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Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT)

allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning;

however, it is highly sensitive to uncertainties. In this study, the authors explored the application of

DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning

technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust

optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about

how plan robustness is achieved.

Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by

analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case

(using data for patients who had undergone proton therapy at our institution). Spots with the highest

and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of

the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles

chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of

range and setup uncertainties were calculated, and a worst-case robust optimization was performed.

A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties.

Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D

method but offers better normal tissue protection. With robust optimization to account for range

and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertain-

ties; however, our findings show the extent of improvement varies.

Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization.

They found two possible mechanisms that made improvements possible: (1) a localized single-field

uniform dose distribution (LSFUD) mechanism, in which the optimization algorithm attempts to

produce a single-field uniform dose distribution while minimizing the patching field as much as

possible; and (2) perturbed dose distribution, which follows the change in anatomical geometry.

Multiple-instance optimization has more knowledge of the influence matrices; this greater knowledge

improves IMPT plans’ ability to retain robustness despite the presence of uncertainties. VC 2012 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4711909]
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I. INTRODUCTION

Proton therapy, especially intensity-modulated proton therapy

(IMPT), can result in highly conformal target coverage while

sparing adjacent organs at risk (OARs).1 This is mainly facili-

tated by the flexibility to set nonuniform intensities of

“beamlets” with a sequence of energies of multiple beams

incident from different directions. A beamlet is a thin scanning

beam of protons that exits the nozzle and is incident on the

patient or phantom surface; all the beamlets from a given angle

make up the beam from that angle. Proton beams’ intensity

maps are derived using inverse treatment planning systems

that optimize some objective functions to achieve an optimum

compromise between delivering a tumoricidal dose to the tar-

get and sparing critical normal structures.2 A common strategy

in intensity-modulated radiation therapy and IMPT optimiza-

tion involves first computing the contribution of each of thou-

sands of beamlets to each dose voxel in volumes of interest

(the target and critical structures) using appropriate pencil-

beam algorithms. The contributions to voxels from all the

beamlets per unit intensity within the range of influence have

been called an influence matrix (IM).3 The optimized dose to

each voxel is then calculated by adding up the contributions

from all beamlets weighted with optimized intensities.

Lomax2 described 4 delivery techniques for IMPT. Typi-

cal IMPT uses the full 3D modulation technique (IMPT-3D)
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proposed by Brahme et al.,4 in which multiple energies are

used at each lateral position to form a spread-out Bragg peak

that covers the target from the distal edge to the proximal

edge. The full 3D modulation method is the most flexible

proton scanning beam modulation technique; however, it is

not energy efficient because of the dozens of energy layers

needed per lateral position. This lack of efficiency is espe-

cially a concern when the number of energy layers provided

by an accelerator is limited or when a more cost-effective ac-

celerator for IMPT is desired, such as a dielectric wall accel-

erator.5 In addition, reducing the number of beamlets by

reducing the number of the energy layers used in the

machine would simplify inverse treatment planning and

treatment delivery. Thus, a more energy-efficient delivery

technique for proton scanning beam therapy is needed.

Another delivery technique for IMPT, the distal edge track-

ing technique (IMPT-DET) proposed by Deasy et al.,6 uses

only 1 Bragg peak for each lateral position (i.e., the Bragg

peak stops at the distal edge of the target). Proton scanning

beams used in IMPT have thin pristine Bragg peaks; thus,

more beams from different angles are needed in IMPT-DET

treatment plans than in IMPT-3D treatment plans to deliver a

homogeneous dose in the target volume. Although the DET

method uses only a limited number of Bragg peaks, it can

result in dose distributions that are similar to those of the full

3D method,7–12 depending on the tumor size and number of

treatment beams. The DET technique is favored for centrally

located targets and can minimize the total dose delivered to

the patient.11

One complicating factor is that IMPT’s effectiveness can

be greatly diminished by range uncertainties, patient setup

uncertainties, and interfractional and intrafractional organ

motion,9,10,13–18 which necessitates some means of account-

ing for robustness. IMPT planning is usually based on the

PTV, which is an accurate planning method when the given

dose distribution is invariant.19 This assumption is, in gen-

eral, not true for protons. Therefore, PTV-based planning is

not appropriate in IMPT. In multibeam IMPT optimization,

the intensities of spots placed in the CTV and the corre-

sponding dose distributions per beam are highly inhomoge-

neous. Beamlets from a given beam direction may not even

reach the distal edge of the target. Inhomogeneous dose

distributions within the target for individual beams are com-

pensated for by doses deposited by beamlets of other beams.

Therefore, range uncertainties may lead to overshooting

(exceeding the expected range) or undershooting (not reach-

ing the expected range), which could result in hot or cold

spots in the targets. Furthermore, changes in proton path

lengths due to changes in patient setup would result in

similar effects on the dose distribution. In assessments of

treatment plans using rigorous uncertainty analyses, such as

density-differentiated error and motion-differentiated error

distributions, the DET approach was found to be more sensi-

tive to uncertainties than the 3D approach.9,10 However,

Albertini et al.11,12 discovered that in cases of stringent

dose-volume constraints to OARs, IMPT plans are less sensi-

tive to uncertainties when they use the DET approach rather

than the 3D approach.

Some robust optimization methods for IMPT-3D have

been proposed. Probabilistic nonlinear programming and

robust linear programming approaches have been used to

account for range and setup uncertainties.16–18 Similarly,

worst-case robust optimization was applied in a clinical

case (for a tumor near the spinal cord) by Pflugfelder

et al.15 Fredriksson et al.20 used minimax optimization to

handle range and setup uncertainties in proton therapy. The

resulting treatment plans all showed reduced sensitivity to

uncertainties.

However, to our knowledge, no one has applied robust

optimization to IMPT-DET. The results of IMPT-3D plan-

ning suggest that if range and patient setup uncertainties

were considered in the optimization algorithm, robust opti-

mization would reduce the sensitivity of target coverage to

uncertainties, making previously unreliable plans

reliable.15–18 The primary goal of the present study was to

determine whether robust optimization can likewise improve

IMPT-DET plans. In addition, an improved understanding of

the behavior to incorporate systematic uncertainties into the

IMPT-DET optimization process will help us understand

how robust optimization works in IMPT-3D. In Sec. II of

this paper, we briefly introduce our patient data and beam

configurations, the beam angle optimization algorithm, the

robust optimization algorithm, the dose calculation algo-

rithm, the plan evaluation metrics, and the robustness evalu-

ation technique. In Sec. III, the quality, delivery efficiency,

and plan robustness of the 36 beam IMPT-DET plan are

compared with those of the 3-beam IMPT-3D plan for a

prostate cancer case and a base of skull (BOS) cancer case.

Our conclusions from these analyses and discussion of the

results are presented in Sec. IV.

II. METHODS

II.A. Patient data and beam configurations

The various treatment planning techniques were tested

using historical data for a representative patient with prostate

cancer (adenocarcinoma) and a representative patient with a

BOS chordoma. For IMPT-3D, we created plans using 3

beams in the transverse plane (gantry angles of 10�, 140�,
and 270� for prostate, and gantry angles of 60�, 290�, and

320� for BOS), and for IMPT-DET, we created plans using

36 beams with uniformly spaced angles (10�). The 3-beam

IMPT-3D plan angles were derived from a beam angle opti-

mization algorithm developed previously (see Sec. II.A).

The lateral margin and spot spacing of the beam configura-

tion used in both plans were 1.0 and 0.5 cm, respectively.

The numbers of energy layers used in the IMPT-3D plan

were 27, 29, and 20 for the prostate cancer case and 30, 27,

and 34 for the BOS cancer case. The nominal energies used

in the IMPT-3D for every beam were 143.2, 183.4, and

190.5 MeV (48 distinct proton energies were used for these

3 beams) for the prostate cancer case and 134.6, 141.6, and

144.9 MeV (36 distinct proton energies were used for these

3 beams) for the BOS cancer case. For every IMPT-DET

beam, only the spots with the highest and second-highest

energy levels (calculated by allowing each beam to use only
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the highest and second-highest energy layers) were chosen

so that the Bragg peak would be placed at the distal edge of

the target (i.e., the near-DET technique was adopted for bet-

ter plan quality). Twenty-four and 21 distinct proton energies

were used in IMPT-DET plans for the prostate and BOS can-

cer cases, respectively.

In our center, when using image-guided radiation therapy,

a 5-mm margin is used for clinical target volume (CTV)-to-

PTV expansion for prostate cancers and a 3-mm margin is

used for BOS cancers. We consider lateral margins for pro-

ton plans to be the same as those for photon plans. Thus, in

the current study, we used 5 mm as the lateral margin for the

prostate cancer case and 3 mm as the lateral margin for the

BOS cancer case. We also assumed a 3.5% range uncer-

tainty, as is standard for patients treated at our center.

The prescribed dose to the target was 76 Gy for the pros-

tate cancer case and 66 Gy for the BOS cancer case. At MD

Anderson, the dose-volume constraints in prostate cancer

irradiations are as follows: for the rectum, the volume of rec-

tum receiving a dose of 70 Gy (denoted by V70) is no greater

than 25%; for bladder, the volume of bladder receiving a

dose of 65 Gy (denoted by V65) and 40 Gy (denoted by V40)

is no greater than 25% and 50%, respectively; for femoral

heads, the volume of rectum receiving a dose of 50 Gy

(denoted by V50) is no greater than 10%. The dose con-

straints in BOS cancer irradiations are: for brain stem, the

maximum dose (Dmax) should be less than 54 Gy; for spinal

cord, Dmax should be less than 45 Gy; for brain, Dmax should

be less than 50 Gy; and for the optic chiasm, Dmax should be

less than 54 Gy.

II.B. Beam angle optimization algorithm

We used a local neighborhood search algorithm (LNS)21

to optimize beam angles. The LNS algorithm is designed to

find a locally optimal solution subject to a neighborhood def-

inition for a given starting feasible solution. In our imple-

mentation, the neighborhood of a beam angle set was

defined by a one-angle-exchange algorithm. In such an algo-

rithm, the local search procedure first enumerates all ele-

ments of the neighborhood of a starting feasible solution.

Next, one angle from the feasible solution set is selected. For

this given angle, one angle from the neighborhood set is

selected and exchanged with the angle from the current solu-

tion set, and the objective function is evaluated with this

new angle set. This procedure is repeated until all angles in

the neighborhood set are evaluated. The current solution is

then updated with the one yielding the most improvement in

the objective function value among those elements, and the

process continues until no more improving solutions exist. In

our implementation, the starting angle set we fed to the algo-

rithm consisted of equally spaced beam angles (e.g., 0�,
120�, and 240�).

The objective of this beam angle optimization scheme is

to both ensure target dose coverage and uniformity and mini-

mize OAR dose. The beam angles in the current analysis

were selected on the basis of the conventional plan’s quality.

Robustness analysis was then performed a posteriori.

II.C. Robust optimization algorithm

We enhanced the worst-case robust optimization method

proposed by Pflugfelder et al.15 by modifying the objective

function to penalize hot spots within the target as described

below (Ref. 22). The methods we used to design and compare

robustly and conventionally optimized plans differs from those

used by many other investigators;15–18 many previous investi-

gators designed the conventional plans on the basis of the CTV

or compared robustly optimized plans with CTV-based plans

[but see Fredriksson et al.20 and Chen et al.23]. In this work, we

chose the PTV as the target for the conventional PTV-based

plan and the CTV as the target for the robustly optimized plan.

The PTV was formed by isotropic expansion of the CTV using

a method similar to that used in photon therapy.24 We then

compared the two plans’ quality and robustness. We believe

that the comparison of robustly optimized plan with CTV-

based optimized plan is not valid since the latter does not incor-

porate uncertainties.22 For fair comparison, we renormalized

the plans for all cases to have at least 98% of the CTV covered

by the prescribed dose in the nominal changed other dose distri-

butions accdose distribution and ordingly.

The intensity weight of beamlet j is denoted by the non-

negative quantity x2
j . Thus, the constrained optimization prob-

lem with respect to weights can be addressed by optimizing the

square roots of the beamlet weights instead of optimizing the

beamlet weights directly. The weight array x2
j (or the fluence

map) can be optimized by minimizing the objective function.

By following the strategy published by Lomax et al.,25 we

computed a simple worst-case dose distribution as follows: For

any given beam arrangement, we computed the nominal dose

distribution (i.e., without consideration of uncertainties) and

dose distributions incorporating (1) setup uncertainties by shift-

ing the patient’s planning computed tomography (CT) image

and (2) range uncertainties by scaling the planning image’s CT

numbers by a set percentage (e.g., 63.5%). To incorporate

setup uncertainties, we shifted the patient isocenters along the

anterior–posterior (A–P), superior–inferior (S–I), and lateral

(R–L) directions, yielding 6 dose distributions and 6 correspond-

ing influence matrixes (IMs). To incorporate range uncertainties,

we modified stopping power ratios by �3.5% and þ3.5% to

generate 2 additional IMs corresponding to maximum and mini-

mum proton ranges, respectively. The worst-case dose distribu-

tion was then represented by the minimum of the 9 doses in

each voxel in the CTV and the maximum of the 9 doses in each

voxel outside the CTV. This is analogous to using the PTV dose

distribution for photons, which implicitly represents the worst-

case dose distribution for the CTV.

For robust optimization, we used a standard quadratic

objective function

FðxjÞ ¼
X

i2CTV

pCTV;minðDi;min � D0;CTVÞ2

þ
X

i2CTV

pCTV;maxðDi;max � D0;CTVÞ2

þ
X

i2OARs

pOARsHðDi;max � D0;OARsÞ

� ðDi;max � D0;OARsÞ2; (1)
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where p denotes the penalty weight of the corresponding term

and D0 denotes the prescribed dose for the corresponding

organ. The underlined term is the modification that minimizes

hot spots. The Heaviside function, Hð Dih i � D0Þ, is defined

conventionally (i.e., its value is unity if hDii>D0 but zero if

hDii�D0). In our current study, we used only “relaxed” dose

constraints, which were adjusted by trial and error to meet the

dose-volume constraints used in our clinic. The terms

Di;min ¼ min
m
fDm

i g and Di;max ¼ max
m
fDm

i g in Eq. (1), and

they, respectively indicate the minimum and maximum dose

among the m possible doses Dm
i in voxel i (m¼ 9 here), which

are calculated using Dm
i ¼

P
i IMm

i;jx
2
j in each iteration. The

m IMs IMm
i;j, incorporating range and setup uncertainties, were

precalculated using an in-house dose calculation engine for

proton pencil beams of a finite size3 and stored in local mem-

ory for efficient optimization. Our robust optimization

approach inherits the simplicity of worst-case robust optimiza-

tion and does not require a detailed model for uncertainties.

Optimization was performed using the limited-memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method.

The L-BFGS algorithm is a member of the broad family of

quasi-Newton optimization methods. Unlike the original

BFGS method, which stores a dense Hessian matrix approxi-

mation, the L-BFGS stores only a few vectors that implicitly

represent the approximation. Because of its moderate mem-

ory requirement, the L-BFGS method is particularly well

suited for optimization problems with a large number of

variables.

II.D. Dose calculation engine

We developed an improved analytic formula based on the

Bortfeld’s work;26 this improved formula was designed to

generate a full set of integral dose distribution (IDD) data for

all proton energies required for our treatment planning sys-

tem commissioning using the measured IDD data at only a

few selected energies.27 We adopted the same CT calibration

FIG. 1. DVHs derived from the robustness quantification of the CTV and various OARs from the 36-beam IMPT-DET plan (left) and 3-beam IMPT-3D plan

(right) with conventional PTV-based optimization for the prostate cancer case. The solid lines are the DVHs derived using the nominal dose of every voxel.

All curves are normalized to the total volume of the corresponding organs.
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table as Bortfield did; this table contains stopping power

ratios relative to water for the clinical range of Hounsfield

units. These ratios scale the geometric depth to compute the

water-equivalent depth (WED), so the depth dose distribu-

tion in water can be associated with that in a patient or a

heterogeneous medium.

Correctly acquiring the low-dose halos in single-spot pro-

files is crucial to correcting IDD data for nuclear interac-

tions27 and generating modeling parameters for in-medium

single-spot profiles. For the in-air spot profile, we found that

the approximation of an in-air profile using 1 Gaussian func-

tion was sufficient in terms of the final calculated dose’s

accuracy when a modified Cauchy–Lorentz function was

used in addition to 2 Gaussian functions to describe the dose

distribution in a given medium. Once a spot enters a patient

or phantom, the single Gaussian function characterizing the

spot in air continues to be widened by the multiple Coulomb

scattering and nuclear interactions in the medium. Increases

in the spot’s standard deviation contributed by in-patient

scattering as a function of the WED can be evaluated by

using the method of Hong et al.28 In addition to the primary

Gaussian component, a second Gaussian function with a

large standard deviation and a modified Cauchy–Lorentz dis-

tribution function were used to describe the long-range scat-

tering caused by nuclear interactions and the large-angle

Coulomb scattering that are not accounted for by the primary

Gaussian component.

In brief, we developed a modified version of the algo-

rithm of Soukup et al.29 to describe the weight and width

of the second Gaussian function and added a Cauchy–

Lorentz component to better model the long-range effects

that cannot be taken into account by using Gaussian func-

tions alone.

II.E. Plan evaluation metrics

The following dosimetric parameters were used in com-

parisons for the prostate cancer case: the dose that covered

99% of the CTV (D99%), which was composed of the pros-

tate and seminal vesicles; the dose that covered 1% of the

CTV (D1%); the normalized volume as a percentage of the

rectum and bladder that received more than 10, 20, 40, 60,

and 70 Gy (V10, V20, V40, V60, and V70); maximum Dmax

and mean dose Dmean to the rectum and bladder; Dmax and

mean dose Dmean to the femoral heads; and the mean dose to

the body. The following dosimetric parameters were used in

comparisons for the BOS cancer case: D99%; D1%; V20, V30,

V40, V50, and V60 to the brainstem; Dmax and Dmean to the

brainstem; and Dmax and Dmean to the spinal cord. The heter-

ogeneity index (HI) was defined as the difference between

D1% and D99%, divided by the prescribed dose.

II.F. Robustness quantification

To evaluate or compare IMPT plans, we used a robust-

ness quantification technique that displayed the envelope of

all dose-volume histograms (DVHs) in band graphs of the 9

dose distributions associated with the corresponding range or

setup uncertainties.30 For convenience, the DVHs derived by

choosing the nominal dose of a voxel were also displayed in

the robust quantification. This robust quantification tech-

nique is effective at determining an IMPT plan’s sensitivity

to setup and range uncertainties.31

III. RESULTS

III.A. Prostate cancer case

III.A.1. Conventional optimization

For the representative prostate cancer case, we first com-

pared IMPT-DET plans with IMPT-3D plans derived from

conventional PTV-based optimization without considering

uncertainties. Figure 1 shows the robustness quantification

of the CTV and various OARs from the 3-beam IMPT-3D

plan and 36-beam IMPT-DET plan for the prostate cancer

case, derived from conventional optimization. The details of

dosimetric parameters are shown in Table I. The qualities of

the robustly optimized IMPT-DET and IMPT-3D plans are

shown in Fig. 1.

The target coverage of the IMPT-3D plan (D99%¼ 75.9 Gy)

was slightly higher than that of the IMPT-DET plan (D99%

¼ 75.8 Gy). The IMPT-3D plan produced a slightly more

homogeneous dose distribution in the target (HI¼ 1.2%) than

did the IMPT-DET plan (HI¼ 2.8%). The DET method gener-

ated plans that had a less homogeneous dose distribution in the

target volume than the 3D method did, but CTV coverage

remained about the same in the prostate cancer case.

In terms of normal tissue protection in the prostate cancer

case (i.e., sparing of the rectum and bladder), IMPT-DET

plan performed worse (spared less volume) than the IMPT-

3D plan at high doses, while the converse was true at low

doses (<20 Gy). The mean doses to the femoral heads, rec-

tum, and bladder were always lower in the DET plans than

in the 3D plans (Table I). The mean dose for the body was

reduced from 2.3 Gy in 3D plans to 2.0 Gy in DET plans.

TABLE I. Values of dosimetric parameters in the 3-beam IMPT-3D plan and

36-beam IMPT-DET plan from conventional PTV-based optimization for

the prostate cancer case.

Tissue Dosimetric

parameter

3-beam IMPT 36-beam IMPT-DET

CTV D99% (Gy) 75.9 75.8

D1% (Gy) 76.8 77.9

Rectum V10 (%) 66.4 36.7

V20 (%) 42.4 26.4

V40 (%) 13.9 17.5

V60 (%) 8.5 11.8

V70 (%) 5.7 8.2

Dmean (Gy) 20.9 16.8

Bladder V10 (%) 35.2 29.5

V20 (%) 27.0 20.6

V40 (%) 14.1 13.8

V60 (%) 8.9 9.4

V70 (%) 6.4 6.8

Dmean (Gy) 14.8 13.2

Femoral heads Dmax (Gy) 25.2 39.1

Dmean (Gy) 3.4 2.7
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The constraint of Dmax to the femoral heads �45 Gy was sat-

isfied in both plans. Figure 1 clearly shows that the DET

method was much more sensitive to uncertainties than the

3D method (largest CTV band widths were about 16.6 Gy

for DET versus about 2.8 Gy for 3D).

III.A.2. Worst-case robust optimization

We also sought to determine whether robust optimization

would improve IMPT-DET plan robustness as it does

IMPT-3D plan robustness for the prostate cancer case.15–18

Figure 2 shows the robustness quantification of the CTV and

various OARs from the 3-beam IMPT-3D plan and 36-beam

IMPT-DET plan of the prostate cancer case, derived from ro-

bust optimization. The details of the dosimetric parameters

are shown in Table II. The qualities of plans robustly opti-

mized by means of IMPT-DET and IMPT-3D are also shown

in Fig. 2.

The D99% of the CTV from the IMPT-3D plan (76.0 Gy)

was similar to that from the IMPT-DET plan (75.7 Gy),

which means that the target coverage was similar in both

plans. However, the dose inside the CTV from the IMPT-3D

plan was more homogeneous (HI¼ 1.6%) because part of

the CTV was overdosed in the IMPT-DET plan (HI¼ 5.5%).

The IMPT-3D plan typically spared more normal tissue than

did the IMPT-DET plan, although the pattern was reversed

at low doses (<20 Gy).

The sensitivity of the dose distribution to uncertainties

from the IMPT-DET plan was not much reduced by robust

optimization for this prostate cancer case. The maximal

width of the CTV in the robustly optimized IMPT-3D plan

was about 0.8 Gy, compared with about 2.8 Gy from the

nonrobust optimization; the reduction in sensitivity was con-

siderably smaller when comparing optimization methods in

the IMPT-DET plan (the maximal width of the CTV was

FIG. 2. DVHs derived from the robustness quantification of the CTV and various OARs from the 36-beam IMPT-DET plan (left) and 3-beam IMPT-3D plan

(right) with robust optimization for the prostate cancer case. The solid lines are the DVHs derived using the nominal dose of every voxel. All curves are nor-

malized to the total volume of the corresponding organs.
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about 14.2 Gy for robust optimization and about 16.6 Gy for

nonrobust optimization).

III.B. BOS cancer case

To determine if the above findings could be generalized,

we performed a similar study for 1 representative BOS cancer

case. We found that for the BOS cancer case, the DET method

(with HI¼ 4.8%) generated plans with more homogeneous

dose distributions in the CTV than did the IMPT-3D method

(with HI¼ 7.4%) and offered better CTV coverage. In addi-

tion, the DET method provided better normal tissue protection

(Fig. 3). The details of the dosimetric parameters are shown in

Table III.

The D99% of the CTV from the IMPT-3D plan (65.4 Gy)

was similar to that from the IMPT-DET plan (65.8 Gy), which

means that the target coverage was similar in both plans. How-

ever, the dose inside the CTV in the IMPT-DET plan was

more homogeneous (HI¼ 5.0%) because part of the CTV was

overdosed in the IMPT-3D plan (HI¼ 7.8%). The IMPT-DET

plan spared more normal tissue than did the IMPT-3D plan.

TABLE II. Values of dosimetric parameters in the 3-beam IMPT-3D plan and

36-beam IMPT-DET plan with robust optimization for the prostate cancer

case.

Tissue Dosimetric parameter 3-beam IMPT 36-beam IMPT-DET

CTV D99% (Gy) 76.0 75.7

D1% (Gy) 77.2 79.9

Rectum V10 (%) 63.6 49.1

V20 (%) 42.7 36.9

V40 (%) 11.8 21.7

V60 (%) 5.0 13.5

V70 (%) 2.5 9.2

Dmean (Gy) 19.6 21.1

Bladder V10 (%) 26.7 29.6

V20 (%) 17.0 20.6

V40 (%) 9.0 11.4

V60 (%) 5.1 6.2

V70 (%) 3.0 3.3

Dmean (Gy) 10.1 10.7

Femoral heads Dmax (Gy) 12.1 29.3

Dmean (Gy) 2.37 3.9

FIG. 3. DVHs derived from the robustness quantification of the CTV and various OARs from the 36-beam IMPT-DET plan (left) and 3-beam IMPT-3D plan

(right) with conventional PTV-based optimization for the BOS cancer case. The solid lines are the DVHs derived using the nominal dose of every voxel. All

curves are normalized to the total volume of the corresponding organs.
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These results are the inverse of those observed in the prostate

cancer case and might have resulted from the more stringent

dose constraints used in this case than in the prostate cancer

case to nearby OARs (see Sec. IV).

Although the DET was less robust to uncertainties than

was the 3D method (Fig. 3), we observed that for the BOS

cancer case our robust optimization method could improve

the robustness of the IMPT-DET plan to uncertainties

(Fig. 4). The details of the dosimetric parameters are shown

in Table IV. Please note that the DET plan (without robust

optimization) for the BOS cancer case was not as sensitive

to uncertainties as the prostate cancer case. This result might

give us some hints why the robust optimization could

improve the BOS cancer case but not the prostate cancer

case, as discussed in Sec. IV.

Figure 5 shows the dose distributions for the BOS cancer

case in the transverse plane derived from the 36-beam

IMPT-DET plans developed with conventional PTV-based

optimization and with robust optimization. Dose distribu-

tions with the nominal range of doses and with a range 3.5%

higher than the nominal one are shown. It is clear that the

dose distribution in the robustly optimized plan was less

affected by the range uncertainty than the PTV-based plan.

Figure 6 shows the dose distributions resulting from setup

TABLE III. Values of dosimetric parameters in the 3-beam IMPT-3D plan

and 36-beam IMPT-DET plan from conventional PTV-based optimization

for the BOS cancer case.

Tissue Dosimetric parameter 3-beam IMPT 36-beam IMPT-DET

CTV D99% (Gy) 65.4 65.8

D1% (Gy) 70.4 69.1

Brainstem V20 (%) 64.9 46.2

V30 (%) 46.5 32.3

V40 (%) 31.7 22.0

V50 (%) 18.3 13.6

V60 (%) 7.3 7.2

Max (Gy) 68.3 68.6

Dmean (Gy) 30.2 23.7

Spinal cord Dmax (Gy) 32.0 34.5

Dmean (Gy) 1.2 0.95

FIG. 4. DVHs derived from the robustness quantification of the CTV and various OARs from the 36-beam IMPT-DET plan (left) and 3-beam IMPT-3D plan

(right) with robust optimization for the BOS cancer case. The solid lines are the DVHs derived using the nominal dose of every voxel. All curves are normal-

ized to the total volume of the corresponding organs.
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uncertainties, in which the patient was moved to the right by

3 mm. The shift affected the PTV-based plan to a markedly

greater degree than the robustly optimized plan. Robust opti-

mization led to robust IMPT-DET and IMPT-3D plans that

were both resistant to uncertainties for this BOS cancer case.

IV. DISCUSSION

In this paper, we evaluated the use of the DET in IMPT

treatment planning. In this study, we did not adopt a com-

monly used clinical beam arrangement with 2 lateral opposed

fields in IMPT-3D for the prostate cancer case because our

goal was not to compare our 36-beam plan with the common

clinical plan. Some published studies have also described

5-beam plans to treat a prostate cancer, such as in Albertini

et al.11 In our current study, we used only relaxed dose con-

straints for all results presented here, which were adjusted by

trial and error to meet the dose-volume constraints used in our

clinics. Dose-volume constraints may be incorporated using

the method described by Wu and Mohan,32 which we plan to

do in our future studies.

We conclude that with no uncertainties considered, the

DET is less robust to uncertainties than is the 3D method but

offers better normal tissue protection. With robust optimiza-

tion to account for range and setup uncertainties, we can

improve the robustness of IMPT plans to uncertainties; how-

ever, our findings show the extent of improvement varies. It

is important to remember that these conclusions are prelimi-

nary and are limited in scope, but we have other evidence

that supports them. Space limitations permitted us to include

only illustrative examples in this paper; however, we have

conducted a robust optimization study of IMPT-3D for 20

cancer patients, including 9 head and neck, 7 lung, and 4

prostate cancer patients. For IMPT-DET, we have studied

fewer cases, but our results and conclusions are consistent

with those reported in this paper. We found at least two pos-

sible mechanisms to improve the robustness of IMPT plans

to uncertainties: (1) a localized single-field uniform dose dis-

tribution (LSFUD) mechanism, in which the optimization

algorithm attempts to produce an single-field uniform dose

(SFUD) while minimizing the patching field as much as pos-

sible and (2) a perturbed dose distribution, which follows the

change in anatomical geometry. Both mechanisms are imple-

mented by multiple-instance optimization.33 The multiple-

instance optimization procedure described in Sec. II.C has

more knowledge of the IMs than the single-instance optimi-

zation used in the conventional PTV-based optimization,

which makes it possible to retain plan robustness despite

uncertainties.

Figure 7 demonstrates how our robust optimization led to

a plan that was more robust to uncertainties in the prostate

cancer case. The figure shows the dose distribution (isosur-

face) in the transverse plane of single beams from the con-

ventionally optimized PTV-based plan and from the robustly

TABLE IV. Values of dosimetric parameters in the 3-beam IMPT-3D plan

and 36-beam IMPT-DET plan with robust optimization for the BOS cancer

case.

Tissue Dosimetric parameter 3-beam IMPT 36-beam IMPT-DET

CTV D99% (Gy) 65.3 65.3

D1% (Gy) 73.4 71.9

Brainstem V20 (%) 57.5 36.8

V30 (%) 39.5 23.3

V40 (%) 24.9 13.9

V50 (%) 12.8 7.1

V60 (%) 4.1 1.8

Dmax (Gy) 67.3 69.1

Dmean (Gy) 26.6 18.9

Cord Dmax (Gy) 28.3 25.6

Dmean (Gy) 0.93 0.67

FIG. 5. Dose distributions in the transverse plane for the BOS cancer case illustrating that the robustly optimized 36-beam IMPT-DET plan was insensitive to range

uncertainty compared with the conventionally PTV-based optimized 36-beam IMPT-DET plan. Left panels: PTV-based plans. Right panels: robustly optimized plans.

Top row: nominal position. Bottom row: with 3.5% larger range. CTV: orange color wash (middle filled area); brainstem: magenta color (bottom enclosed area).
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optimized plan. The range uncertainties were dominant in

this case. In conventional optimization, fields 2 and 3 were

patched together to produce a uniform distribution. How-

ever, robust optimization resulted in each field covering the

target uniformly, leading to an LSFUD. This idea can be

seen more clearly in Fig. 8, which shows the dose profiles of

different fields along the R-L direction from the convention-

ally optimized PTV-based plan and the robustly optimized

FIG. 6. Dose distributions in the transverse plane for the BOS cancer case illustrating that the robustly optimized 3-beam IMPT-3D plan was relatively insensi-

tive to setup uncertainty compared with the conventional PTV-based optimized 3-beam IMPT-3D plan. Left panels: PTV-based plans. Right panels: robustly

optimized plans. Top row: nominal position. Bottom row: with patient moved to the right by 3 mm. CTV: orange color wash (middle filled area); brainstem:

magenta color (bottom enclosed area); red solid arrows: beam directions.

FIG. 7. Dose distribution (color wash) of fields in the transverse plane of the 3-beam IMPT plan for the prostate cancer case. Top row: beam 2 (gantry angle:

140�); bottom row: beam 3 (gantry angle: 270�). Left column: PTV-based plan; right column: robust plan. Cyan (bottom filled area): rectum; yellow (top

enclosed area): bladder; red (middle enclosed area): CTV; red solid arrows: beam directions. The PTV-based plan was generated from the IMPT-3D inverse

treatment plan, which was optimized on the basis of the PTV.

3098 Liu et al.: Robust optimization in IMPT 3098

Medical Physics, Vol. 39, No. 6, June 2012



plan of the prostate cancer case. For comparison, the figure

also shows the total dose distributions on the transverse

plane of the prostate cancer case. The slopes of the dose pro-

files are considerably flatter inside the target.

The optimization algorithm attempts to produce an SFUD

while minimizing the patching field as much as possible

(i.e., it employs an LSFUD mechanism). The LSFUD mech-

anism greatly improved the robustness to range uncertainties

in the IMPT-3D plan for this prostate cancer case. However,

no such improvement could be gained in IMPT-DET

because, by definition, it is impossible to cover a regular-

sized target uniformly with just 1 field. Therefore, the possi-

ble mismatch between beamlets due to range uncertainties

greatly diminished the IMPT-DET plan’s robustness.

Unfortunately, the above LSFUD mechanism does not

work in all cases. In some such cases, the mechanism of

perturbed dose distribution to follow the change of anatomy

geometry is very important. A schematic depiction of the sec-

ond mechanism illustrates how the optimization method may

affect plan robustness to uncertainties (Fig. 9). The top panel

of Fig. 9 shows the nominal anatomical geometry without any

uncertainties considered; its IM is represented by IM0
i;j. The

bottom panel shows changes in the anatomical geometry due

to an uncertainty (both setup and range uncertainties can be

accounted for, although only one setup uncertainty scenario is

shown here for convenience); its influence matrix is repre-

sented by IM1
i;j. Because IMPT is very sensitive to uncertain-

ties, there is a big difference between IM0
i;j and IM1

i:j. In other

words, the dose distribution of IMPT could be easily per-

turbed by the uncertainties. It is worth noting that it is this

unique characteristic of protons that makes it possible for

multiple-instance optimization to achieve a more robust

IMPT plan without sacrificing plan optimality. If there were

no differences between the IMs corresponding to different

uncertainty scenarios as for photons, both robust optimization

and PTV-based conventional optimization would lead to

same robust plans. As the differences of the IMs grow, both

methods become worse, but comparatively larger benefits can

be obtained from the robust optimization because it can com-

pensate for the differences of the IMs in a better way than

conventional methods can. In our robust optimization, the

optimizer can find a desired beamlet weight solution from the

degenerate solution space by means of multiple-instance opti-

mization. Although the beamlet weights solution (fluence

maps) x2
j remain unchanged in different uncertainty scenar-

ios, the dose distribution Dm
i ¼

P
j IMm

i;jx
2
j derived from such

FIG. 8. Dose distribution (color wash) of fields in the transverse plane of the 3-beam IMPT plan for the prostate cancer case. Top row: total dose distribution; bottom
row: dose profiles of different fields along the R-L direction indicated in the top row as red middle arrows. Left column: PTV-based plan; right column: robust plan.

Cyan (bottom filled area): rectum; yellow (top enclosed area): bladder; red (middle enclosed area): CTV. The PTV-based plan was generated from the IMPT-3D

inverse treatment plan, which was optimized on the basis of the PTV.
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a fluence map can be perturbed so that it follows the changes

in anatomical geometry, thus improving the robustness of

IMPT plans in the face of uncertainties. The current method is

limited in its ability to handle range uncertainties and rigid

shifts in patient isocenters due to setup uncertainties. The

intra-fractional anatomical changes necessitate 4D robust opti-

mization using 4D CT and deformable image registration; this

will be the subject of a future study in our laboratory.

We chose to use the CTV rather than the PTV as the target

for optimization. Instead of expanding the CTV to form a PTV

with a fixed, predefined margin to account for setup uncertain-

ties, our worst-case robust optimization itself generated a

patient-specific, “customized,” and as-small-as-necessary mar-

gin (i.e., the margin itself was optimized by the optimizer),

which led to an effectively smaller margin than if we had used

a fixed and predefined margin to expand the CTV to form the

PTV. Therefore, we were able to achieve better normal tissue

protection than the conventional PTV-based optimization

without compromising the target coverage. This mechanism

can be seen clearly from Figs. 5 and 6 in both IMPT-DET and

IMPT-3D plans for the BOS cancer case.

It would be of interest to determine why the planning

techniques behaved differently for the prostate and BOS

cancer treatment plans. Albertini et al.34 pointed out

that whether the relaxed or “stringent” constraints were

employed for nearby organs played an important role in the

robustness of conventional PTV-based plans when uncer-

tainties were present, since relaxed constraints to the organs

could lead to quasi-SFUD individual fields (thus rendering

the plans insensitive to uncertainties), whereas stringent

constraints to the organs could lead to individual fields with

large in-field dose gradients (thus rendering the plans sensi-

tive to uncertainties).34

For our prostate cancer case, only relaxed volume con-

straints were given to the OARs (e.g., less than 25% of

rectum volume should receive 92% of the prescribed dose).

One could satisfy these relaxed constraints simply by patch-

ing quasi-SFUD individual fields in the conventional

PTV-based IMPT-3D plans. These resulted in more robust

conventional PTV-based plans in IMPT-3D compared with in

IMPT-DET. The robust optimization further improves the

robustness of the IMPT-3D plans via LSFUD. However,

patching quasi-SFUD individual fields are not possible with

the DET approach because of the very nature of DET. For the

BOS cancer case, in which stringent dose constraints were

given to the neighboring OARs (e.g., 0% of the brainstem vol-

ume could receive 82% of the prescribed dose), the IMPT

plans needed to generate individual fields with large in-field

dose gradients. These kinds of fields can be generated with

both the 3D and DET approaches, thus both of them are almost

equally sensitive to uncertainties. However, the robustness of

the BOS plans can be much improved after robust optimization

since now the multiple-instance optimization works well here.

The choice of the initial starting beamlet intensity map

might also play an important role in the robustness of the

final IMPT plans,11 especially if dose-volume constraints are

used. It is worthy to emphasize here that in our IMPT-DET

planning, the optimization process was started by setting the

beamlet weight universally to zero except for the most and

second most distal beamlets [i.e., these were set for initial

condition (d) of Albertini et al.,11] while in our IMPT-3D

planning, optimizations used constant initial beamlet weights

[initial condition (a) of Albertini et al.11]. The influence of

the initial starting conditions on the IMPT-3D plans’ robust-

ness was beyond the scope of this analysis but should be

explored in a future study.

It would also be interesting to know to what degree the

number of energies is a determining factor that makes it hard

to improve the robustness of DET plans. For the prostate

cancer case presented here, we have tried to use the highest

one, two, three, and five energy layers (data not shown) and

have found that when three or fewer of the highest energy

layers are used, the robustness of the IMPT-DET plan in the

face of uncertainties cannot be much improved. However, if

the highest five energy layers are used, we can markedly

improve the robustness of the IMPT-DET plan. This result

can be explained by the first mechanism discussed in this pa-

per (i.e., the absence of an LSFUD mechanism in IMPT-

DET for the prostate cancer case) if a small number of

energy layers are used. However, if the highest five energy

layers are used in IMPT-DET, the number of distinct proton

energy layers used increases from 21 (with the highest two

energy layers used) to 36, or the same as in IMPT-3D.

Therefore, no energy efficiency benefits from IMPT-DET

over IMPT-3D can be attained if the highest five energy

layers are used in IMPT-DET.

FIG. 9. Illustration showing how multiple-instance optimization improves

the robustness of IMPT plans to uncertainties. Red (middle filled area):

CTV; black lines: PTV margin; blue (left rectangle): bones; green arrows:
beams. The green dashed lines indicate that the beams were not moved;

only the patient was shifted downward. Top: nominal anatomical geometry

without any uncertainties with its influence matrix represented by IM0
i;j; bot-

tom: anatomical geometry changed due to a setup uncertainty, with its influ-

ence matrix represented by IM1
i;j.
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IMPT-DET is highly sensitive to uncertainties; thus, radi-

ation oncologists have been slow to adopt DET in IMPT

treatment planning. We believe that our results might partly

eliminate their concerns about applying this highly promis-

ing treatment modality to treat cancers.
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