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Abstract

We present a method to include robustness into a multi-criteria optimization (MCQO) framework
for intensity modulated proton therapy (IMPT). The approach allows one to simultaneously
explore the tradeoff between different objectives as well as the tradeoff between robustness and
nominal plan quality. In MCO, a database of plans, each emphasizing different treatment planning
objectives, is pre-computed to approximate the Pareto surface. An IMPT treatment plan that
strikes the best balance between the different objectives can be selected by navigating on the
Pareto surface. In our approach, robustness is integrated into MCO by adding robustified
objectives and constraints to the MCO problem. Uncertainties (or errors) of the robust problem are
modeled by pre-calculated dose-influence matrices for a nominal scenario and a number of pre-
defined error scenarios (shifted patient positions, proton beam undershoot and overshoot).
Objectives and constraints can be defined for the nominal scenario, thus characterizing nominal
plan quality. A robustified objective represents the worst objective function value that can be
realized for any of the error scenarios and thus provides a measure of plan robustness. The
optimization method is based on a linear projection solver and is capable of handling large
problem sizes resulting from a fine dose grid resolution, many scenarios, and a large number of
proton pencil beams. A base of skull case is used to demonstrate the robust optimization method.
It is demonstrated that the robust optimization method reduces the sensitivity of the treatment plan
to setup and range errors to a degree that is not achieved by a safety margin approach. A chordoma
case is analysed in more detail to demonstrate the involved tradeoffs between target underdose and
brainstem sparing as well as robustness and nominal plan quality. The latter illustrates the
advantage of MCO in the context of robust planning. For all cases examined, the robust
optimization for each Pareto optimal plan takes less than 5 minutes on a standard computer,
making a computationally friendly interface possible to the planner. In conclusion, the uncertainty
pertinent to the IMPT procedure can be reduced during treatment planning by optimizing plans
that emphasize different treatment objectives, including robustness, and then interactively seeking
for a most-preferred one from the solution Pareto surface.

1 Introduction

Radiation therapy is an effective way to treat cancer by irradiating and killing cancer cells.
An ideal radiation therapy treatment delivers sufficiently high dose to the target volume but
completely spares radiation-sensitive organs. Intensity modulated proton therapy (IMPT) [6,
21] is one of the treatment modalities that comes closest to this goal. Compared with the
exponential depth dose curve of a photon beam, the dose deposited by a proton beam
increases dramatically at the end of range (controlled by the energy of the proton pencil
beam) and then falls off to almost zero. Compared to proton therapy delivery based on
passive scattering techniques, the comformality of the dose distribution can be improved
through IMPT. In comparison to photon therapy the integral dose in healthy tissues
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sourounding the target is greatly reduced. In IMPT, a proton beam is magnetically scanned
over the tumor volume. By using mathematical optimization techniques to optimize the
intensity of the proton beam at every location, highly conformal treatment plans can be
achieved [26].

However, due to the steep dose fall-off, IMPT is more sensitive to errors than IMRT. An
IMPT dose distribution can be largely distorted even under small setup errors [7]. This is
inherently due to the relatively large dose discrepancy caused by distally or laterally shifted
Bragg peaks. Another important source of uncertainty for IMPT is range uncertainty, i.e.
uncertainty of the Bragg peak location in depth. Range uncertainty arises because the range
of a proton beam in the patient depends on the traversed tissue and is thus flawed if the
planning CT scan does not adequately represent the patient geometry. See [7, 8] for a review
on the uncertainties of IMPT. Heuristics such as selecting the beam angles with small tissue
heterogeneity in their paths, avoiding metal implants, etc., are methods used to increase the
robustness of plans [20]. In photon therapy, setup uncertainty and organ motion is typically
accounted for using the concept of a planing target volume (PTV). This approach is
successful because a photon dose distribution in treatment room coordinates is
approximately invariant to changes of the patient geometry. In IMPT, this approximation is
not valid in general and the usefulness of PTVs in IMPT is therefore limited. This has
recently been discussed by [19].

On the other hand, robust optimization has been introduced to produce high quality plans
that are acceptable even under uncertainty. This is achieved by incorporating the uncertainty
information into the optimization [5, 2, 9]. Robust optimization approaches can be
probabilistic or non-probabilistic depending on whether the underlying probability
distribution of uncertainty is known and utilized in the optimization. The work of [3, 2]
assumes a normal distribution of uncertainties, and optimizes the expected value of a
weighted sum of quadratic dose deviations. Without assuming a probability distribution for
the uncertainty, the works in [5, 9] optimize treatment plans that are as good as possible for
the worst error that can occur. The approach in [9] solves a minimax optimization problem:
it optimizes the worst score of an objective function evaluated for a set of pre-defined error
scenarios. The approach presented in [5] optimizes a weighted sum of two terms. The first
term is the objective function evaluated for the nominal scenario (i.e. no error occurs). The
second term is the objective function evaluated for the worst case dose distribution is
introduced by Lomax [7]. This worst case dose distribution is an artificial one in which
every target voxel takes the lowest dose that can occur for any error scenario, and every
healthy tissue voxel takes the highest dose. Since the worst dose value corresponds to
different error scenarios for different voxels, the worst case dose distribution cannot be
physically realized. In contrast to the approach in [5], the minimax method in [9] uses only
realizable uncertainty scenarios.

Previously published works on robust optimization for IMPT share the weakness of
optimizing a weighted sum of multiple objectives, which can lead to a tedious trial-and-error
process of adjusting the weights and redoing the expensive optimization in order to find the
right balance of objectives. MCO allows the planner to explicitly see the tradeoff between
different objectives and navigate on the Pareto surface in real time. In [1] we published a
fast and memory-efficient approach for optimizing IMPT in an MCO setting. The work in
this paper is an immediate extension of that approach to robust IMPT optimization. Robust
optimization is wrapped in an MCO framework by adding robustified objectives to the MCO
problem formulation. In addition to objectives defined for the nominal scenario as done for
non-robust planning, the treatment planner can define robustified objectives for the target
and important organs at risk. Thus, the data base of Pareto optimal treatment plans contains

Phys Med Biol. Author manuscript; available in PMC 2013 February 07.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Chenetal.

2 Methods

Page 3

both robust and non-robust treatment plans. By navigating the Pareto surface, the treatment
planner can explore the tradeoff between robustness and nominal plan quality.

In our implementation, robust optimization performs minimax optimization similar to the
work by Fredriksson [9]. Thus, robustified objectives correspond to worst-case objectives
that return the worst objective function value that can occur for any error scenario. By
assigning discrete probabilities to the uncertainty scenarios, our method also allows to
optimize the expected mean dose to an organ which may be a good indicator of the
protection of a parallel organ. However, in contrast to the work by Fredriksson [9], which
uses a general non-linear constrained optimization method, we use a customized solver for
piecewise-linear convex constrained optimization. The large-scale optimization can be
solved in minutes by the projection solver we proposed in [1]. The robust IMPT MCO will
be implemented in our in-house IMPT treatment planning system “ASTROID” [1] at
Massachusetts General Hospital. ASTROID takes advantage of modern multi-core
computers to parallelize the multiple optimization tasks.

The remainder of this paper is organized as follows: In section 2 we present the robust MCO
framework. In section 3.1 we demonstrate the robust optimization method for a base-of-
skull case and compare the result to a non-robust plan optimized on a PTV. In 3.2 we
illustrate the tradeoffs involved in robust IMPT planning for a chordoma case.

2.1 Preliminaries

We consider IMPT treatment planning for the 3D spot scanning technique [21]. The spot
size we model, expressed as the standard deviation of the Gaussian dose distribution, is
approximately 5 mm at patient surface, depending on the energy layer the spot locates. The
spacing of Bragg peaks in depth is given by the proximal 80% to distal 80% width of the
most distal peak. This leads to a typical spacing of the energy layers corresponding to 5-7
mm in water equivalent range.

2.1.1 Dose calculation—The dose calculation of the chordoma case is done with our in-
house dose calculation algorithms for proton pencil beams at Massachusetts General
Hospitall. Proton pencil beam, in this context, refers both to the physical nature of the
proton beam, i.e., delivery by numerous individual narrow proton beams, and to the
computational nature of the underlying transport model, i.e., the approximation of bulk
transport as the summation of numerous computational pencil beams. The physical model is
described in [17]. Our implementation, however, differs. We first transport a large set of
zero-width pencil beams through the patient. These pencil beams only model the effects of
multiple Coulomb scatter. These pencil beams, indexed by &, yield the dose Dj, to each
point 7 The physical pencil beams jare computed by summing over the mathematical pencil
beams kto yield the dose Dj;from each pencil beam /.

2.2 Uncertainty model

The uncertainties in IMPT are numerous. In this paper we consider range uncertainty and
systematic setup errors. We do not consider other potential errors like intra-fraction or inter-
fraction organ motion, which can be significant in certain sites like lung and liver. Both,
range and setup errors are modeled via a discrete set of K possible error scenarios. For each

1The dose calculation of the base of skull case is done by an in-house dose calculation algorithm for proton pencil beams of a finite
size at MD Anderson Cancer Center [18].
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error scenario /, we use the dose calculation engine to calculate a dose influence matrix D;;
that stores the dose contribution of a pencil beam jto voxel 7in error scenario /.

2.2.1 Range uncertainty—We model range uncertainty via two error scenarios: one
overshoot scenario and one undershoot scenario. Overshoot and undershoot is modeled by a
scaling of the CT Hounsfield numbers. Hence, both error scenarios correspond to a
synchronized overshoot/undershoot of all pencil beams. This model of range uncertainty is
applicable to the components of range uncertainty that influence all proton pencil beams in
the same way. This includes, e.g., errors in the conversion of Hounsfield numbers to relative
stopping powers as well as, to some extent, weight loss or weight gain. It is a simplification
for errors that influence different proton pencil beams in different ways (e.g., imaging
artifacts due to metal implants).

2.2.2 Setup uncertainty—Setup uncertainty refers to a misalignment of the patient
relative to the treatment beam. It can be modeled as a rigid shift of the patient with respect to
the isocenter. In this paper, we characterize the magnitude of the setup error by a single
number that corresponds to the length of the three-dimensional vector for the patient shift. It
is assumed that the patient shift can occur in any direction. For practical purpose, we
represent the possible shifts by a discrete set of equal distance shifts that are evenly
distributed on the surface of a 3D sphere. We distinguish two sets of error scenarios:

K=9 Only setup errors along the three coordinate axes are considered, i.e., anterior-posterior,
left-right, and cranial-caudal. This leads to 6 setup error scenarios. Assuming that the length
of the three-dimensional shift vector is A mm, those patient shifts are given by (A, 0, 0)
mm, (0, £A, 0) mm, and (0, 0, £A.) mm. Together with the nominal scenario and two range
error scenarios, this yields a total of 9 scenarios.

K=29 additional to the above 9 scenarios, 20 additional setup error scenarios are considered.

In those 20 scenarios the patient is shifted by (£4/V2.£/72,0) mm
(£4/v2,0,£4/V2)  mm (0,£4/V2,£4/V2) mm  (£/V3,£4/V3,£1/V3) mm

This yields a total of 29 scenarios.

We only consider setup shifts of a given length. This is motivated by the assumption that
smaller setup errors will generally lead to smaller dosimetric errors. In the context of worst-
case optimization methods as described below, these smaller error scenarios are expected to
have none or negligible influence on the treatment plan.

2.3 Multi-criteria robust method

2.3.1 General problem formulation—In this section we formulate the multi-criteria
robust optimization problem. Let K denote the number of error scenarios. The dose-
influence matrix of scenario /is denoted by D/ for 1 < /< K. The nominal scenario is
indexed by /= 1. Given an intensity vector x, the dose vector realized in scenario /is o =
D'x, for 1 < /< K. For notational convenience, let dbe a concatenation of the dose vectors
realized in the K'scenarios: d= (dt, , c, ..., d). Objective functions #{d) and constraint
functions g(d) are scalar functions of the dose vector d. The formulation of the robust IMPT
MCO problem is:

Minimize {fi(d), (d),...,f, (D},

Subject to gi(d)<b;, for i=1,2,...,N,
x>0,
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where Mis the number of objectives, NVis the number of constraints, and b, are bounds on
the values of the constraint functions.

2.3.2 Objective and constraint functions—We now further define the objective and
constraint functions. Objective functions can be characterized by a triple

{TYPE, STRECTURES, SCENARIOS,},

where TYPE refers to the functional form. In our implementation this can be minimize the
maximum dose, maximize the minimum dose, minimize/maximize the mean dose, or
minimize the ramp function (see Subsection 2.3.3). STRUCTURES can be one structure or a
set of structures whose voxels will be involved in the function. SCENAR/OS indicates
whether the objective is robustified or not. A non-robust objective function is evaluated for
the nominal scenario only and thus is a measure for nominal plan quality. A robustified
objective is evaluated for all scenarios and its value is given by the extremum taken over the
scenarios. Hence, this method implements a worst-case optimization approach, also referred
to as minimax optimization. For example, the robustified version of the objective that
minimizes the maximum dose to an organ at risk minimizes the maximum dose to that organ
that can occur for any of the error scenarios. In addition to nominal and robust objectives, an
objective function can be evaluated for a weighted sum of scenario doses. This is used for
the mean dose objective, which is the only objective function for which the weighted sum of
objective values for different scenarios equals the objective function evaluated for a
weighted sum of dose values. The objectives that we use are stated explicitly in Table 1.

For the constraint functions g we use exactly the same functions we use as objectives. It
should be noted that for these functions the bounds b, on the right hand side of the
constraints are given in the unit Gray (Gy), and therefore have interpretable values.

2.3.3 Ramp function—If an OAR is located close to the target, the objectives that
minimize the maximum dose to the OAR or maximize the minimum dose to the target are
typically not sufficient to generate an acceptable treatment plan. An objective is needed that
minimizes underdose to the target even though minimum dose is below the desired
prescription dose due to geometrical/physical reasons. We adopt the ramp function to be a
powerful complementary to the types of objectives and constraints we deal with. An
overdose (underdose) ramp function is the average overdose (underdose) over the total
number of voxels in one structure [22]. It is the linear analog to the standard quadratic
overdose (underdose) function. Let @;, /€ Vbe the dose to the voxel 7in a structure V; dbe
the dose vector (d)) ;e 4 and let oP"® be the prescription dose level. The overdose ramp
function is given by:

res 1 res
r(d,d” ):mZmax(O,d;—dp ), )

1'%

where |V is the number of voxels in the structure V. For any voxel dose d}larger than the
prescribed level oP"®, an amount equal to the deviation is added to the overdose ramp
function. If this function is 0 it means that all voxel doses are less than or equal to ¢”¢5. The
underdose ramp function can be similarly defined and is useful for minimizing the
underdose to a target. The overdose ramp function applies to both target and critical
structures.

2.3.4 Combining MCO and robustness—We introduce robustness into the MCO
framework by adding robustified objectives and constraints to the problem formulation. For
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example, if minimizing the maximum dose to an organ at risk is an objective in the
conventional problem formulation, we add an additional objective that minimizes the worst-
case maximum dose to the organ at risk that can occur for any error scenario. The advantage
of this method is that previously developed MCO methods for database generation and
Pareto surface navigation are applicable. In addition, the formulation reflects the fact that
robustness is not a global property of a treatment plan. Instead, a treatment plan can be
robust regarding the sparing of an organ at risk but not robust regarding target coverage. In
our approach this is accounted for by adding separate robustified objectives for different
structures. In our formulation, the error scenarios are fixed. The tradeoff between nominal
plan quality and robustness is controlled by forming convex combinations of plans
optimized for the nominal scenario and robust plans optimized for the given set of error
scenarios. Since the linear feasibility constraints stay the same for all the optimizations, the
convex combinations of any feasible plans are still feasible.

2.3.5 Optimization solver—The computational challenge for this formulation is that the
size of the system matrix and therefore the number of constraints is up to K'times as large as
in the non-robust optimization. We solve the problem by the fast and memory-efficient
linear feasibility and optimality solver for large scale linear programs called ART3+0 [1].
The method is primarily designed for handling constraints that are linear in the beam
weights so that a projection onto the constraint can be done in closed form. This is
intrinsically the case for the mean constraint and the min/max dose constraint in Table 1. In
order to project onto a ramp constraint we use an iterative heuristic as described in the
appendix. The fast convergence at sufficient precision and nearly zero memory overhead
make ART3+0 among very few choices to solve the robust IMPT MCO problem as
formulated herein.

2.3.6 MCO database generation and navigation—After generating the anchor plans
for the M objectives (i.e., minimizing each of the objectives individually), additional Pareto
surface plans can be computed as described in [1]. Briefly, the intermediate Pareto optimal
plans can be solved by the bounded objective function method [12], in which the objective
values of the average of the Manchor plans are set as constraints, and another A anchor
plans are generated for each of the M objectives subject to these updated constraints. The
final optimal plan is a user chosen linear combination of all the anchor plans [13].

We demonstrate our method on two clinical cases: a base of skull tumor and a chordoma
case. For the base of skull case a treatment plan can be obtained without tradeoffs involved
to satisfy all clinical goals. This case is used to demonstrate the robust optimization method
independent of the MCO framework and provide a comparison with a margin based plan.
The chordoma case involves a tradeoff between brainstem sparing and CTV coverage. We
use this case to show the tradeoffs between the target coverage, the OAR sparing and the
robustness of the plan.

3.1 Base of skull

A representative CT slice of the patient is shown in Figure 1. Three proton beams are used
in the plan for the base of skull case. Two beams are in the transverse plane at gantry angles
of 75 and 270 degrees. The third one is an obliquely incident superior-anterior beam, which
is at a couch angle of 90 degrees and gantry angle of 300 degrees. The total number of
beamlets is 7,778. The dose grid is 125%125%99 voxels. The voxel size is 2.5 mm x 2.5 mm
x 2.5 mm. We assume 3 mm setup uncertainty and 3.5% range uncertainty. For robust
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optimization we use 9 error scenarios as defined in section 2.2.2. The raw dose-fluence
matrices of the 9 scenarios total to 11 Gb in size.

For this case, in order to highlight the difference between the scenario method and the
margin method, we do not use an MCO formulation. Instead, we solve for a feasible plan
that satisfies the set of constraints given in Table 2. For the margin plan, the PTV was
constructed by a 3 mm isotropic expansion of the CTV. For treatment planning, set of
constraints is applied to the nominal scenario only and the set of constraints for CTV is
applied to PTV.

Figure 2 compares the DVHs of the CTV and the brainstem of the robust plan and the
margin plan evaluated in all 9 scenarios. For both plans, the nominal DVHs (the red lines)
are almost equally good. They both satisfy all constraints. However, the target coverage of
the margin plan is much worse than the robust plan due to large underdose and overdose in
some of the error scenarios. And unlike the margin plan, the robust plan restricts the
maximum brainstem dose to 60 Gy in all the scenarios. This comparison demonstrates that
by incorporating range and setup uncertainty information in the optimization, the sensitivity
of IMPT plans against errors can be reduced.

3.2 Chordoma

3.2.1 Patient geometry, problem size and Calculation time—Three proton beams
are used in the plan for this chordoma case. They are in the transverse plane at gantry angles
of 110 degrees, 180 degrees and 250 degrees (see the CT image in Figure 3). The total
number of beamlets is 9,623. The dose grid is 88x103%x77 voxels. The voxel size of the dose
grid is 2 mm x 2 mm x 2.5 mm. We assume 3 mm setup uncertainty and 5% range
uncertainty. The raw dose-fluence matrices of the 29 scenarios used for this case total to
16.3 Gb in size. Each individual Pareto optimal plan optimization takes up to 5 minutes on a
single 2.66G Intel Xeon CPU.

3.2.2 Analysis of tradeoffs—For this case, the two main conflicting objectives are tumor
coverage and brainstem sparing. Those objectives are implemented via a maximum dose
objective for the brainstem and an underdose ramp objective for the CTV. All other critical
structures are handled via constraints. All dose constraints and objectives we use are
summarized in Table 3.

We start the discussion of this case by characterizing the tradeoff between target coverage
and brainstem sparing for the nominal, non-robust case. The solid green line in Figure 4
shows the Pareto surface that corresponds to the optimization problem in Table 3 (except
that objectives and constraints are evaluated for the nominal scenario only). Here, the Pareto
surface has been approximated by the two anchor plans plus three intermediate plans. The
treatment plan labeled as P1 represents a good tradeoff between the two objectives. The
corresponding DVHs for CTV and brainstem for the nominal scenario are shown in Figure
5(A), indicating that satisfying both CTV coverage and brainstem sparing can be achieved.

If we evaluate this treatment plan for the 29 error scenarios defined in Subsection 2.2.2, we
observe that the treatment plan quality is insufficient for several error scenarios. This is
demonstrated in Figure 5(B), which shows the DVHs for CTV and brainstem for the 29
error scenarios. In order to visualize the degradation of plan quality in Figure 4, we can
evaluate the robustified objectives (i.e., the maximum brainstem dose that occurs in any of
the 29 scenarios and the worst-case underdose ramp value for the CTV) for the 5 treatment
plans that approximate the Pareto surface for the nominal optimization problem. The result
is given by the dashed green line in Figure 4.
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In order to obtain a treatment plan that is robust against errors, we can calculate the Pareto
surface for the robustified objectives, i.e., the only two objectives are given by the
robustified brainstem maximum dose and the robustified CTV underdose ramp. Nominal
plan quality is not explicitly incorporated into treatment plan optimization. The result is
shown as the solid blue line in Figure 4. Comparing the solid blue line to the dashed green
line indicates that the robustness of the treatment plan could be improved through robust
optimization. This is also illustrated via the DVHs for the treatment plan labeled as P3.
Figure 5(C) shows DVHs for the 29 error scenarios; a comparison to Figure 5(B) reveals the
improved robustness.

Another important interpretation of the blue and the green Pareto surface (solid lines) in
Figure 4 is that the tradeoff between brainstem sparing and CTV coverage becomes harder if
we include robustness. In the nominal case (solid green line) it is unproblematic to
determine a treatment plan that fulfills clinical goals. As soon as robustness is enforced, the
tradeoff is harder, meaning that, e.g., worse target coverage has to be accepted in order to
maintain a given level of brainstem sparing.

We further observe that the improvement in plan robustness is associated with a
deterioration of nominal plan quality. This can be visualized if we evaluate the nominal
objectives for the 5 robust treatment plans that define the solid blue line in Figure 4. The
result is given by the dotted blue line. The compromised nominal plan quality is also
illustrated in Figure 5(D), which shows the DVHs for the nominal scenario for the treatment
plan labeled as P4.

In the following paragraphs we further analyse the tradeoff between robustness and nominal
plan quality. Intuitively, we can assume that there is a tradeoff between the nominal
brainstem dose and robustness of CTV coverage. If we want to cover the CTV under
uncertainty, it is likely that we have to accept higher brainstem doses even in the nominal
case. Looking at Figure 4 we can ask the following question: To what extent can the
nominal brainstem dose be improved by slightly worsening the robustness in CTV
coverage?

Generally, we can consider the treatment planning problem as an MCO problem with four
objectives: (1) nominal brainstem maximum dose, (2) robustified brainstem maximum dose,
(3) nominal CTV underdose ramp, and (4) robustified CTV underdose ramp. The treatment
plans on the solid blue and green lines in Figure 4 are all Pareto optimal in this four-
objective problem. However, they are extreme plans in the sense that they consider either
the nominal objectives or the robustified objectives, but not both simultaneously.

We now want to visualize the tradeoff between nominal brainstem dose and robustness of
CTV coverage. In order to do this, we start off with the treatment plan labeled P3. The
location of P3 in the diagram of Figure 4 yields optimal objective values for the robustified
objectives. The point P4, which corresponds to the same treatment plan, indicates the
corresponding values of the nominal objectives. We now impose a constraint on the value of
the robustified brainstem maximum dose objective and the nominal CTV underdose ramp
objective. The constraint level is given by P3 and P4, i.e., approximately 67 Gy and 0.2 Gy,
respectively. Given these constraints, we can calculate the two-dimensional Pareto surface
that characterizes the tradeoff between nominal brainstem dose and robust CTV coverage.
The result is shown in Figure 6.

It is apparent that one can reduce the nominal brainstem maximum dose substantially
without worsening the robustness of the CTV coverage. Whereas the nominal brainstem
dose is 62 Gy for the plan P4 in Figure 4, it can be reduced to at least 53 Gy without
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worsening the robust CTV objective noticeably. The nominal DVHs for the plan labeled P5
in Figure 6 is shown as the dotted line in Figure 5(D).

3.2.3 The number of error scenarios—Above, we discussed the Pareto surface for
robust treatment plans that were optimized for 29 error scenarios. Figure 4 also shows the
Pareto surface of robust plans that are optimized using the smaller set of K= 9 error
scenarios (red solid line). In addition, the dashed red line shows 5 plans on the red Pareto
surface when the values of the robustified objective functions are evaluated for 29 error
scenarios. Similarly, the dotted red curve shows the reevaluation of the same plans for the
nominal scenario. The discrepancy between the solid line and the dashed line indicates that
if a plan is robustified only against 9 error scenarios, there may be error scenarios among the
larger set of 29 scenarios that show larger maximum brainstem doses or worse target
coverage. On the other hand, not robustifying against the additional 20 setup error scenarios
leads to better nominal plan quality (dotted line).

4 Discussion and conclusion

Compared to photon radiation therapy, proton therapy offers the chance for superior dose
distributions due to the shape of the dose deposition curve of a proton pencil beam. The
exact location of the dose peak depends on the incident pencil beam energy and the (line
integral of) stopping powers along the proton pencil beam path. In IMPT, the intensity of
thousands of pencil beams, incident from a small number of angles, are optimized to
collectively produce a dose distribution that best conforms to the target and spares critical
structures. Due to the sensitivity of the individual Bragg peaks to the amount and type of
physical matter that each pencil beam passes through, an optimized dose distribution can be
highly sensitive to errors in patient setup and discrepancies in the actual versus predicted
range of the Bragg peaks. Robust optimization provides a numerical technique to compute
plans (i.e., the fluence contribution from each pencil beam) that are less sensitive to these
possible errors.

It is not trivial to determine what to strive for regarding a “robust” plan. For one, a plan that
robustly covers the target will necessarily produce more dose to critical structures.
Conversely, a plan that robustly spares a nearby critical structure will likely underdose the
target. Additionally, the level of robustness needs to be determined, and this may be best
decided only after observing how robustness changes the overall plan quality. Such
observations indicate that an interactive system, where a user can explore various robustness
options and levels, will be useful. In the present work we have presented such a system in
the form of Pareto-surface based MCO utilizing multiple scenarios to model IMPT delivery
errors.

4.1 Robust optimization: exploiting the redundancy of constraints

Compared to single scenario optimization, multiple scenario optimization has a greatly
increased problem size and therefore will in general stress the computational environment of
this already large problem (millions of voxels and thousands of pencil beams). In terms of
the computational burden of requiring a large number of error scenarios K, the projection
solver that we use, ART3+0, is well-suited. Computational burden (used loosely to mean
both memory requirements and computation time) of typical gradient-based and linear
programming algorithms scale at least linearly with the input problem size. In the case of
ART3+0, only active constraints are in the working memory, and while more scenarios add
more constraints to the problem, only a fraction of those constraints are binding for a given
optimization run. For example, a worst-case (i.e. all scenarios) constraint on a spinal cord
maximum dose level will be dominated by the scenario(s) that have the spinal cord shifted in
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the direction of the target and/or the Bragg peaks shifted into the spinal cord. Thus even
though the constraints will be written to constrain the spinal cord doses for all scenarios,
most of these constraints will be redundant and only the constraints for selected scenarios
will be important. The ART3+0 solver naturally exploits such redundancy of constraints, as
described in more detail in [1].

4.2 Combining robust optimization with MCO

4.3 Remarks

Given a solver capable of handling large IMPT instances and the observation that the notion
of robustness in radiotherapy planning is inherently a question of trading off between
nominal plan quality and robustified plan quality, we have implemented and demonstrated a
robust MCO system that pre-computes a set of Pareto optimal plans as a way to expose these
tradeoffs to treatment planners. To our knowledge, this is the first such system to be
described.

In Subsection 3.2 for the chordoma case, we have gone through a typical tradeoff analysis
that a physicist might experience in the course of navigating the Pareto surface. Although we
have not described a navigation system in this paper, the technique detailed in [13] is
applicable to this setting. The concept of using weighted averages of pre-computed Pareto
optimal plans to approximate the continuous Pareto surface is well fitted to IMPT planning,
where the average of multiple plans is deliverable (i.e., the fluence map sequencing step that
is needed in IMRT planning, and adds a complication to the navigation procedure, is not
needed here).

In our approach to robust MCO, the error scenarios are fixed. The tradeoff between nominal
plan quality and robustness is controlled by forming convex combinations of plans
optimized for the nominal scenario and robust plans optimized for the given set of error
scenarios. An alternative approach to controlling plan robustness would be to vary the
magnitude of the error. This approach is however not pursued here, the reason being that
existing methods for database generation and navigation are not only applicable to such an
approach.

A limitation in the current implementation of the projection solver is the Pareto optimal plan
database generation method. In its current form, the solver is built to optimize single
objectives, which is why we generate interior Pareto surface plans by adjusting constraint
levels for a set of the objectives and then minimizing another one of them. More advanced
Pareto surface generation strategies [24, 25], which compute additional interior points on the
surface in such a way to minimize the gap between the upper and lower Pareto surface
bounds, require solvers to be able to optimize weighted sums of the underlying objectives.
Using the solver ART3+0 for weighted sum minimization requires the introduction of
auxiliary variables (the details of such techniques are well known in the linear optimization
literature, see for example [23]). While this is straightforward, it has not been pursued at this
point.

The hard constraints set up for the constrained optimization problem define the feasible plan
space where the planner will later navigate. Therefore those constraint bounds should be
selected loosely to make room for the navigation to find a satisfactory Pareto optimal plan.
Of course, more user experience on the specific disease site will help in determining typical
values of those constraint bounds.

For simplicity of presentation, we have ignored the clinical IMPT concepts of single field
uniform dose (SFUD) and fraction groups. SFUD is an additional constraint that specifies
that the dose to a target from a single beam needs to be uniform, within some specified
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tolerance. This greatly restricts the degrees of freedom in IMPT planning; it is used
clinically to produce more robust plans without explicitly performing robust optimization.
Using auxiliary variables it is straightforward to include such a constraint in the system, and
indeed our initial release of ASTROID includes this option.

In this work we have used both K'=9 and K = 29 scenarios, and we observe that the two
choices result in different Pareto surfaces. Since one dose-fluence matrix is computed for
each scenario, it is desirable computationally to keep K'as low as possible, but in general the
choice of K'will depend on the disease site and the uncertainty settings (magnitude of setup
and range errors modeled). Further experimentation is required to be able to make
statements about how many scenarios are needed. Furthermore, investigating the number of
error scenarios required for optimization is linked to the question how the robustness of a
treatment plan should be measured and visualized. Minimax optimization by its nature aims
at optimizing treatment plans for worst case that is considered in the uncertainty model. In
practice, however, a focus on the worst case may not always be desired. Instead, the clinical
goal may be that a treatment plan is acceptable for the majority of patients, suggesting
statistical measures for robustness evaluation. It can be hypothesized that a large number of
error scenarios is needed if the worst case scenario is criterion for robustness. Instead, a
smaller number of scenarios may be sufficient if average plan quality is the criterion of
choice.

The questions regarding the best robustness evaluation measure, the number of error
scenarios used in robust optimization, the magnitude of the assumed errors, and the type of
robust optimization method that is to be used are all linked. Gaining further experience in
clinical IMPT planning may be needed to address these questions. Partly for this reason,
from a system design point of view, we have opted for “user has complete control”. Because
these are the early days of IMPT, and it is not clear exactly how much emphasis should be
put on robust plan quality versus nominal plan quality, we opt for a system that allows
planners to view the spectrum of possibilities. The point of this paper is to introduce a
system that is capable of studying these issues, not to answer them. It is likely that they can
only be answered in a site specific (or even patient specific) way, and that the answers
depend on the characteristics of the pencil beam scanning system under consideration.

4.4 Summary

In summary, we presented a new method for robust IMPT optimization. In our approach,
uncertainty is modeled by a discrete set of error scenarios. For each error scenario, a
separate dose-influence matrix is pre-computed to calculate the dose distribution under those
errors. The current implementation performs minimax optimization, i.e. treatment plans are
optimized such that an objective is minimized for the worst error scenario that can occur.
Our solver is customized for linear constraints and exploits the redundancy in the constraint
set that is inherent to minimax optimization. In addition, we present an approach to
incorporate robustness into a multi-criteria optimization. The approach can take advantage
of existing methods for database generation and Pareto surface navigation. In the context of
robust optimization, there is a special need for MCO planning methods, first because
tradeoffs between different volumes of interests become harder, and second because it leads
to a tradeoff between robustness and nominal plan quality. This has been illustrated for a
Chordoma case.
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Projection to satisfy the ramp constraint

In our previous work in [1] we have presented most of the optimization method used in this
paper. However, the ramp function was added to the pool of objective/constraint functions.
The ramp function can be formulated as a linear problem with the help of auxiliary
variables. By introducing auxiliary variables thesame projection methods applied in [1] can
be used to handle a ramp constraint. In the current implementation though we avoid the
introduction of auxiliary variables and use an iterative heuristic to project onto a violated
ramp constraint.

For example, we consider an underdose ramp constraint for the target. Let D be the dose-
fluence matrix for the target voxels and let the beamlet intensity vector be x. Then the dose
vector to the target voxels is d= Dx. Assume we are at a solution xp where the constraint
n(Dxy, d°'®) < bis violated. The projection operator needs to return a solution A(xp) that is
closest to xp and satisfies the constraint. When the ramp constraint is violated, it means
some of the voxels are underdosed. Consider only this set of underdosed target voxels.
Summing up the rows of the corresponding sub-matrix of D gives the gradient of the mean
dose to these voxels, i.e., the direction of maximal increase of the mean dose of the
underdosed voxels. A move in this direction will increase the dose to these underdosed
voxels and update xfrom xp to x7. Such an incremental move is made iteratively. During
each iteration the list of underdosed voxels and the solution are updated. This procedure is
repeated, until the ramp constraint is satisfied. The overdose ramp constraint is treated
similarly. Note that ramp objectives are handled as constraints by the projection solver [1].
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Figure 1.

A slice of the CT of the base of skull case. The two solid red arrows show the directions of
the IMPT beams in the transverse plane at gantry angles of 75 degrees and 270 degrees. The
vertical dashed red arrow shows the projection of the IMPT beam at a couch angle of 90
degrees and gantry angle 300 degrees. The top purple structure is the target, the bottom
purple structure is the brainstem, the brown and blue structures are the temporal lobes.
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Figure2.

The DVHs of CTV and brainstem for the 9 scenarios. The DVH for the nominal scenario is
in red and the DV Hs for 8 error scenarios are in gray. Left is the robust plan, right is the
margin plan. The vertical blue line is the prescribed dose to the target.
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Figure 3.

A slice of the CT of the chordoma case. The three red arrows show the directions of the
three IMPT beams in the transverse plane at gantry angles of 110 degrees, 180 degrees and
250 degrees. The green structure is the CTV and the purple structure is the brainstem.
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Pareto surfaces of the chordoma case for three scenario set sizes K=1, 9, 29, and the same
plans evaluted for different scenario sets. The solid green line is the Pareto surface when the
two objectives only apply to the nominal scenario (K= 1). The solid red line is the Pareto
surface when the two objectives are robustified by the 9 scenarios (K= 9). The solid blue
line is the Pareto surface when the two objectives are robustified by the 29 scenarios (K =
29). The dashed green line shows the 5 plans on the K'= 1 Pareto surface evaluated at 29
scenarios. The dashed blue line is the 5 plans on the K= 29 Pareto surface evaluated at the

nominal scenario. The upper dashed red line is the 5 plans on the K= 9 Pareto surface
evaluated at 29 scenarios. The lower dashed red line is the 5 plans on the K'=9 Pareto

surface evaluated at the nominal scenario.

Phys Med Biol. Author manuscript; available in PMC 2013 February 07.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Chen et al.

® ®
1 1
09 09
08 08
o 07
g g
gos g o
@ 05 2 05
£ 5
S 04 S04
2 s
03 03
02 02
01 01
o —— 0
0 10 2 30 40 5 6 70 8 9 100 0 10 2 30 40 5 6 70 8 9 100
Dose (Gy) Dose (Gy)
(]
©)
1 =
1 T\
09 P5
\
0.9 \ \
08 i
08 \
07 1
07 _ 1
g 08
£ 06 & P5 1
8 2 1
E 505
=05 3 P4 h
£ 3 1
s S 04
304 z Pl 1
2 1
03
03
02 02
01 ot
o 0 e —

0 60 70 8 9 100 0 10 2 @ 40 0 s 70 8 % 10
Dose (Gy) Dose (&)

o
=
8
8

30 40

Figureb.

(A) The nominal DVH of the non-robust plan (P1 in Figure 4). (B) The DVHs in 29
scenarios of the non-robust plan (P2 in Figure 4). (C) The DVHSs in 29 scenarios of the 29
scenarios optimized robust plan (P3 in Figure 4). (D) Comparison of the nominal DVHs for
three plans: solid line: nominal plan (P1 in Figure 4), dashed line: robust plan (P4 in Figure
4), dotted line: robust plan with optimized nominal brainstem dose (P5 in Figure 6).
Nominal scenario DVHSs are in red and error scenarios are in gray.
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Figure®6.
The Pareto surface visualizing the trade-off between nominal brainstem dose and robust

underdose ramp of the CTV.
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Objective/Constraint function definitions for a structure that has | f voxels in volume V.

Table 1
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Objectivef(d) Nominal Robust Expected
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Constraints of the robust method for the base of skull case. The “weighted” scenario is the nominal scenario

Table 2

with weight 0.2 and the other 8 scenarios with weight 0.1.

Base of skull (Rx = 74 Gy)

Structures Type Scenarios Bound (in Gy)
CTV min all =70
CTV max all <80
CTV min nominal =74
CTV max nominal <77
CTV overdose ramp (&P = Rx) nominal <05

brainstem max all <60

brainstem mean nominal <10

brainstem mean weighted (see caption) <11

optic chiasm max all <62

brain, brain-CTV, R/L temporal lobe mean nominal <30
all structures max all <90
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Table 3

Obijectives and constraints of the robust method for the chordoma case. The brainstem and cord are unioned
for the objective.

Chordoma (Rx = 78 Gy)

Structures Type | Scenarios | Bound (in Gy) / Direction
Objectives
CTV underdose ramp (&P = Rx) all minimize
brainstem, spinal cord max all minimize

Constraints

CTV min nominal =260

CTVv max nominal <858
R/L cochlea max 9 <50
R/L parotid mean 9 <26
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