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Abstract
It is of great interest in modern drug design to accurately calculate the free energies of protein-
ligand or nucleic acid-ligand binding. MM-PBSA (Molecular Mechanics-Poisson Boltzmann
Surface Area) and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) have
gained popularity in this field. For both methods, the conformational entropy, which is usually
calculated through normal mode analysis (NMA), is needed to calculate the absolute binding free
energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the
MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the
conformational entropy based upon solvent accessible surface area calculations. In our approach,
the conformational entropy of a molecule, S, can be obtained by summing up the contributions of
all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent
accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are
weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the
same weight and a general parameter k is applied to balance the contributions of the two types of
surface areas.

This entropy model was parameterized using a large set of small molecules for which their
conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into
account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated
in three tests. For the convenience, TS, the product of temperature T and conformational entropy
S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good
correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid
systems sampled with molecular dynamics simulations (10 snapshots were collected for post-
entropy calculations): the mean correlation coefficient squares (R2) was 0.56. As to the 20
complexes, the TS changes upon binding, TΔS, were also calculated and the mean R2 was 0.67
between NMA and WSAS. In the second test, TS were calculated for 12 proteins decoy sets (each
set has 31 conformations) generated by the Rosetta software package. Again, good correlations
were achieved for all decoy sets: the mean, maximum, minimum of R2 were 0.73, 0.89 and 0.55,
respectively. Finally, binding free energies were calculated for 6 protein systems (the numbers of
inhibitors range from 4 to 18) using four scoring functions. Compared to the measured binding
free energies, the mean R2 of the six protein systems were 0.51, 0.47, 0.40 and 0.43 for MM-
GBSA-WSAS, MM-GBSA-NMA, MM-PBSA-WSAS and MM-PBSA-NMA, respectively. The
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mean RMS errors of prediction were 1.19, 1.24, 1.41, 1.29 kcal/mol for the four scoring functions,
correspondingly. Therefore, the two scoring functions employing WSAS achieved a comparable
prediction performance to that of the scoring functions using NMA. It should be emphasized that
no minimization was performed prior to the WSAS calculation in the last test.

Although WSAS is not as rigorous as physical models such as quasi-harmonic analysis and
thermodynamic integration (TI), it is computationally very efficient as only surface area
calculation is involved and no structural minimization is required. Moreover, WSAS has achieved
a comparable performance to normal mode analysis. We expect that this model could find its
applications in the fields like high throughput screening (HTS), molecular docking and rational
protein design. In those fields, efficiency is crucial since there are a large number of compounds,
docking poses or protein models to be evaluated. A list of acronyms and abbreviations used in this
work is provided for quick reference.

Keywords
Conformational Entropy; Configurational Entropy; WSAS; Solvent Accessible Surface Area;
MM-PBSA; MM-GBSA; Binding Free Energy Calculations; Protein Design; Drug Design

1.0 Introduction
1.1 MM-PBSA and MM-GBSA Methods

Free energy prediction is one of the central interests in computational chemistry. With the
continually increased computer power, the calculations of free energy changes of biological
events, such as protein folding, protein-ligand binding, protein-protein association, have
become popular. The methods of calculating free energies and entropies through molecular
simulations have been summarized in many reviews.1–7 Among a variety of approaches,
MM-PBSA and MM-GBSA have gained popularity owing to their computational efficiency
in comparison to the theoretically more rigorous methods such as free energy perturbation
and thermodynamic integration.1, 8–16 Critical assessment of the two techniques on
modeling protein-ligand binding begins to emerge.17–22

In a typical MM-PB/GBSA calculation, the molecular system of interest is first immersed in
a water box and up to tens of nanoseconds molecular dynamics simulations are performed
using either the “single trajectory” or the “individual trajectories” protocol.3 In most
scenarios, the “single trajectory protocol” is superior to the “individual trajectories protocol”
as the former can achieve a better error cancellation. However, when the binding leads to a
dramatic conformational change, the ensembles of the receptor, ligand and complex need to
be sampled separately (the “individual trajectories” protocol) since the conformational
energies and entropies of the receptor and the ligand are significantly different in bound and
unbound states.

In the second stage, post free energy analysis is carried out after peeling off the solvent and
counter ions. In MM-PB/GBSA theory, the free energy of a molecule is calculated with Eqs.
1–3.

(1)

(2)
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(3)

The first term in Eq. 1, Hgas, is replaced with Egas, the gas phase MM energy, as the PV term
is negligible for a molecule in condensed phase. <> indicates those energy terms are
ensemble averages. The second term in Eq.1, Gsolv consists of two components, the polar
and nonpolar solvation free energies (Eq. 2). The polar solvation energy is evaluated either
by a PB or a GB model; while the nonpolar solvation free energy is typically estimated with
the solvent accessible surface area assuming that the non-polar contribution is proportional
to SAS. The nonpolar term accounts for the entropy penalty associated with the
reorganization of solvent molecules around the solute and the van der Waals interaction
between the solute and solvent. The third term in Eq. (1), the conformational entropy, is
further decomposed into three parts, the translational, the rotational and the vibrational
entropies (Eq. 3). The translational entropy (Strans) and the rotational entropy (Srot) can be
approximated using the standard equations for rigid body translation and rotation,23 and the
vibrational part of conformational entropy (Svib) is typically estimated by normal mode
analysis assuming that the vibrational movement around the energy well is harmonic. The
Svib term can also be obtained by conducting a quasi-harmonic analysis using the MD
trajectories in the sampling phase. As we propose to predict the conformational entropic
term through solvent accessible surface area calculation, in practice, as long as the two SAS

calculations using the same radii,  should be combined to avoid double
work.

Although successful stories of using MM-PB/GBSA for various biological systems have
been reported, both accuracy and efficiency needs to improve for this promising free energy
method. As there are many energy terms involved, simply improving one specific term, such
as polar and nonpolar components of solvation energy or conformational entropy, may not
necessarily improve the overall accuracy of this method. Thus, a step-by-step procedure
must be applied to systematically improve the accuracies of all the terms.3 A good molecular
mechanical force field for studying both biological and organic molecules with a high
quality solvation model is mainly responsible for the success of this method. Certainly it is a
challenging and time-consuming procedure to develop a good molecular mechanical force
field and an implicit solvation model.

To improve the efficiency of the MM-PB/GBSA method, actions may be taken in both the
sampling and the post free energy analysis phases. First of all, one may run MD simulations
using an implicit water model, such as GBSA and PBSA, instead of an explicit water model.
Although for large molecules, solving the Poisson-Boltzmann equation takes long time, the
bottleneck of post free energy phase is to calculate the conformational entropy by NMA.

1.2 Normal Mode Analysis
To conduct normal mode analysis, a molecule must be fully minimized in order to make the
harmonic assumption valid. Otherwise, the calculation result is meaningless or has a large
computational error. To guarantee a real local minimum or the global minimum is found, a
second derivative-based approach, such as Newton Raphson, is usually applied to minimize
the RMS gradient to a very low value, otherwise, substantial errors can occur.24, 25 After
that, the mass-weighted Hessian matrix is diagonalized and the thermochemical properties
are calculated in the same way as frequently done in quantum mechanics. Both the
geometrical optimization and normal mode analysis are time-consuming and computer
memory demanding for large biological molecules. For example, the CPU time for running
conjugate gradient minimization followed by a Newton Raphson minimization (the
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convergence criterion is the root-mean-square of gradient less than 1.0×10−12 kcal/(molÅ))
are 66, 549 and 1689 minutes for 1BE9 (120 residues), 8GCH (238 residues) and 1A9U
(352 residues), respectively. The CPU times for Hessian matrix diagonalization are 99, 701
and 3037 seconds for the three proteins, correspondingly. The above benchmark is based on
Intel Xeon X5660 (2.80GHz) CPU. Apparently, full minimization for a middle-sized or
large-sized protein is very expensive.

In order to break this bottleneck, a simplified computational strategy was proposed and
routinely used in MM-PB/GBSA calculations: only residues within a short distance to the
bound ligand, say 8 Å are kept and the other less important residues are truncated. The
remaining residues, which are referred to as the active residues, are fully minimized using a
distance-dependent dielectric constant.13, 14, 19, 26 A big problem with this truncating
strategy is that full minimization may lead to significant conformational changes in the
molecular geometry. Kongsted and Ryde recently proposed to add a buffer region
surrounding the active residues to maintain the overall molecular geometry and to reduce the
standard deviation of the conformational entropy.26 Nevertheless, as we will show later, the
truncating strategy tends to underestimate the entropy changes of binding in our tests and
should be used with caution.

1.3 Conformation Entropy Calculation
The major goal of this paper is to develop an efficient conformational entropy model for free
energy calculations. In the following part of the introduction, we will first elaborate the
definitions of conformational entropy and outline the conformational entropy calculations
using various methods.

For a molecule in aqueous solution, the total entropy comes from three major contributions,
namely, the external entropy due to the translational and rotational degrees of freedom, the
internal entropy rooted in vibrational movement, and the entropy due to solvation. The
solvation entropy along with the van der Waals interaction between the solute and solvent is
well predicted using the solvent accessible surface area as discussed above.27 The
vibrational part of conformational entropy is usually evaluated through normal mode
analysis and the translational and rotational parts are estimated using rigid body/rotor
approximation. Conformational entropy is also called configurational entropy in many
publications,2, 28–31 here, we choose to use conformational entropy rather than
configurational entropy in order to be consistent with our earlier publications.3, 14, 16 In this
work, conformational entropy and configurational entropy are used interchangeably. It
should be noted that in some papers conformational entropy is a measure of the number of
occupied energy wells and has a different meaning from the conformational entropy defined
here.31

Conformational entropy is an important term in the MM-PB/GBSA scoring function. In
most cases of the protein-protein, protein-ligand binding, binding affinity is a combined
function of binding enthalpy and binding entropy, and high affinity is achieved when both
terms contribute favorably to the binding. However, when the binding is dominated by
entropic effect, conformational entropy becomes an indispensable term. A scoring function
without an entropic term has a biased tendency to select large molecules in virtual
screenings.32–34

In molecular docking for which computation efficiency is crucial, conformational entropy is
either omitted or simply estimated by the number of frozen rotatable bonds upon ligand
binding.35–37 This simple entropy model has been further improved in some docking scoring
functions so that the entropy loss of a given rotor depends on its environment.38, 39

However, the chemical nature of rotors which can also affect the entropy is not
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differentiated. Evidently, entropy models based on the number of frozen rotatable bonds are
very crude and they have no discrimination power at all when the major contribution of
conformation entropy results from the narrower energy well in the bound state.2 Gilson et al.
found that for a set of small host-guest systems, there was no clear correlation between
entropy change and the number of rotatable bonds, but the snugness of the guest’s fit in the
host’s binding site correlated with entropy loss.40, 41 In another study, Kongsted and Ryde
found that the numbers of frozen rotatable bonds have no correlation to the conformational
entropies calculated by normal mode analysis for biotin/avidin binding system.26 In another
efficient method, Abagyan et al. applied solvent accessible surface area to account for the
conformational entropy of the side chains of proteins in conformational searches of peptides
and proteins.42 However, their simple model may not be suitable to study protein-ligand
binding.

More rigorous methods for calculating configurational entropy include quasi-harmonic
analysis (QHA),43, M2 (second generation mining minima) of Gilson et al.44–46, FEP and TI
through temperature-derivative calculations.47, non-parametric methods using histogram48

and k-nearest neighbor (kNN),28, 49, hypothetical scanning approach,50, 51 the adaptive
anisotropic kernels and minimum information methods by Grubmuller et al.52, 53, and so on.

All the above-mentioned methods except the first two are time consuming and not suitable
to be implemented in docking scoring functions or to be used in high throughput screenings.
Wlodek et al. recently proposed to use the Hessian matrix generated by the quasi-Newton
optimizers rather than the exact analytical Hessian matrix calculated for the optimized
compounds to calculate the vibrational entropy.54 However, their method still requires
massive structural minimization and therefore is also not suitable to be used in docking
studies. To bridge the gap between the efficient but not accurate and the accurate but not
efficient approaches, in this work, we proposed a very fast yet reasonably accurate approach
for calculating conformational entropy based on solvent accessible surface area calculations.
This new model can be used to estimate the conformational entropies of protein models and
re-rank docking poses. It can also be integrated into a docking scoring function.

2. Methodology
2.1 Basic Theory

It is known that entropy is an additive property under some approximation, and as such, it is
possible to calculate the conformational entropy of a molecule S by adding up the
contributions of individual atoms. The interior atoms of a molecule are not fully free to
move, therefore, they have less contribution to S than the exposed atoms. However, it is not
proper to apply only solvent accessible surface area to measure an atom’s contribution to S
since a fully buried atom has zero SAS but it can still make non-negligible contributions to
S. For small molecules, this problem may not be severe as most atoms are exposable.
However, for macromolecules, omitting the contribution of buried atoms could lead to a
significant underestimation of the conformational entropy S since a larger portion of atoms
of macromolecules are not accessible to solvent. To address the above problem, we propose
to use the following equations to calculate conformational entropy:

(4)

(5)
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Where wi is the weight for atom i; SASi is the solvent accessible surface area of atom i; N is
the number of atoms in a molecule; BSASi, the buried solvent accessible surface area of
atom i, is calculated using Eq. 5, note that BSAS of atom i is complementary to SAS of atom
i; ri is the radius of atom i. The probe radius, rprob, was set to 0.8 Å. We did not use the
standard radius of the water probe (1.4 Å), with an aim to explore more hidden areas not
accessible by a large water probe. Using rprob of 0.8 Å, a set of encouraging SAS-based
models have been developed by us for a variety of molecular properties which include
solvation free energy and aqueous solubility.55, 56 The radius parameters used for SAS
calculations are adopted from the MSMS program57 and listed in Table 1.

k in Eq. 4 is an adjustable parameter to balance the contribution of buried atoms to S.
Hereafter, we call conformational entropies calculated by Eqs 4–5 WSAS entropies. To
compare the entropy contributions at the energy level, the product of temperature and
entropy, TS, is reported throughout the article (T is set to 298.15 K).

To develop a coherent WSAS model for both small molecules and macromolecules, the
following strategy is proposed: (1) all the atoms having the same atom type share the same
weight; (2) the weigh parameters are derived by linear regression analysis solely using the
ab initio entropies of small molecules for a given k parameter; (3) the k parameter is
systematically searched from 0 (buried SAS has no contribution to S) to 1 (buried SAS
contributes equally to S as SAS) and an ideal value of k is recognized when both the
performance of linear regression analysis is satisfactory and the RMS error between the
WSAS and NMA TS of macromolecules is as small as possible.

2.2 Data Sets
The objective of this paper is to develop an entropy model for both small organic and large
biological molecules. Four types of data sets have been prepared to do parameterization and
testing. Data Set I collects 2756 small molecules that come from different sources:
molecules used for force field parameterization; those with experimental entropies; model
compounds of different organic substituent groups and ring systems listed in CRC
Handbook of Chemistry and Physics,58 etc. Data Set I was used to derive the weight
parameters in Eq. 4. Since it covers most of if not all the chemical functional groups, our
entropy model is unlikely to suffer from the missing parameter problem for arbitrary
molecules.

Data Set II has eight protein-ligand systems (PDB Codes: 1A9U, 1ABE, 1AHA, 1FKG,
1FKI, 1HPV, 3PTB and 4PHV), three protein-peptide systems (1BE9, 1HEF and 8GCH),
three unbound proteins (1F10, 1KOE and 1LMI), one DNA-ligand complex (195D) and one
RNA (422D). For both 1A9U and 1HPV, four truncated systems were generated for each
protein by only keeping residues within certain distances (8, 10, 12 and 15 Å) from any
atom of the inhibitor. All the structures in this data set were downloaded from the Protein
Data Bank (www.rcsb.org).59 MD simulations were performed for each protein or nucleic
acid system using the “single trajectory protocol” and 10 snapshots were collected for the
post entropy calculations. In total, there are 20×10 bound and 24×10 unbound protein or
nucleic acid models prepared (Table 2).

Data Set III collects 12 protein decoys generated by the Rosetta software package
(www.rosettacommons.org). Every protein decoy contains 31 protein models including the
crystal one. This data set was used by Lee et al. to evaluate if the state-of-the-art explicit
solvent molecular dynamics and implicit solvent free energy calculation can identify the
native states from conformational decoys.11 It can be downloaded from
http://depts.washington.edu/bakerpg/decoys/. In total, there are 372 protein models in this
data set.
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Data Set IV is used to evaluate how well the WSAS model in combination with MM-PBSA
and MM-GBSA performs in binding free energy calculations. It comprises six protein
systems and each has several to tens of inhibitors (the total number of inhibitors is 53). This
data set was originally applied by Hou et al. to assess the performance of MM-PBSA and
MM-GBSA methods in binding free energy calculations.19

2.3 Ab initio Calculations
Two types of ab initio calculations were performed in this work. For all the molecules in
Data Set I, the conformational entropies were calculated using the Jaguar software package
of Schrodinger LLC (www.schrodingr.com). Structural optimization was first performed at
the B3LYP/6-31G* level taking the aqueous solvent effect into account using a Poisson-
Boltzmann model. It has been shown by Baron et al. that solvent has effect on the solute
conformational entropy.60 The Hessian matrixes calculated in the first step were used to
conduct frequency analysis. The B3LYP/6-31G* frequencies were scaled down using a
scaling factor of 0.9945 to better reproduce the experimental values.61 The thermochemical
properties at 295.15 K were then calculated using the scaled frequencies. The total entropy S
including the contributions from the translational (Strans), rotational (Srot) and vibrational
(Svib) movements was taken as the conformational entropy of a molecule.

For the second type of ab initio calculations, the inhibitors of 195D, 1A9U, 1ABE, 1AHA,
1FKG, 1FKI, 1HPV, 3PTB and 4PHV were extracted from the complexes and optimized at
the HF/6-31G* level using the Gaussian 03 software package.62 The Merz-Singh-Kollman
scheme was used to generate electrostatic potential (ESP).63 Then the RESP (Restrained
Electrostatic Potential) charges64 were derived using the RESP program in AMBER 1165

taking the ab initio ESP as input.

2.4 Molecular Dynamics Simulations
The Parm99SB biomolecular force field66, 67 and the General AMBER Force Field
(GAFF)68 were used for all the molecular mechanics calculations. The topologies of non-
standard residues were prepared using the Antechamber module69 in AMBER 11.65 All MD
simulations were performed with the periodic boundary condition to produce isothermal-
isobaric ensembles at 300 K using the Sander program in AMBER11. The Particle Mesh
Ewald (PME) method70–72 was used to calculate the full electrostatic energy of a unit cell in
a macroscopic lattice of repeating images. The integration of the equations of motion was
conducted at a time step of 2 femtoseconds. The covalent bonds involving hydrogen atoms
were frozen with the SHAKE algorithm.73 Temperature was regulated using the Langevin
dynamics74 with the collision frequency of 5 ps−1.75–77 Pressure regulation was achieved
with isotropic position scaling and the pressure relaxation time was set to 1.0 picosecond.
After the systems were well equilibrated, one nanosecod MD simulations were conducted
and 10 snapshots were evenly recorded for the following entropy calculations using NMA
and WSAS.

2.5 Normal Model Analysis
The normal mode analysis was conducted using the NAB module of the AMBER11
software package.65 Unless stated otherwise, the whole structures of biomolecules were
used for normal mode analysis. For each snapshot, a maximum of 20,000 step-conjugate
gradient minimization was first performed and the converge criterion of the gradient was set
to 0.0001 kcal/(molÅ). Then a Newton Raphson minimization was performed until either
the maximum of 200 steps was reached or the root-mean-square of gradient was less than
1.0×10−12 kcal/(molÅ) The Generalized Born model of Hawkins, Cramer and Truhlar78 was
utilized during the minimization and the followed normal mode analysis. The interior and
exterior dielectric constants for the GB calculation were set to 1 and 78.5, respectively.
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2.6 MM-PBSA/MM-GBSA Binding Free Energy Calculations
The computational details of MM-PBSA and MM-GBSA binding free calculations for Data
Set IV were presented in Hou’s work.19 All the energy terms were adopted from the paper
except for the conformational entropies, which were recalculated by our WSAS model as
described below.

2.7 Model Construction
A two-step systematic search was applied to locate the ideal k parameter in Eq. 4. First of
all, k was scanned from 0 to 1.0 at a step of 0.01. In the next fine tuning step, a much
smaller step, 0.001, was used to scan a focused range of k. For a given k, the weight
parameters were derived by linear regression analysis solely using the ab initio entropies of
small molecules. Then the TS of macromolecules in Data Sets II and III were calculated by
the current WSAS entropy model. An ideal k was recognized if it led to a good regression
performance and simultaneously minimized the difference between the WSAS and NMA TS
of macromolecules in Data Sets II and III.

3. Results and Discussion
In this section, we present the linear regression model of conformational entropy based upon
solvent accessible surface area calculation, followed by assessing the performance of this
model in three tests.

3.1 Development of a Conformational Entropy Model Based on Weighted Solvent
Accessible Surface Area

In our algorithm, k in Eq. 4 is a tunable parameter. Without this parameter, it is nearly
impossible to develop one single entropy model to make satisfactory predictions for both
small molecules and macromolecules. An ideal k value minimizes the RMS error between
the WSAS and NMA TS of macromolecules in Data Sets II and III without sacrificing the
performance of linear regression for the small molecules in Data Set I. A systemic search
was applied to identify the ideal k value. As shown in Figure 1, for small molecules in Data
Set I, the AUE and RMSE of TS predicted by the linear regression models do not change
dramatically and the maximum difference of RMSE is only 0.01 kcal/mol for k ranged from
0.4 to 0.8 (the minimum of 0.698 kcal/mol is at k = 0.55). While for macromolecules, the
RMSE of TS dramatically reduces from 625.8 to 30.3 kcal/mol when k increases from 0 to
0.461; and then the RMSE significantly increases to 204.6 kcal/mol when k approaches 1.0.
We finally set k to 0.461 as the ideal value. When k is set to the ideal value, the RMSE of
TS for the small molecules in Data Set I is 0.70 kcal/mol, while the RMSE of TS for the
macromolecules in Data Sets II and III are 30.3 kcal/mol.

As illustrated in Figure 1, the buried solvent accessible surface areas make a big contribution
to the TS of a given molecule. When this contribution is totally ignored (k = 0), not only the
RMSE of TS between WSAS and NMA for macromolecules dramatically increases (625.8
kcal/mol), but also the RMSE of TS between WSAS and ab initio for small molecules (0.84
kcal/mol).

The weight parameters for k = 0.461 are listed in Table 1. The atom type definitions are the
same as those for GAFF.68 The performance of the linear regression using Data Set I is
demonstrated in Figure 2. The correlation coefficient square is 0.99, and the AUE and
RMSE of TS are 0.48 and 0.70 kcal/mol (T = 298.15 K), respectively. The ab initio and
WSAS entropies, the SAS and BSAS as well as the SMILES and SLN (Sybyl Line
Notation) notations of the 2756 molecules are listed in Table S1 of supporting materials.
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It is interesting to investigate the performance of the regression model with all the atom
types sharing the same weight. We have found that this simplified SAS model is far inferior
to the above WSAS model: the R2 is 0.92 and the AUE and RMSE of TS are 1.24 and 1.73
kcal/mol, respectively. Therefore the approach to allowing different atom types have
different weights is well justified.

The contribution of translational and rotational entropies dominates the conformational
entropies of a small molecule as indicated by Table S1. However, it is not justified to
neglect the contribution of vibrational entropy: the correlation coefficient square is only 0.79
between the translational/rotational entropies and the total entropies for Data Set I. As long
as a macromolecule is concerned, the dominated component of conformational entropy is
from vibrational frequencies and the vibrational entropy is certainly not negligible.

Is it a better idea to model vibrational entropy separately? To find out the answer, we
constructed a WSAS model only using the vibrational entropies (Table S1). It is clear that
the regression model is also inferior to the best WSAS model which calibrates the
translational, rotational and vibrational entropies altogether: R2 = 0.97 and the AUE and
RMSE of TS are 0.67 and 0.96 kcal/mol, respectively. In another word, the AUE and RMSE
increase about 40% compared to the best WSAS model (k = 0.461).

Compared to normal mode analysis, the CPU time of WSAS is negligible. For the three
aforementioned protein systems, the average CPU times are 0.7, 1.8 and 5.1 seconds for
1BE9, 8GCH and 1A9U, respectively.

3.2 Model Validation for Small Molecules
In order to test the predictability of the WSAS model described above, two validation
analyses were conducted for Data Set I. First of all, the leave-one-out (LOO) analysis
achieves a correlation coefficient square (q2), AUE and RMSE of 0.99, 0.50 and 0.79 kcal/
mol, respectively. Then a 10,000 cross validation (CV) runs were performed. For each run,
5% entries were randomly selected to enter the test set and their entropies were calculated
with the model generated using the remaining entries. The mean q2, AUE and RMSE for the
10,000 cross validation are 0.99 ± 0.01, 0.50 ± 0.05 and 0.76 ± 0.23 respectively. The
distributions of cross validation q2, AUE and RMSE are shown in Figure 3. As the AUE and
RMSE in both validation tests are only marginally larger than those of full regression
analysis and the q2 of LOO and CV are essentially equal to the correlation coefficient square
of the full regression analysis (R2), we are confident that our WSAS model is very reliable.

3.3 Model Validation for Macromolecules
It should be emphasized that the weight parameters in Eq. 4 were determined using the small
molecule data set (Data Set I). The macromolecule data sets (Data Sets II and III) were only
used to determine the ideal value of the k parameter. The performance of the WSAS model
in reproducing the NMA TS of macromolecules is illustrated in Figure 4. The correlation
coefficient square is 1.00, and the AUE and RMSE are 21.0 and 30.3 kcal/mol, respectively.

For the normal mode analysis, attention must be paid to the first several frequencies. The
first six frequencies are for the translational and rotational modes. Their values should be
close to 0.0. If one or several negative vibrational frequencies are observed, it suggests that
the structure is optimized to a transition state, or to a higher order point. To guarantee a local
minimum or the global minimum is found, two types of algorithms, conjugate gradient
followed by Newton Raphson were used to minimize the RMS gradient to a very low value.
In this work, the final RMS gradients are all smaller than 1.0×10−12 kcal/(molÅ). In our
experience, when RMS gradients are larger than 1.0×10−4 kcal/(molÅ), the calculated
thermodynamics properties may not be reliable.
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3.4 Application of the WSAS Entropy in Protein Structure Prediction
In the following section, the WSAS model was challenged in more realistic applications. In
the first test, we examine how WSAS performs in reproducing the NMA entropies of
different conformations sampled by MD simulations for a single macromolecule. For each
protein or nucleic acid of Data Set II, 10 snapshots were collected in one nanosecond MD
simulations. The statistics of the means and the root-mean-square deviations of TS are
summarized in Table 2. Although the absolute difference of conformational entropies by
WSAS and NMA can be large, reasonably good correlations are achieved in most cases. The
mean correlation coefficient squares R2 is 0.56 for 44 macromolecules (24 receptors and 20
complexes), while R2 of 20 ligands is 0.34 between WSAS and NMA. However, R2 for the
ligands can be dramatically increased to 0.69 if those rigid ligands with the RMS deviations
of TS by normal mode analysis smaller than 0.03 kcal/mol are eliminated. The R2, AUE and
RMSE of the linear regressions analysis are listed in Table 2.

The changes of TS in ligand binding were calculated using the following equation: TΔS =
T(Scomplex − Sreceptor − Sligand). Good correlations were achieved between the WSAS TΔS
and NMA TΔS as shown in Table 2. The mean R2, AUE and RMSE of 20 protein and
nucleic systems are 0.67, 2.41 and 2.94 kcal/mol, respectively. The significantly better
correlation of TΔS than that of the TS of macromolecules is understandable since the former
has achieved a better error cancellation.

The root-mean-square deviations (RMSD) of the NMA and WSAS TS were calculated and
listed in Table 2. For the macromolecules (receptors and complexes), the average, minimum
and maximum RMSD of NMA are 4.3, 0.3 and 11.7, respectively; while the three deviations
are 2.1, 0.1 and 4.6 kcal/mol correspondingly for WSAS. As long as the RMSD for the
binding entropy TΔS are compared, the deviations for WSAS (mean = 2.1, min = 0.9, max =
2.9 kcal/mol) are also much smaller than those for NMA (mean = 4.5, min = 2.4, max = 8.6
kcal/mol). It is also encouraging that the RMSE of linear regression analysis are always
smaller than the RMS deviations of TS by NMA for biomolecules.

For large macromolecules, the widely used normal mode analysis is very time-consuming. A
common strategy in MM-PB/GBSA analysis is to truncate the residues that are relatively far
away from the binding site in order to save computer time. Here we investigated how this
strategy affects the calculation results using two protein systems, MAP kinase P38 (PDB
code: 1A9U)79 and HIV-1 protease (PDB code: 1HPV).80 Each protein was truncated by
only keeping residues within 8, 10, 12 and 15 Å of any atoms of the inhibitors. As
demonstrated by Table 2, the TS by NMA can be dramatically different between
untruncated and truncated proteins. For the first truncating scheme (truncating radius R = 8
Å), the TΔS of ligand binding by NMA are underestimated by 6.6 and 8.9 kcal/mol for
1A9U and 1HPV, respectively. For the second truncating scheme (truncating radius R = 10
Å), the TΔS are underestimated by 5.2 and 4.2 kcal/mol for 1A9U and 1HPV, respectively.
Even when the truncating radius is as large as 15 Å, the binding entropy is still
underestimated by more than 3.8 kcal/mol for 1HPV. Therefore, the strategy of truncating
less important residues to enhance computational efficiency should be exercised with great
caution.

Unlike Data Set II for which the entries were sampled by MD simulations, Data Set III
collects conformational decoys generated by the program of conducting ab initio protein
predictions in the Rosetta software package (www.rosettacommons.org). An encouraging
performance has been achieved by WSAS in comparison to NMA calculated by the NAB
program. The mean R2 for 12 small protein systems is 0.73, and the AUE and RMSE of TS
are 2.4 and 3.0 kcal/mol, respectively. Figure 5 illustrates the performance of linear
regressions between WSAS and NMA for each protein decoy set.
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In summary, our WSAS entropy model has achieved a very good performance in predicting
the conformational entropies for a variety of protein and nucleic acids systems. Given the
fact that WSAS is computationally very efficient, it could be implemented in protein
structural prediction or protein design packages to take the entropic effect into account.

3.5 Application of the WSAS Model in Rational Drug Design
Unlike the above sections of using entropies by normal mode analysis as references, in this
evaluation test, we investigate how WSAS in combination with MM-PB/GBSA performs
when compared to experimental binding free energies. In a recent work by Hou et al,19

different MM-PBSA and MM-GBSA schemes, such as using different GB models and
utilizing different intrinsic dielectric constants in solvation free energies calculations, were
explored for six protein-ligand systems. Each protein-ligand system has several to tens of
inhibitors and their binding free energies are known. Four binding free energy calculation
schemes, namely, MM-PBSA-NMA, MM-PBSA-WSAS, MM-GBSA-NMA and MM-
GBSA-WSAS, were assessed with the experimental data. All the energetic terms except the
conformational entropies by WSAS are adopted from the work of Hou et al.19 It should be
pointed out that the WSAS entropies were calculated using the MD sampled conformations
without further minimization.

The multiple linear regression analysis results for the two MM-GBSA and two MM-PBSA
schemes are listed in Tables 3 and 4, respectively. The linear fitting performance of the two
MM-GBSA schemes is shown in Figure 6, and that of the two MM-PBSA schemes is
illustrated in Figure S1 of the supporting materials. As shown in Figures 6 and S1, the
absolute binding free energies of the first two systems (α-thrombin and avidin) are poorly
predicted; however, very good correlations are achieved between the MM-PB/GBSA and
experimental binding free energies for these two systems. The seven biotin/avidin
complexes were also extensively studied by Genheden et al. using eight solvation models
(two PBSA, four GBSA and two MM/3D-RISM solvation models).81 Their finding is
similar to ours: the variation of solvation free energies of the eight models is very extensive
and the differences are up to 49.7 kcal/mol; therefore, the absolute binding free energies of
this particular protein system are difficult to predict, while the relative binding free energies
can be well predicted (R2 range from 0.59 to 0.93). In drug design, it is more meaningful to
correctly rank the binding affinities of a set of ligands than to predict their absolute binding
free energies. The poor correlation between the predicted and experimental binding free
energies of cytochrome C is understandable: the range of the experimental binding free
energies is very narrow and 80% data points fall between −6.2 and −4.2 kcal/mol. The
RMSE of prediction for this system are actually very good as shown in Tables 3 and 4.

The means and uncertainties of energy terms other than TΔS by WSAS were listed in the
work of Hou et al.19 The uncertainty of WSAS TS measured by the root-mean-square
deviation of block averages are summarized as follows: the mean root-mean-square
deviations are 0.05, 0.03, 0.02, 0.02, 0.02, and 0.06 kcal/mol for α-thrombin, avidin,
cytochrome C peroxidase, neuraminidase, P450cam and penicillopepsin, respectively.

It is encouraging that MM-GBSA-WSAS and MM-PBSA-WSAS achieve a comparable
performance to that of two scoring functions employing NMA as demonstrated by Tables 3
and 4. Interestingly, the performance of the two PBSA schemes is inferior to that of the two
GBSA schemes, which might suggest the PBSA model Hou et al. used needs further
parameterization. As this surprising result is unlikely related to conformational entropy,
further discussion on this topic is beyond the scope of this paper.
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3.6 Further Development
We have pointed out in the Methodology section that the weight parameters in Eq. 4 were
derived solely using the B3LYP/6-31G* entropies of 2756 small molecules in Data Set I,
while the k parameter was determined using both Data Set I and two macromolecular data
sets (Data Sets II and III). Because of this, our WSAS model is somewhat independent of
molecular mechanical force fields. Thus, we anticipate that the k parameter does not deviate
from 0.461 too much for a harmonic force field other than AMBER Parm99SB.

We must point out that the WSAS model inherits some limitations of normal mode analysis,
for example the anharmonic effect is totally ignored. However, the quality of the weight
parameters may not be reduced as the anharmonicity is not significant for small molecules.
The ideal k parameter may change when the conformational entropies of biological
molecules in Data Sets II and III include the anharmonicity and high-order correlations. We
plan to calculate the conformational entropies of biological molecules using the non-
parametric kNN approach and to reoptimize the k parameter.

Although WASA has achieved an encouraging performance in several stringent tests, it is
still improvable as the q2 of some cross-validation runs are lower than the mean by up to 0.1
(Figure 3C). We plan to add more model compounds into Data Set I and oversample the
populations of the building blocks of biomolecules, bioactive compounds as well as
approved and experimental drugs. Secondly, atom type definition schemes will be explored
by adding and/or modifying some atom types to improve the regression performance. We
expect that the redeveloped WSAS model will be much more reliable and suitable to
calculate the entropies of biomolecules as well as the entropic changes of protein-ligand and
nucleic acid-ligand binding.

4. Conclusions
In this work, we proposed an approach of calculating conformational entropies using both
the solvent accessible surface areas (SAS) and the buried SAS. The introduction of the
tunable parameter k in Eq. 4, which balances the contribution of the buried SAS to the
conformational entropy of a molecule, facilitates us to develop a general SAS-based entropy
model for both small molecules and macromolecules. The ideal value of k, 0.461, was
determined by a systematic search. This mode is very efficient since only SAS calculation is
involved and geometric minimization is not needed prior to the entropy calculation.

The WSAS model has been extensively validated using both the small molecular and
macromolecular data sets. The applications of WSAS in protein structural prediction and
binding free energy calculations have been discussed. The overall performance of the WSAS
model is very encouraging: the mean correlation coefficients between the WSAS and NMA
are 0.56 and 0.73 for conformational decoys of biological molecules sampled by MD and
Rosetta, respectively; in combination with MM-PBSA and MM-GBSA, the WSAS entropy
model achieves a comparable performance to that of NMA in reproducing the experimental
binding affinities of six protein-ligand systems. How to further improve the WSAS model
has also been discussed. Given the fact that the WSAS is computationally very efficient, we
expect the WSAS model to have great applications in both protein structural modeling and
structure-based drug design.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

S Conformational Entropy

TS Product of Temperature T Times Conformation Entropy S

SAS Solvent Accessible Surface Area

BSAS Buried Solvent Accessible Surface Area

WSAS Weighted Solvent Accessible Surface Area

MM-PBSA Molecular Mechanics-Poisson Boltzmann Surface Area

MM-GBSA Molecular Mechanics-Generalized Born Surface Area

NMA Normal Mode Analysis

QHA Quasi-harmonic Analysis

kNN k-nearest neighbor

QSAR Quantitative Structure – Activity Relationship

MLR Multiple Linear Regressions

LOO Leave-One-Out

CV Cross Validation

R2 Square of Regression Coefficient

q2 Square of Cross-Validation Regression Coefficient

AUE Average Unsigned Error

RMSE Root-Mean-Square Error
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Figure 1.
Application of a two-step systematic search to scan the k parameter in Eq. 4. An ideal k
value is recognized when the RMS error of conformational entropy by linear regression
analysis for small molecules in Data Set I and the RMS error between the NMA TS and
WSAS TS of biomolecules in Data Sets II and III are simultaneously minimized. It is shown
that the AUE (black) and RMSE (red) of TS by linear regression analysis using Data Set I
are almost unchanged for k from 0.45 to 0.48 (top panel); similarly, the AUE (black) and
RMSE (red) between the NMA TS and WSAS TS of biomolecules in Data Sets II and III
approach their minimum for k from 0.45 to 0.48 (bottom panel). Thus, the ideal k parameter
is set to 0.461.
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Figure 2.
Performance of the WSAS entropy model in reproducing the B3LYP/6-31G* TS for the
2756 small molecules in Data Set I.
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Figure 3.
Distributions of the key statistical parameters of the 10,000 cross-validation runs on the best
WSAS model (k=0.461): (a) Average Unsigned Error of TS, (b) Root-mean-square Error of
TS, (c) q2.
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Figure 4.
How the WSAS entropies reproduce the TS by normal mode analysis for 812 protein and
nucleic acid models in Data Sets II and III.
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Figure 5.
The performance of the WSAS entropy model in reproducing the TS by normal mode
analysis for 12 protein decoys in Data Set III

Wang and Hou Page 28

J Chem Inf Model. Author manuscript; available in PMC 2013 May 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wang and Hou Page 29

J Chem Inf Model. Author manuscript; available in PMC 2013 May 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Comparison of two MM-GBSA protocols, MM-GBSA-NMA (left) and MM-GBSA-WSAS
(right) in binding free energy calculations for six protein-ligand systems: (a) α-thrombin, (b)
avidin, (c) cytochrome C peroxidase, (d) neuraminidase, (e) P450cam, and (f)
penicillopepsin.
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Table 1

List of the atom type definitions, radius parameters for SAS calculations and the weights of the WSAS entropy
model when k in Eq. 4 is set to 0.461.

Atom Type Radius (Å) Weight (cal/(molKÅ2)) Definition

h1 1.2 0.1676 Hydrogen on aliphatic carbon with one electron-withdrawal group

h2 1.2 0.1539 Hydrogen on aliphatic carbon with two electron-withdrawal groups

h3 1.2 0.1656 Hydrogen on aliphatic carbon with three electron-withdrawal groups

h4 1.2 0.1708 Hydrogen on aromatic carbon with one electron-withdrawal group

h5 1.2 0.1551 Hydrogen on aromatic carbon with two electron-withdrawal groups

ha 1.2 0.1525 Hydrogen bonded to sp1 and sp2 carbon

hc 1.2 0.1670 Hydrogen bonded to sp3 carbon

hn 1.2 0.1605 Hydrogen bonded to nitrogen

ho 1.2 0.0984 Hydrogen bonded to oxygen

hs 1.2 0.1225 Hydrogen bonded to sulfur

hp 1.2 0.1274 Hydrogen bonded to phosphorus

hw same as ho Hydrogen of water

hx same as h3 Hydrogen on aliphatic carbon next to a positively charged group

c 1.74 0.0881 sp2 carbon in C=O and C=S

c1 1.74 0.0974 sp1 carbon

c2 1.74 0.0374 sp2 carbon, aliphatic

c3 1.74 −0.0419 sp3 carbon, aliphatic

ca 1.74 0.0352 sp2 carbon, aromatic

cc/cd 1.74 0.0308 Inner sp2 carbon in conjugated ring systems

ce/cf 1.74 0.0321 Inner sp2 carbon in conjugated chain systems

cg/ch 1.74 0.1080 Inner sp1 carbon in conjugated ring systems

cp/cq 1.74 0.0260 bridge sp2 carbon in biphenyl

cu same as c2 sp2 carbon in three-membered rings

cv same as c2 sp2 carbon in four-membered rings

cx same as c3 sp3 carbon in three-membered rings

cy same as c3 sp3 carbon in four-membered rings

cz same as c2 sp2 carbon in guanidine

n 1.54 0.0194 sp2 nitrogen in amides

n1 1.54 0.1824 sp1 nitrogen

n2 1.54 0.1647 sp2 nitrogen with two substituents, real double bond formed

n3 1.54 0.0393 sp3 nitrogen with three substituents

n4 1.54 −0.0421 sp3 nitrogen with four substituents

na 1.54 0.0585 sp2 nitrogen with three substituents

nb 1.54 0.1271 sp2 nitrogen in aromatic systems, such as pyridine

nc/nd 1.54 0.1426 Inner sp2 nitrogen in conjugated ring systems

ne/nf 1.54 0.1398 Inner sp2 nitrogen in conjugated chain systems

nh 1.54 0.0317 Amine nitrogen bonded to aromatic rings
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Atom Type Radius (Å) Weight (cal/(molKÅ2)) Definition

no 1.54 0.1343 Nitrogen in nitro groups

o 1.4 0.2022 sp2 oxygen in C=O and COO−

oh 1.4 0.2105 sp3 oxygen in hydroxyl groups

os 1.4 0.1804 sp3 oxygen in ethers and esters

s 2.0 0.1592 sp1 or sp2 sulfur (P=S, C=S, etc.)

s4 2.0 0.1590 Hypervalent sulfur, three substituents

s6 2.0 0.0900 Hypervalent sulfur, four substituents

sh 2.0 0.1674 sp3 sulfur in thiol groups

ss 2.0 0.1717 sp3 sulfur other than ‘sh’, two substituents

sx same as s4 Conjugated sulfur, three substituents

sy same as s6 Conjugated sulfur, four substituents

p2 2.0 0.1821 sp2 phosphorus (C=P, etc.)

p3 2.0 0.1435 sp2 phosphorus, three substituents

p5 2.0 0.0846 hypervalent phosphorus, four substituents

pc/pd same as p2 Inner sp2 phosphorus in conjugated ring systems

pe/pf same as p2 Inner sp2 phosphorus in conjugated chain systems

p4 same as p5 hypervalent phosphorus, three substituents

px same as p5 Conjugated phosphorus, three substituents

py same as p5 Conjugated phosphorus, four substituents

f 1.6 0.1992 Any fluorine

cl 1.79 0.2101 Any chlorine

br 2.04 0.2025 Any bromine

i 2.15 0.2012 Any iodine

si 2.1 0.0594 Any silicon

fe 2.0 0.0000 Iron

consta 34.7177 Intercept of multiple linear regression

nt
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