
Dietary Inorganic Nitrate Alleviates Doxorubicin Cardiotoxicity:
Mechanisms and Implications

Lei Xia,*, Shu-Guang Zhua, Anindita Dasa, Qun Chena, David Durranta, Daniel C. Hobbsa,
Edward J. Lesnefskya,b, and Rakesh C. Kukrejaa

aVCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, 1101 East
Marshall Street, Richmond, VA 23298-0204
bMcGuire Veterans Affairs Medical Center, 1201 Broad Rock Road, Richmond, VA 23249

Abstract
Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents
to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe
cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX
toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite
and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide
insufficiency or dysregulation. In this review, we describe a novel concept of using dietary
supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and
dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our
data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the
Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left
ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects
were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and
mitochondrial H2O2 generation following DOX treatment. Furthermore, proteomic studies
revealed enhanced cardiac expression of mitochondrial antioxidant enzyme – peroxiredoxin 5 in
the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive
therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity
and myopathy during the prolonged pathological process. Future clinical trials in the cancer
patients undergoing DOX chemotherapy are warranted to translate these experimental findings
into an effective new therapy in preventing the DOX-induced cardiomyopathy.
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1. Introduction
Doxorubicin (DOX) is a broad-spectrum and potent anthracycline antibiotic that has been
widely used as a chemotherapeutic agent (trade names: Adriamycin®, Rubex®) to treat a
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variety of human cancers (1). Despite its anti-cancer efficacy, the clinical use of DOX is
often limited by dose-dependent cardiotoxicity, which may lead to irreversible dilated
cardiomyopathy and congestive heart failure (CHF) (2; 3). As illustrated in Fig. 1, the
current popular theories for explaining DOX cardiotoxicity include the DOX-induced
increase of oxidative stress in cardiomyocytes (4), alteration of mitochondrial energetics (5;
6), and direct effect on DNA. Anthracyclines may promote the formation of reactive oxygen
species (ROS) through redox cycling of their aglycones as well as their anthracycline-iron
complexes (7). The glycosidic DOX bond can be cleaved to yield 7-deoxydoxorubicinone,
again producing ROS (4). Other proposed explanations of cardiotoxicity involve platelet-
activating factor, prostaglandins, histamine, calcium, and C-13 hydroxy anthracycline
metabolites, etc. (8; 9). DOX is metabolized to doxorubicinol, which has been implicated for
its cardiotoxicity, possibly by causing perturbation of the iron homeostasis (4). The DOX-to-
doxorubicinol metabolism is mediated by aldo-keto reductase, aldehyde reductase, and
carbonyl reductases - CBR1 and CBR3 (9). For example, a recent study suggested that the
functional CBR3 V244M polymorphism may have an impact on the risk of anthracycline-
related CHF among childhood cancer survivors by modulating the intracardiac formation of
cardiotoxic anthracycline alcohol metabolites (10). The potential role of genetic risk factors
in anthracycline-related CHF remains to be further defined.

Due to the incomplete understanding of the multi-factorial cellular and molecular drivers
underlying DOX cardiotoxicity, the optimal therapeutic approaches for protection against
DOX cardiotoxicity have not yet been identified. This is because most of the tested agents
(such as anti-oxidants and β-adrenergic receptor blockers) have pronounced clinical
disadvantages including decline in high-density lipoprotein levels, inability to prevent
mortality, weight loss, and potentiation of myelosuppression (a compromised ability of bone
marrow to produce blood cells) (11). In addition, dexrazoxane, the only drug currently
approved by the U.S. Federal Drug Administration (FDA) for treating DOX cardiotoxicity,
acts by displacing iron from anthracycline-iron complexes or by chelating free cellular iron
and in turn preventing the site-specific iron-catalyzed ROS overproduction (7). However,
there has been a critical reassessment of the so-called “ROS and iron” hypothesis. Most
notably, numerous exogenous antioxidants have failed to alleviate DOX cardiotoxicity in
clinical trials (7). Several chelators that are stronger and more selective for iron did not
protect against DOX cardiotoxicity (12; 13). There is also concern about dexrazoxane for its
adverse effects of worsening myelosuppression and interfering with the anti-cancer efficacy
of DOX. Therefore, there is an ongoing and urgent need to search for a better and safer
cardioprotectant against DOX toxicity.

In this review, we provide an overview of our recent works on the use of inorganic nitrate in
alleviating DOX cardiotoxicity at the systemic, cellular, organelle, and molecular levels (14;
15).

2. Role of nitric oxide (NO) and NO synthase (NOS) in DOX-induced cardiac
injury

In addition to ROS, reactive nitrogen species are also implicated in DOX cardiotoxicity via
disruption of NO regulation (16). DOX-induced cardiac dysfunction results from formation
of peroxynitrite from the rapid reaction of NO and superoxide (17; 18). Previous studies
have suggested that DOX-enhanced levels of peroxynitrite may negatively affect ventricular
contractile function, which could result from the peroxynitrite-caused inhibition of
myofibrillar creatine kinase (19), impairment in myocyte Ca2+ cycling (20), as well as the
peroxynitrite-enhanced protein phosphatase activity that promotes the interaction of
phospholamban with protein phosphatase 2a leading to cardiac dysfunction (21). In addition,
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previous studies also demonstrated the detrimental role of inducible and endothelial NOS
(iNOS and eNOS, respectively) in rodent models of DOX cardiotoxicity (17; 18; 22; 23).

Conversely, NO is essential for the integrity of cardiovascular system and the decreased
production and/or bioavailability of NO leads to the development of cardiovascular
disorders (24) and heart failure (25). Numerous studies since 1999 have shown that iNOS/
eNOS-derived NO protects against ischemia/reperfusion (I/R) injury induced by ischemic,
hypoxic, and pharmacological preconditioning (26–32). Furthermore, our group first
reported a beneficial role of NO in sildenafil-induced protection against DOX cardiotoxicity
(33). There is also a possible link between the increased NO generation and diminished
DOX cardiotoxicity under treatment of β-adrenergic blockers (34) or statin (35), because
these drugs are known to enhance iNOS/eNOS mRNA and/or protein levels in myocardium
(36) and cardiomyocytes (37). Hence, the opposing views regarding NO and NOS in DOX
cardiotoxicity remain, similar to the overall image of NO as a double-edged sword.

3. NOS-independent nitrate/nitrite/NO pathway for cardiovascular
protection

Nitrate and nitrite have been traditionally considered as the inert end-products of NO
oxidation metabolism with limited intrinsic biological activity (38). This concept of nitrate/
nitrite has recently been revised and inorganic nitrate/nitrite have emerged at the forefront of
NO biology because they represent a major storage form of NO in blood and tissues (39). As
summarized in Fig. 2, in addition to the L-arginine-NOS-dependent NO synthesis, the NOS-
independent mechanism of NO generation also converts nitrate to nitrite to NO in vivo via
both enzymatic reduction [e.g. xanthine oxidoreductase (40)] and non-enzymatic acidic
disproportionation (41). There are numerous colonies of bacteria in the mammalian oral
cavity and intestine which can reduce nitrate to nitrite in vivo (42). During the past decade,
there has been an increasing recognition of the nitrate-nitrite-NO pathway as a
complementary or alternative system to the NOS-dependent pathway for ensuring sufficient
NO production, especially under pathophysiological situations including hypoxia and
acidosis when the oxygen-dependent NOS activity is compromised (43; 44). Since a
substantial portion of nitrate/nitrite in the blood and tissue is derived from dietary sources,
the dietary supplementation of nitrate or nitrite protects against myocardial I/R injury (45;
46), cardiac arrest-resuscitation, reduces hypertension (47), and improves endothelial and
platelet function as well as exercise performance (48). Table 1 provides an updated list of 14
key published studies in humans and rodents since 2002, which have consistently
demonstrated the beneficial effects of nitrate supplementation against various cardiovascular
disorders and risk factors (14; 15; 40; 45; 49–58).

The main focus of this review is to summarize and discuss our recently published data that
demonstrate protective effects of nitrate against DOX cardiotoxicity (14; 15) and to
emphasize the potential clinical implications of these novel findings as well as some
necessary precautions for dietary ingestion of high dose of inorganic nitrate in conjunction
with DOX chemotherapy.

4. Nitrate supplementation ameliorates DOX-induced LV contractile
dysfunction

We employed a widely used protocol of DOX-induced acute cardiotoxicity. Adult male
CF-1 outbred mice were given a single dose of DOX intraperitoneally (15 mg/kg, dissolved
in saline) or volume-matched saline (0.2 mL). In the nitrate-treated groups, the mice
received sodium nitrate (NaNO3) added into their drinking water at a concentration of 1 g/L
(~12 mmol/L) for 7 days before the DOX injection on Day 8. The nitrate regimen was
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continued throughout the 5-day post-DOX period (14; 15). This oral dose of NaNO3 was
chosen based on its reported cardioprotective property against myocardial ischemia-
reperfusion injury (45).

Left ventricular (LV) function was assessed using echocardiography (with Vevo770™

imaging system) under light anesthesia and subsequently with a Millar micro-tip pressure-
volume catheter inserted into the LV cavity via right carotid artery under surgical anesthesia
(14). LV ejection fraction and fractional shortening decreased significantly in the DOX
group as compared with the control group after 5 days of DOX treatment and the LV
function was improved with nitrate supplementation. Similarly, the DOX-induced LV
systolic (Figs. 3A, 3C) and diastolic (Figs. 3B, 3D) dysfunction was significantly improved
by nitrate. The decreases in heart rate (Fig. 3E) and mean aortic blood pressure (Fig. 3F)
caused by DOX were partially attenuated by nitrate (P<0.05 Nitrate+DOX versus DOX)

5. Nitrate supplementation reduces DOX-induced cardiomyocyte death in
vitro

In a parallel series of experiments, we isolated cardiomyocytes from LV of the mice
pretreated with 1 g/L nitrate for 7 days and exposed the cells to 1 μmol/L DOX added in the
culture medium. Myocyte necrosis and apoptosis were quantified 1 hour and 18 hours later
with trypan blue exclusion and TUNEL assays, respectively. The number of necrotic and
apoptotic cardiomyocytes increased following exposure to DOX in vitro, whereas the
cardiomyocytes from nitrate-treated mice were more resistant to DOX cytotoxicity and had
less cell death (14).

6. Nitrate supplementation preserves mitochondrial function
Mitochondria are abundant in cardiomyocytes and may take up to 35% of the cell volume.
Cardiac cells rely upon ATP to sustain contractile function and any interference with
structural or functional integrity of mitochondria is likely to cause selective toxicity to the
heart (5). Hence, mitochondria have been considered as the primary targets for the
cardiotoxicity of DOX (5; 6). DOX aglycones have been shown to accumulate in the inner
mitochondrial membrane where they interfere with electron carriers of the respiratory chain
and cause release of cytochrome c (59). Furthermore, DOX has been shown to inhibit the net
accumulation of calcium by isolated cardiac mitochondria (60).

It is widely accepted that DOX interferes with mitochondrial respiration at several levels of
electron transport chain (ETC). It diverts electrons from complex I of the respiratory chain
to generate the semiquinone free radical, initiating a futile redox cycle leading to a
stimulation of ROS generation (61–63). The cardiotoxicity of DOX is apparently dose-
dependent, i.e. a low concentration of DOX selectively damages NADH dehydrogenase by
increasing oxidative stress, whereas high concentration of DOX induces non-oxidative
inactivation of the complexes at ETC through the formation of a DOX-cardiolipin complex
(64; 65). To demonstrate the effect of nitrate supplementation on oxidative phosphorylation
following DOX treatment, we also studied oxidative phosphorylation in the cardiac
mitochondria isolated from various treated groups using glutamate+malate (complex I) and
succinate (complex II) as substrates to localize defects within the ETC. Enzyme activities of
complex I (NADH:duroquinone oxidoreductase) and NADH dehydrogenase (proximal
segment of complex I) were determined. DOX treatment markedly decreased the complex I-
controlled oxidative phosphorylation, whereas the rate of succinate oxidation was not altered
in DOX treated group. Nitrate supplementation restored oxidative phosphorylation, showing
protection of complex I against DOX-induced damage. We further localized the site of
defect in complex I by measuring the enzyme activities of complex I and NADH
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dehydrogenase (proximal part of complex I). We found that DOX decreased the activities of
complex I and its NADH dehydrogenase (P<0.05 versus Saline). Nitrate supplementation
protected both complex I and its NADH dehydrogenase against DOX-induced damage (14).
These data suggest that the attenuated damage at mitochondrial complex I level may at least
partially explain the nitrate-induced protection against cardiotoxicity.

7. Nitrate supplementation enhances plasma levels of nitrate and nitrite
We measured the plasma levels of nitrate and nitrite in the tested animals with a SIEVERS
chemiluminescence nitric oxide analyzer. We found that oral nitrate supplementation
enhanced plasma nitrate (Fig. 4A) and nitrite (Fig. 4B) as compared with Control group
(P<0.05). DOX treatment also elevated plasma nitrate level (likely through the enhanced
NOS-dependent NO synthesis triggered by DOX). In contrast, the nitrite levels did not
increase in DOX-treated groups with or without nitrate supplementation (Figs. 4A, 4B),
suggesting an impeded nitrate-to-nitrite conversion. However, the overall NO oxidation
products (NOx) were increased in Nitrate or Nitrate+DOX group compared with Control or
DOX group (Fig. 4C, P<0.05) (14).

Apparently the cardioprotective effects of oral nitrate supplementation were associated with
a concomitant increase in plasma levels of nitrate+nitrite (i.e. NOx, Fig. 4C) – an indicator
of enhanced NO production. However it is notable that DOX elevated plasma nitrate levels
but not the nitrite levels (with or without nitrate ingestion). The reason is not entirely clear.
From the current literature, we found absolutely no evidence for a direct reaction between
DOX and nitrite, although indirect interaction between DOX and nitrite through the ROS-
controlled oxidation of nitrite cannot be ruled out (66). Another interpretation for these
results is that DOX enhances NOS-dependent endogenous NO synthesis that leads to the
augmented plasma levels of nitrate and NOx, while the NOS-independent, oral bacterial-
driven conversion of nitrate to nitrite could be impeded by the potent antibiotic property of
DOX, indicated by the blunted nitrite response under DOX treatment (Fig. 4B). It is
interesting that even with the small change in plasma nitrite levels, high dietary nitrate
resulted in a larger increase in NOx level (Fig. 4C). Despite the possible inhibition of the
nitrate-nitrite-NO pathway by DOX, a substantial amount of NO could still be generated via
NOS-dependent pathway (Fig. 2), since both cardiac iNOS and eNOS tended to be further
upregulated by nitrate supplementation (our unpublished observations). Nevertheless, future
studies are needed to examine the role of NOS isoforms in nitrate-induced cardioprotection
against DOX cardiotoxicity.

8. Antioxidant effects of inorganic nitrate
As mentioned above, DOX cardiotoxicity is often associated with ROS generation in
mitochondria (65; 67), a separate mechanism from its anti-neoplastic activity (68). Complex
I and complex III of the mitochondria are the key sites for ROS generation (69) and DOX
enhances ROS generation through its bioreductive activation that converts DOX to a
semiquinone radical via univalent reduction (65). Complex I, especially the NADH
dehydrogenase (the initial segment of complex I), is the key site for DOX bioreductive
activation in cardiac cells (61; 62). The increased generation of ROS from the ETC in turn
damages mitochondria and induces cell injury (69; 70). Therefore, the novel observations
described below on the antioxidant property of dietary nitrate may represent a key
mechanistic explanation for the reduction of DOX cardiotoxicity by nitrate supplementation.

In our studies (14), we determined tissue lipid peroxidation by measuring the levels of
malondialdehyde and 4-hydroxyalkenals in heart samples using a colorimetric assay kit.
Lipid peroxidation in the DOX group was increased by 38% compared to control group
(P<0.05, Fig. 5A), which was completely suppressed by nitrate supplementation. We also
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measured the rate of H2O2 generation in mitochondria by monitoring oxidation of
fluorogenic indicator amplex red in the presence of horseradish peroxidase. H2O2 was
increased in mitochondria isolated from the DOX-treated mice as compared with the control
group when glutamate+malate were used as complex I substrate (P<0.05; Fig. 5B). Nitrate
supplementation significantly decreased the H2O2 generation triggered by DOX. Similarly,
nitrate supplementation attenuated DOX-induced H2O2 generation when succinate+rotenone
were used as complex II substrate (Fig. 5B).

Furthermore, concerning the increased mitochondrial ROS emission observed in the DOX-
treated mice (Fig. 5B), there is a possibility that DOX, similar to other major anticancer
alkylating agents and platinum-containing compounds, may target thioredoxin reductase
(TrxR) and in turn promote oxidative stress. For example, Stanley and coworkers recently
demonstrated that inhibiting thioredoxin 2 (Trx2) by auronofin dramatically increased H2O2
emission in cardiac mitochondria (71). Thus, a possible inhibitory effect of DOX on TrxR2
may be considered as a contributing factor for DOX triggered ROS production and
cytotoxicity. However, this assumption appears to contradict with the published results,
which demonstrated that, in contrast to the alkylating agents, anthracyclines (DOX and
daunorubicin) are not inhibitors but poor substrates of TrxR (72).

9. Inorganic nitrate induces mitochondrial antioxidant enzyme -
peroxiredoxin 5

To further explore the molecular mechanisms underlying nitrate-induced protection against
DOX cardiotoxicity, we utilized a globally non-biased proteomic approach with two-
dimensional differential in-gel electrophoresis (2D-DIGE) and MALDI TOF/TOF tandem
mass spectrometry (15). The advantages of this method over conventional 2-D gels in
detecting global protein expression and post-translational modifications have been
increasingly appreciated in recent years (73; 74). In particular, the conventional 2-D gel
methods are subject to inherent gel-to-gel variability and errors, which can be eliminated by
multiplex, high-resolution 2D-DIGE technique. This technique uses both size- and charge-
matched, spectrally resolvable fluorophores (CyDye) to simultaneously separate up to three
samples on a single 2-D gel. As a result, every protein spot on the gel has its own internal
standard and direct comparisons between the samples can be made with high sensitivity
without any gel-to-gel variability (73; 74).

As highlighted in Fig. 6, our proteomic and Western blot data show that peroxiredoxin 5
(Prx5) was the only thiol-based antioxidant enzyme that was up-regulated by the
cardioprotective regimen of nitrate (15). Peroxiredoxin represents a new type of peroxidase
distinct from catalase and glutathione peroxidase, in terms of abundance in expression,
broad intracellular distribution, and high affinity for hydrogen peroxide (75; 76). Among the
total of 6 identified Prx isoforms, only Prx3 and Prx5 localize in mitochondria. Currently the
role of Prx5 in any forms of cardioprotection is virtually unknown, although its importance
in cytoprotection against injuries caused by ROS (particularly hydrogen peroxide and
peroxynitrite) has been suggested by several studies in non-cardiac cells (77–80). Further
physiological studies are required to confirm a cause-and-effect relationship between
induction of cardiac Prx5 and cardioprotection against DOX cardiotoxicity by nitrate
supplementation.

It is noteworthy that although our proteomic study did not include the nitrate per se
treatment group (15), we observed later with Western blots an upregulated level of Prx5 in
cardiac mitochondria from the mice treated with nitrate alone (our unpublished data). On the
other hand, our preliminary results as well as a recent proteomic study by Perlman et al. (81)
indicated that nitrite per se seemed to have no significant effect on cardiac Prx5 expression.
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The underlying mechanisms for such a different response of Prx5 to nitrate versus nitrite
need to be further elucidated. In addition, DOX and/or nitrate treatment may not only affect
the overall abundance of Prx5 in the heart, but also its redox status, i.e. reduced form versus
oxidized form (71). Therefore it is important to find out if nitrate ingestion also preserves
the ratio of reduced/oxidized Prx5.

10. Elevated nitrate level does not hamper cancer-killing efficacy of DOX
Importantly, our preliminary study with cell viability assay also showed that the
cardioprotective plasma concentration of nitrate (~60 μmol/L) (14) did not interfere with
anti-cancer efficacy of DOX in the cultured human prostate cancer cell line, DU145. As
shown in Fig. 7, proliferation of the DU145 cells was significantly reduced by DOX (0.2
μmol/L for 48 hours) in vitro, whereas co-treatment with nitrate (30, 60 or 90 μmol/L) had
no effect on DOX-induced toxicity in the cancer cells. Nevertheless, these in vitro findings
need further confirmation in other types of cancer cells as well as in xenograft tumor models
in vivo.

11. Therapeutic implications and applicability
DOX-induced cardiomyopathy remains a clinical dilemma in oncology and cardiology
practices and has severely limited the therapeutic potential of this potent anti-cancer drug
(2). The above discussed results from our recent studies (14; 15) clearly suggest that nitrate
supplementation could be a novel treatment modality in alleviating DOX-induced
cardiotoxicity in cancer patients. The current upper limit of the World Health Organization
Acceptable Daily Intake (WHO-ADI) for nitrate is 222 mg per day for an adult with 60 kg
body weight (i.e. 3.4 mg/kg) (82). The oral nitrate dose used in our recent mouse studies is
about 180 mg/kg/day, which converts to 14.6 mg/kg/day of equivalent human dose
(according to the FDA conversion formula, i.e. mouse dose divided by 12.3). Therefore this
nitrate dose is less than 400% of the WHO-ADI and highly physiological, considering only a
cup of raw spinach contains 926 mg of nitrate (82). In fact, comparable oral doses of nitrate
supplementation have been safely used in human subjects and afforded impressive beneficial
effects under several cardiovascular disorders (see Table 1 for details). In addition, nitrate
supplementation also alleviates some chronic degenerative diseases such as type-2 diabetes
(55) and it could decrease whole body oxygen cost during exercise and improving maximal
performance and mitochondrial efficiency of skeletal muscles (83–86). Our recent studies in
the mouse model of DOX cardiotoxicity (14; 15) further underscore the potential utility of
inorganic nitrate therapy as an effective and affordable therapy for protecting cancer patients
from the devastating cardiotoxicity of DOX (87).

12. Concerns and precautions on potential adverse effects
Over the past 50 years, there has been a substantial disagreement among scientists over the
interpretation of evidence on the issue of harmful effects of nitrate on human health (88).
The evidence for nitrate as a cause of two serious diseases - infant methemoglobinemia and
cancers of the digestive tract remains controversial (89–91). Despite the proven
cardiovascular benefits of nitrate supplementation that would likely outweigh its potential
side-effects, we should be cautious about the possibility that the sub-population of cancer
patients receiving DOX may be more susceptible than healthy individuals to the adverse
health effects of nitrate. Nevertheless, our recent data showed that nitrate-supplemented
mice had better survival rate (93%) than the controls (80%) 5 days after DOX treatment
(P<0.05), whereas a 13-day course of high nitrate intake alone did not cause any mortality or
other apparent adverse effects in the mice (15).
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12.1 Carcinogenesis
Nitrate has also received considerable bad press over the years. Nitrate salts have been
widely used as preservative in processed meats and some epidemiological studies revealed a
weak link between processed meats and gastric cancer (89–91). It was suggested that nitrate
promotes digestive cancers partially due to its ability to form carcinogenic N-nitroso
compounds in the digestive tract. This concept resulted in the imposed strict limits on nitrate
as a food additive in many countries. To the contrary, a number of studies in animals and
humans did not support the hypothesis that nitrate is carcinogenic (88; 92; 93). No
difference was found in the incidence of gastric cancer and all causes of mortality between
the nitrate fertilizer plant workers and the general population (94). In particular, the greatest
dietary source of nitrate in the present time is vegetables, particularly leafy greens and red
beet (90; 91). In addition, there should be less concern on the questionable carcinogenesis
during the course of nitrate supplementation, since the targeted cancer patients are already
receiving anti-cancer therapy with DOX.

12.2 Methemoglobinemia
Infant methemoglobinemia is a potentially lethal disease related to the high nitrate levels in
well water in certain geographic areas (95). The nitrate-stimulated nitric oxide production in
the gut would lead to its reaction with oxyhemoglobin in blood and converting it into
methemoglobin. However, re-evaluation of the original studies in 1940s indicate that cases
of methemoglobinemia always occurred when wells were contaminated with human or
animal excrement and that the well water contained appreciable numbers of bacteria and
high concentrations of nitrate, which strongly suggests that methemoglobinemia resulted
from the presence of bacteria in the well water rather than nitrate per se (88). Therefore we
cautiously believe that without bacterial contamination, nitrate per se should not cause
methemoglobinemia in the case of nitrate use for protecting against DOX cardiotoxicity. In
addition, methemoglobinemia rarely occurs in children or adults due to the physiological
induction of methemoglobin reductase during the post-weaning developmental period (91).

12.3 Hypotension
One of the most common adverse effects of DOX is hypotension with a reported prevalence
of 20% in high dose DOX-treated cancer patients (96). Hypotension is also a top
perioperative cardiovascular complication in the patients with a history of anthracycline
drug therapy, which was associated with or without depressed LV function (97). DOX
enhances secretion of vasoactive substances such as histamine although the release of
vasoactive substances may not play a prevalent role in the development of DOX
cardiotoxicity (98). Because nitrate is a known vasodilator, its use may theoretically worsen
DOX-induced hypotension. On the other hand, the nitrate-induced improvement in cardiac
contractility and output may at least partially compensate for the vasodilatory effect and
actually lead to a net increase of aortic blood pressure that was observed in our recent study
(Fig. 3F) (14). Nevertheless, a great caution or contraindication should be applied when
administering nitrate to the subgroup of patients with preexisting severe hypotension and a
careful monitoring of peripheral blood pressure is always recommended under the nitrate
therapy.

13. Concluding remarks
The above review summarized the cardioprotective effects of chronic dietary nitrate
supplementation against cardiac injuries caused by DOX, which include ventricular
dysfunction, cell death, oxidative stress, and mitochondrial respiratory chain damage.
Importantly, the anticancer efficacy of DOX is not hindered by the cardioprotective
concentration of nitrate. Further in-depth research is needed to identify the yet unknown
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molecular components and links involved in the cellular signaling cascade leading to the
nitrate-enhanced resistance to DOX cardiotoxicity. In terms of translational value, the nitrate
dose used in our studies is equivalent to less than 400% of WHO-ADI for human and
therefore such a dose is highly physiological and can be easily attained through dietary
ingestion of inorganic nitrate salts or the vegetables/vegetable juices containing high levels
of nitrate. Based on the preclinical evidence from our laboratory, we believe that the use of
oral nitrate supplementation could turn out to be a novel preventive and therapeutic
approach for effectively reducing cardiotoxicity and financial burden of the thousands of
cancer patients receiving DOX chemotherapy. Future clinical trials are clearly warranted to
achieve this goal.
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Highlights

• Doxorubicin is a potent cancer chemotherapy drug, but also causes
cardiotoxicity.

• Dietary nitrate limits cardiac dysfunction, cell death, and mitochondrial damage.

• Nitrate reduces oxidative stress and induces antioxidant enzyme – peroxiredoxin
5.

• Elevated levels of nitrate do not hamper anti-cancer efficacy of doxorubicin in
vitro.

• Inorganic nitrate may be an affordable therapy for alleviating drug
cardiotoxicity.
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Figure 1.
Major pathways of cardiotoxicity of with doxorubicin and its metabolites. ROS – reactive
oxygen species.

Xi et al. Page 16

Nitric Oxide. Author manuscript; available in PMC 2013 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Distinctive pathways for the nitric oxide synthase (NOS) dependent and independent
generation of nitric oxide (NO) in living organisms.
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Figure 3.
Effect of nitrate supplementation on doxorubicin (DOX)-induced left ventricular
dysfunction. Nitrate intake restored the DOX-induced impairment in systolic pressure (A),
end-diastolic pressure (B), positive, negative dP/dtmax (C, D), heart rate (E), and mean
aortic blood pressure (F). Data are Mean±SEM (n=8 per group). * indicates P<0.05 versus
all other groups; # indicates P<0.05 versus Control or Nitrate groups. Adopted from (14).
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Figure 4.
Assessment of plasma levels of nitrate (A), nitrite (B), and sum of nitrate and nitrite, i.e.
NOx (C). Data are Mean±SEM (n=6 per group). * indicates P<0.05 versus all other groups;
# indicates P<0.05 versus DOX group. Adopted from (14).

Xi et al. Page 19

Nitric Oxide. Author manuscript; available in PMC 2013 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Effect of nitrate supplementation on DOX-induced tissue lipid peroxidation (A) and H2O2
generation from isolated mitochondria (B). Complex I substrate (glutamate + malate) and
complex II substrate (succinate + rotenone) were utilized to identify the specific site(s) of
H2O2 generation in the mitochondria. Data are Mean±SEM; n=6 per group for (A); n=5–8
per group for (B). * indicates P<0.05 versus all other groups; # indicates P<0.05 versus
DOX group. Adopted from (14).
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Figure 6.
Graph A shows the representative magnified 2D-DIGE gel images focusing on protein spot
#59, which was identified as peroxiredoxin 5 (Prx5) by MALDI TOF/TOF tandem mass
spectrometry. Note the remarkable difference between DOX alone and Nitrate+DOX groups
in the labeled fluorescent dye colors (top panel), spot density of the converted black-and-
white images (bottom left), as well as the integrated 3 dimensional DeCyder software
analysis output (bottom right) for this protein. Graph B [partially adopted from (15)]
presents Western blots for Prx5 and α-Tubulin (loading control) in heart tissue and
densitometric quantification of the α-Tubulin-normalized expression of Prx5 (Mean±SEM;
n=4/group).
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Figure 7.
Effect of nitrate on the cancer-killing efficacy of DOX in vitro. The human prostate cancer
cell line (DU145) were incubated with DOX (0.2 μmol/L) for 48 hours with or without co-
incubation with 30, 60, or 90 μmol/L of nitrate in the cell culture medium. Cell proliferation
was measured with a CellTiter 96 AQueous One Solution Cell Proliferation assay kit
(Promega Corp.). Data are Mean±SEM (n=3 per group). * P<0.05 vs. Control; # P<0.05 vs.
the corresponding dose of Nitrate group.

Xi et al. Page 22

Nitric Oxide. Author manuscript; available in PMC 2013 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xi et al. Page 23

Table 1

List of the key published studies demonstrating cardiovascular benefits of dietary inorganic nitrate.

Authors Species (disease) Targeted pathologies, nitrate dose, and
main end-points

Beneficial effects Key cellular and
molecular
mechanisms

Richardson et al.
[54]

Human Blood-borne risk factors; KNO3 2 mmol
once; blood samples

Platelet aggregation ↓ RSNO ↑

Larsen et al. [57] Human Hypertension; NaNO3 (0.1 mmol/kg/
day); blood pressure

DBP ↓ NOx ↑

Bryan et al. [45] Mouse Ischemia–reperfusion; NaNO3 (1 g/L);
myocardial infarct size

Infarct size ↓ NOx ↑

Webb et al. [49] Human Hypertension; beetroot juice; blood
pressure, tissue perfusion, blood samples

DBP ↓ SBP ↓ platelet
aggregation ↓ endothelial
dysfunction ↓

NOx ↑

Jansson et al. [40] Rat Ischemia–reperfusion; NaNO3 (1 g/L);
post-ischemic blood flow

Post-ischemic blood flow ↑

Petersson et al.
[50]

Rat Hypertension; KNO3 (0.06–0.35 mmol/
kg/day); blood pressure

DBP ↓ SBP ↓ Oral bacteria to
convert nitrate to
nitrite

Kapil et al. [56] Human Hypertension; KNO3 or beetroot juice
(0.06–0.35 mmol/kg/day); blood pressure

DBP ↓ SBP ↓ NOx ↑

Carlström et al.
[55]

Mouse (eNOS-
KO); rat

Metabolic syndrome; NaNO3 (0.1 mmol/
kg/day); glucose and lipid profiles;
visceral fat; blood pressure

Body weight/fat ↓
triglycerides ↓ glucose
tolerance ↑ MAP ↓

Acute NOx ↑
independent of
eNOS

Sobko et al. [52] Human Hypertension; Japanese traditional diet
(nitrate 19 mg/kg/day); blood pressure

DBP ↓

Presley et al. [51] Human (aged) Aging-related decrease in brain
circulation; arterial spin labeling MRI;
tissue perfusion

Regional cerebral perfusion ↑ NOx ↑

Carlström et al.
[53]

Rat (SHBP) High salt-induced hypertension; NaNO3

(1 mmol/kg/day); myocardial infarct size
MAP ↓ cardiac hypertrophy ↓
cardiac fibrosis ↓

Blood lipid
peroxidation ↓

Zhu et al. [14] Mouse DOX cardiotoxicity; NaNO3 (1 g/L) for
13 days; plasma nitrate 60 lM;
echocardiography; Millar catheter; heart
tissues; cultured cardiomyocytes

LV function ↑ necrosis/
apoptosis ↓

Mito-complex I
activity ↑ mito-
H2O2 ↓ cardiac
lipid peroxidation ↓
NOx ↑

Xi et al. [15] Mouse DOX cardiotoxicity; NaNO3 (1 g/L) for
13 days; heart tissues; proteomics with
2D-DIGE and mass spectroscopy

See Zhu et al. [14] Prx5 ↑

Kenjale et al. [58] Human (PAD) PAD; beetroot juice; walking distance
before onset of claudication pain; blood
pressure

Pain-free walking distance ↑
DBP ↓

NOx ↑

Abbreviations: NOx, total sum of nitrate and nitrite; RSNO, S-nitrosothiols; DOX, doxorubicin; Prx5, peroxiredoxin 5; 2D-DIGE, two-dimensional
differential in-gel electrophoresis; LV, left ventricle; MRI, magnetic resonance imaging; eNOS-KO, endothelial nitric oxide synthase knockout;
SHBP, salt-induced high blood pressure; DBP, diastolic blood pressure; SBP, systolic blood pressure; MAP, mean arterial pressure; ED,
endothelial dysfunction; PAD, peripheral arterial disease.
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