EGCs and neurotrophins in the enteric plexuses. This 
in turn may partly contribute to the physiopathologi-
cal changes associated with the diabetic state in the GI 
tract[82]. The neurotrophic factor GDNF reverses hyper-
glycemia-induced neuronal apoptosis and loss of  nitrergic 
neurons and also improves GI motility in diabetic mice. 
Therefore, GDNF may be a potential therapeutic target 
for GI motility disorders in diabetes[103].

NEW STRATEGIES TO IMPROVE 
GLYCEMIC CONTROL IN DIABETES
New therapies using various drug treatments to improve 
glycemic control in diabetes have recently been devel-
oped or are under development. Current therapies for the 
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treatment of  type 1 diabetes include daily administration 
of  exogenous insulin and less frequently, whole pancreas 
or islet transplantation. More recently, embryonic or 
induced pluripotent stem cells have also been examined 
for their ability to differentiate in vitro into pancreatic en-
docrine cells[160-162]. The first results of  glucagonocentric 
reconstruction of  diabetes at the same time open a new 
perspective over insulin monotherapy of  type 1 diabetes. 
A recent publication[163] proposes that glucagon excess, 
rather than insulin deficiency, is the main cause of  type 1 
diabetes. Based on recently accumulated evidence[163,164], 
it was concluded that glucose-responsive β cells normally 
regulate juxtaposed α cells and that without intraislet 
insulin, unregulated α cells hypersecrete glucagon, which 
directly causes the symptoms of  diabetes. Although pa-
tients with type 1 diabetes have an absolute deficiency 
of  insulin, the pathogenesis of  type 2 diabetes mellitus is 
associated with relative insulin deficiency and insulin re-
sistance[165-167]. Therefore, in addition to insulin, a number 
of  different classes of  medication to treat patients with 
diabetes have been developed.

There is a growing body of  evidence that the incretin 
hormone, glucagon-like peptide 1 (GLP-1), has profound 
effects on the GI motor system[168-170]. Moreover, the ef-
fects of  GLP-1 on GI motility appear to be pivotal to 
its effect of  reducing postprandial hyperglycemia[171-173]. 
In a recent study, exogenous GLP-1 was able to reduce 
mouse gastric motility by acting peripherally in the antral 
region, through neural NO release[174]. It has recently 
been demonstrated that GLP-1 receptors are expressed 
in the enteric neurons. Furthermore, 27% of  GLP-1 
receptor immunoreactive neurons in the duodenum and 
79% of  these neurons in the colon are co-expressed with 
nNOS[175].

Due to its promising potential in the treatment of  
type 2 diabetes and related intestinal motility disorders, 
the incretin-based therapies have been the focus of  much 
interest during the last years[176-179]. Incretins, which are 
released by enteroendocrine cells in the intestine in re-
sponse to a meal, have been implicated in contributing 
to the pathogenesis of  type 2 diabetes mellitus. Inject-
able GLP-1 receptor agonists and orally administered 
dipeptidyl peptidase-4 (DPP-4) inhibitors have been 
developed[180,181] and introduced into clinical practice to 
specifically address the blunted incretin responses in pa-
tients with diabetes type 2. The GLP-1 receptor agonists 
potentiate insulin secretion, inhibit glucagon release, 
delay gastric emptying and reduce appetite. The DPP-4 
inhibitors primarily improve insulin secretion and inhibit 
glucagon release.

In diabetic rats, a DPP-4 inhibitor improved the 
thickening of  the glomerular basement membrane[182] 
which is the histological hallmark of  diabetic microangi-
opathy. GLP-1 administration also decreases the damage 
of  alveolar capillary basal lamina in rats with spontaneous 
type 2 diabetes mellitus[183]. The use of  these drugs is also 
associated with improvements in blood pressure, diabetic 
dyslipidemia and myocardial function[184-186]. Therefore, 

they have a potential role to reduce the cardiovascular 
risk factors, a major cause of  mortality in patients with 
diabetes.

CONCLUSIONS AND PERSPECTIVES
Intestinal region-specific selective loss of  enteric neu-
rons in rat models of  diabetes mellitus indicates the 
importance of  the neuronal microenvironment in the 
pathogenesis of  diabetic enteric neuropathy. Therefore, 
among the most important players of  enteric microen-
vironments, capillary endothelium and EGCs have re-
ceived much attention in recent years. Studies in humans 
and in animal models indicate that the mechanisms of  
endothelial dysfunction differ according to the diabetic 
model and the vascular bed under study. Therefore, dif-
ferent animal models and different vascular beds must be 
considered in future studies in order to be able to draw 
general conclusions on the anatomical, physiological and 
molecular mechanisms leading to the development of  
diabetic enteric neuropathies that generally appear as a 
consequence of  vascular complications.

The gut region-specific neuronal and vascular dam-
age demonstrated in STZ-induced diabetic rats[22] leads 
to the question of  why the enteric neurons, glial cells and 
microvessels in the different intestinal segments are af-
fected differentially by the diabetic condition. Since cor-
relations have been suggested between the host’s health 
and the GI tract microbiota, numerous investigations in 
recent years have focused on the connection between the 
GI tract microbiota and metabolic diseases. Most recent 
findings[187-189] provide a sufficient basis for the specula-
tion that the different degrees of  susceptibility of  enteric 
neurons and microvessels to a pathological stimulus such 
as hyperglycemia might be related to the prevalence of  
bacteria in the different parts of  the GI tract. Accord-
ingly, the differences in prevalence of  bacteria in different 
gut segments[188,190] are influenced by the oxygen supply 
of  the small and large intestine[191]. Knowledge of  species 
and functional composition of  the gut microbiome is 
rapidly increasing thanks to technological advances in cul-
ture independent methods[189,192-195]. The human GI tract 
is dominated by anerobic bacteria mainly in the distal part 
of  the gut[190]. We presume that, due to the adequate oxi-
dative environment in the proximal intestine, the enteric 
neurons or capillaries there can tolerate hyperglycemia-
related oxidative stress better and for a longer time than 
they can in the colon, where the basal oxygen supply is 
far from optimal.

The intestinal microbiota have been shown to be dif-
ferent in composition and causally linked to metabolic 
diseases such as diabetes and obesity in humans and 
mice[187,196-199]. Furthermore, the divergences from the 
core microflora may define the status of  disease[200-201]. 
The development of  diabetes type 1 in rats was reported 
to be associated with higher amounts of  Bacteroides ssp.[202]. 
It has been proposed that the gut microbiota directed 
increased monosaccharide uptake from the gut and 
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instructed the host to increase hepatic production of  
triglycerides associated with the development of  insulin 
resistance[203]. Larsen et al[187] demonstrated that type 2 dia-
betes is also associated with compositional changes in the 
intestinal bacteria. Accordingly, their results show that the 
relative abundance of  Firmicutes was significantly lower, 
while the proportion of  Bacteroidetes and Proteobacteria 
was somewhat higher in diabetic persons compared to 
non-diabetics.

The lactate- and butyrate-producing bacteria in a 
healthy gut induce a sufficient amount of  mucin synthe-
sis to maintain gut integrity. In contrast, non-butyrate-
producing lactate-utilizing bacteria prevent optimal mucin 
synthesis, as identified in autoimmune subjects[204]. Obese 
and diabetic mice display enhanced intestinal permeability 
by reducing the expression of  genes coding for two tight 
junction proteins, ZO-1 and occludin[198]. It was proved 
that prebiotic modulation of  gut microbiota lowers intes-
tinal permeability by increases in endogenous GLP-2 pro-
duction, thereby improving gut barrier function, glucose-
tolerance and low-grade inflammation[198-199].

In order to precisely determine the role of  the gut 
microbiota in the development of  metabolic diseases, 
among others, diabetes mellitus type 1 and type 2, and 
provide new therapeutic strategies, it is crucial to collect 
more detailed information on the host-microbial homeo-
stasis.
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