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Abstract
Rationale Methylphenidate inhibits the reuptake of dopa-
mine and noradrenaline and is used to treat children with
attention deficit hyperactivity disorder (ADHD). Besides
reducing behavioral symptoms, it improves their cognitive
function. There are also observations of methylphenidate-
induced cognition enhancement in healthy adults, although
studies in this area are relatively sparse. We assessed the
possible memory-enhancing properties of methylphenidate.
Objective In the current study, the possible enhancing effects
of three doses of methylphenidate on declarative and working
memory, attention, response inhibition and planning were
investigated in healthy volunteers.
Methods In a double blind placebo-controlled crossover
study, 19 healthy young male volunteers were tested after a
single dose of placebo or 10, 20 or 40 mg of methylphenidate.
Cognitive performance testing included a word learning test as
a measure of declarative memory, a spatial working memory
test, a set-shifting test, a stop signal test and a computerized
version of the Tower of London planning test.
Results Declarative memory consolidation was significantly
improved relative to placebo after 20 and 40 mg of methyl-
phenidate. Methylphenidate also improved set shifting and
stopped signal task performance but did not affect spatial
working memory or planning.

Conclusions To the best of our knowledge, this is the first
study reporting enhanced declarative memory consolidation
after methylphenidate in a dose-related fashion over a dose
range that is presumed to reflect a wide range of dopamine
reuptake inhibition.

Keywords Methylphenidate . Dopamine . Declarative
memory consolidation

Introduction

Cognition enhancement has received much attention in recent
scientific literature due to our aging society and the increasing
prevalence of Alzheimer’s disease. However, the healthy
young population also engages in drug use to enhance cogni-
tion as is illustrated by the abundant illicit use of drugs that are
normally prescribed for the treatment of attention deficit
hyperactivity disorder (ADHD) including methylphenidate
(Ritalin) and other amphetaminelike stimulants, which are
believed to improve cognitive performance (Greely et al.
2008b; Maher 2008). This has raised concern regarding the
ethical and safety aspects of potential cognition-enhancing
drugs (Greely et al. 2008a; Larriviere et al. 2009; Sahakian
andMorein-Zamir 2007). These issues aside, it is important to
know if these drugs do actually have cognition-enhancing
effects in healthy subjects.

Methylphenidate inhibits the reuptake of the catecholamines
dopamine and noradrenaline by blocking the transporters and
thus, enhances catecholamine availability (Hannestad et al.
2010; Volkow et al. 1998). Methylphenidate treatment does
not only reduce behavioral symptoms in children with ADHD
but also improves their cognitive function (Pietrzak et al. 2006).
There are also observations of methylphenidate-induced cog-
nition enhancement in healthy adults (Elliott et al. 1997; Mehta
et al. 2000), although studies in this area are relatively sparse.
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Previous studies on the effects of methylphenidate on cog-
nitive function in healthy volunteers have mainly focused on
cognitive domains which are known to be affected in ADHD
or to involve dopaminergic action. These include attention,
response inhibition, planning and (working) memory (Cools
and Robbins 2004; Luciana and Collins 1997; Luciana et al.
1992; Mehta et al. 1999; Pietrzak et al. 2006). One aspect of
attention studied in healthy volunteers is divided attention.
Methylphenidate has been observed to improve performance
on a divided attention task, in which participants have to track a
moving target with a joystick and simultaneously press a
button in response to the appearance of a visual stimulus
(Bishop et al. 1997; Roehrs et al. 1999). These effects were
most prominent when participants were sleep-deprived.

Attentional control has been assessed in healthy volunteers
using an intradimensional/extradimensional shift task, which
requires participants to make visual discriminations while
stimulus characteristics vary along different dimensions and
the relevant dimension reverses between different task stages
(Rogers et al. 1999). Although Elliott et al. (1997) found no
effect of methylphenidate on this task, Rogers et al. (1999)
observed an enhanced ability to reallocate attention towards
newly relevant features of environmental stimuli after
methylphenidate.

Response inhibition, as assessed in a Go–NoGo task has
been shown to improve with methylphenidate in older adults
(Ben-Itzhak et al. 2008). Planning is also observed to be
affected by methylphenidate in healthy adults. In two versions
of the Tower of London task, enhanced performance was
observed when methylphenidate was administered in the first
of two sessions as opposed to impaired performance when the
drug was taken in the second session (and placebo in the first,
(Elliott et al. 1997)). Elliott et al. explain this result hypothe-
sizing that methylphenidate enhances performance on novel
tasks but impairs performance on familiar tasks.

There are several reports of improved performance on both
nonspatial and spatial working memory tasks after methyl-
phenidate administration in healthy adults. For example,
methylphenidate enhances performance on the Sternberg
memory scanning task, in which participants are asked to
judge whether probe letters were in the memory set that was
learned at the beginning of the task (Brumaghim and Klorman
1998; Fitzpatrick et al. 1988). Improvement of spatial working
memory has been observed within a self-ordered search task
in which participants search for tokens in an array of boxes
displayed on a computer screen (Elliott et al. 1997; Mehta et
al. 2000).

Besides the domains described above, few researchers have
studied the influence of methylphenidate on immediate and
delayed recall of word lists (Bray et al. 2004; Camp-Bruno and
Herting 1994; Hermens et al. 2007; Kuypers and Ramaekers
2005), none of whom found a significant effect. This is sur-
prising as methylphenidate is known to enhance delayed recall

of word lists in ADHD (Evans et al. 1986). The pharmacolog-
ically similar compound amphetamine has shown to improve
consolidation and retention of word lists while leaving acqui-
sition unaffected (Advokat 2010). Experiments from Soetens
and Zeeuws (Soetens et al. 1995; 1993; Zeeuws and Soetens
2007) have shown that amphetamine facilitates verbal memory
recall if it is active in the brain during the consolidation phase
(Soetens et al. 1995). Additional experiments showed that the
effect increases with longer presentation time of the words,
lasts at least 3 days, is independent of retrieval and generalizes
to recognition (Soetens et al. 1995; Zeeuws et al. 2010; Zeeuws
and Soetens 2007).

Importantly, task procedures used by Soetens and Zeeuws
were rather different from those used in the methylphenidate
studies cited above. Hermens et al., Kuypers and Ramaekers
and Bray et al. used word lists containing only 12 or 15 items.
In combination with repeated presentations (three or four
times), this may have led to a ceiling effect in performance.
In line with this notion, using lists of 24 easy nouns that were
presented only once, Camp-Bruno and Herting (1994) did
observe improved performance in both immediate and
delayed recall, although this effect was not significant.

The aim of the current study was to find out whether
enhanced word recall could be observed after methylphenidate
with a more optimal experimental design. In order to avoid
possible ceiling effects suspected to have influenced the studies
mentioned above, a 30-word learning test was used in the
current study. Performance on the 30 word lists of the visual
verbal learning task was tested in 19 healthy volunteers after
10, 20 or 40mg ofmethylphenidate and placebo. To get a more
complete view of methylphenidate’s cognitive effects, not only
extending previous findings but also putting current effects of
methylphenidate on word learning into perspective, additional
cognitive tasks were administered. These additional tasks were
carefully selected to represent the most relevant cognitive
domains, both with respect to the most common clinical appli-
cation of methylphenidate (i.e., treatment of ADHD) and do-
paminergic involvement. Hence, we included tasks assessing
attention, response inhibition, planning and working memory.

The design of the current study, using three different doses
of methylphenidate in a placebo-controlled within-subjects
experiment allows examination of the a dose–response rela-
tionship for this drug and its effect on cognition. It addresses
some methodological issues observed in other studies using
only a single dose or comparing different doses in parallel
groups (Elliott et al. 1997; Mehta et al. 2000). Dose-related
effects of moderate to high doses of methylphenidate on mem-
ory consolidation were expected to be reflected by better
delayed recall. Performance on the other tasks was also
expected to improve after moderate to high doses of methyl-
phenidate. Based on the effect of methylphenidate on psycho-
motor function, it was expected that improved performance on
these tasks may mainly be reflected by faster response times.
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Method

Participants

Nineteen healthy male volunteers (mean age 023.4, SD 05.4,
range 019–37) were selected and paid to participate. Partic-
ipants were recruited by means of local advertisements. Pre-
screening occurred using a medical history questionnaire and
was followed by medical examination.

The main inclusion criteria were: between 18 and 40 years
of age, body mass index between 18 and 30 kg/m2 and right-
handedness. The main exclusion criteria were history or
presence of mental or physical disorders, consumption of
more than 21 alcohol units per week or more than five
caffeine-containing drinks per day. In addition, volunteers
with polymorphisms of the CES1 gene indicative of being a
poor metabolizer of methylphenidate were excluded. One
participant was excluded based on this criterion.

All subjects gave written informed consent. The study was
carried out in accordance with the Declaration of Helsinki and
approved by the medical ethical committee of Maastricht
University.

Design

The study was conducted according to a double-blind,
placebo-controlled, four-way crossover design. Between the
testing days, a period of at least 48 h elapsed, but generally,
testing days were scheduled approximately 1 week apart. Each
participant received one of four single treatments including
placebo (PLA) and 10, 20 and 40 mg methylphenidate (M10,
M20 and M40) on each testing day. The order of the treat-
ments was randomized following a Williams Latin Square
design resulting in four different sequences.

Visual verbal learning test

This task is an adapted version of Rey’s Auditory Verbal
Learning Test (Lezak 1995). The VVLTwas used to measure
declarative memory. It included 30 words that were presented
on a computer screen (stimulus presentation time and inter-
stimulus interval were 1,000 ms, (Klaassen et al. 2002)). This
presentation was repeated three times using the same sequence
of words, each time followed by immediate free recall of all
remembered words. Thirty minutes after immediate free recall
of the final series, participants were subjected to a delayed
recall test and a recognition test. During the latter, 30 words
were presented, 15 of which were previously presented and
another 15 that were new. Outcome measures of the immedi-
ate and delayed recall tests were total number of correctly
recalled words during immediate recall (summed over three
trials) and number of correctly recalled words during delayed
recall. The dependent measures of the recognition test were

median reaction time, measured in milliseconds and sensitiv-
ity (A’). A’ is calculated as follows: A0 ¼ 1� 1=4 fr=crþ½
1� crð Þ= 1� frð Þ� , with fr 0 falsely recognized words and
cr 0 correctly recognized words.

Spatial working memory task

The ‘Object relocation’ program was used as a spatial working
memory task (Kessels et al. 1999; 2000). In this task, partic-
ipants were required to relocate ten visual stimuli (small draw-
ings of objects such as a car or a flower) that were presented on
a computer screen in a 15-cm2 sized square to their original
location. The task consisted of two parts. In the first part, called
‘object to position’ or OTP, participants had 15 s time to
memorize the locations of the objects and were asked to drag
the objects to the correct positions, whichwere cuedwith black
dots. In the second part, the combined (COM) part, participants
had 30 s to memorize the locations and this time, there were no
cues to indicate the previous positions. Participants were
instructed to place the objects in their original position as
accurately as possible. In both parts, there was no time limit
for the relocation of the stimuli. The dependent variables were
percentage correct for OTP and percentage correct, absolute
error and positional fit for COM. In the COM part, percentage
correct was calculated such that relocation would be correct
when the object was placed within 20 mm from the original
location. Absolute error was the absolute distance in milli-
meters an object was relocated away from its original position.
Positional fit measured the ability to remember the locations
per se, independent from the ability to remember which object
was in each location and computed as the best fit score yielding
the smallest distance error for the stimulus as a whole.

Set shifting task

The set shifting task used in this study combined the methods
of Müller and Townsend (Muller et al. 2007; Townsend et al.
2006). The task measured cognitive flexibility and the influ-
ence of reward. Participants were presented with a stream of
auditory and visual stimuli including light and dark blue
squares on a computer screen and high and low tones through
headphones (stimulus presentation time was 150 ms and inter-
stimulus interval was 850ms). Assignments so as to respond to
the tones (‘Hear trials’) or the squares (‘Look’ trials) were
interspersed with the stimuli and presented for 1,000 ms. Par-
ticipants were told to respond only to the dark blue square and
the high tones, while ignoring the light blue squares and low
tones. In half of the trials, a ‘€’ sign on the computer screen
indicated that if they would perform very well (correct and fast
responses), they would earn an additional monetary reward
(awarded to the best performer in the study). The experiment
contained six blocks, of which three were ‘reward blocks’ and
three were ‘nonreward blocks’. Each block contained 56
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stimuli and switching occurred after a variable number of trials,
ranging between five and nine trials. The sequence of blocks
was randomized between participants and sessions. After a
block containing the reward stimuli, the participants received
feedback on how well they performed. Participants were
expected to respond faster in the reward than in the control
conditions. Dependent measures were response times in cor-
rect trials and percentage of correct responses. These were
calculated separately for the four different trial types: Look in
the reward blocks; Look in the nonreward blocks; Hear in the
reward blocks; and Hear in the nonreward blocks.

Stop signal task

The stop signal task was used tomeasuremotor impulsivity and
adapted from that used by Fillmore and Rush (2002). In this
task, participants were required to respond to go signals and
inhibit the response when a stop signal was presented. On a
computer screen, the go signals were visually presented letters,
A, B, C and D (stimuli were presented for 500 ms or until the
participant responded; interstimulus interval was 1,500 ms).
The stop signal was the visual presentation of a ‘*’at one of
the corners of the screen. Participants were instructed to re-
spond as fast as possible with left (to A and C) and right (to B
and D) index fingers. Stop signals were presented at delays of
50, 150, 250, and 350ms. A single test consisted of 176 trials in
which each of the four-letter stimuli was presented equally
often. A stop signal occurred in 48 trials during a test. Depen-
dent variables were the proportion of commission errors on stop
trials and the reaction times on go and stop-signal trials (i.e.,
stop reaction time). Reaction time to stop-signal trials repre-
sented the estimated mean time required to inhibit a response.
The method for calculating stop reaction time was taken from
the race model of inhibitory control (Logan 1994). Stop reac-
tion time was calculated by subtracting the stop-signal delay
from the reaction time on go trials associated with the nth
percentile of the reaction time distribution. The nth percentile
corresponds to the percentage of commission errors (Logan
1994; Ramaekers et al. 2011).

Tower of London

Planning ability was assessed by a computerized version of the
Tower of London task (Sobczak et al. 2002). On a computer
screen, two arrays of differently colored balls (red, yellow and
blue) on sticks were presented until the subject responded. The
subject was requested to indicate the minimal number of steps
necessary to rearrange the balls on the lower configuration to
match the arrangement presented on the top half of the screen.
The subjects had to count the number of moves and then
respond by pressing the appropriate response button (two to
six steps) as quickly as possible. The complexity of the task
was dependent on the minimal number of steps in which the

rearrangement could be achieved: two, three, four and five
steps and sometimes six steps, to avoid guessing (only two to
five are analyzed). Performance was indicated by the slope
coefficient of the linear regression of the median response time
as a function of the number of steps. In addition, percentage
correct and response time calculated per number of minimally
required steps were taken into account.

Procedure

The current study was integrated in a larger study on the effects
of methylphenidate on the Contingent Negative Variation
(Linssen et al. 2011). A training session in which the tasks
were practiced took place within 2 weeks before the first
testing day. Participants abstained from alcohol during the last
24 h prior to each testing day. On testing days, they were
collected at their home and arrived at the lab in fasted condition
at either 8.00 am or 8:30 am. Inclusion and exclusion criteria
were checked. Next, participants were given a standardized
meal for breakfast at 80 min predose (t0−80). At t0−30, stop
signal, set shifting and spatial working memory tests were
administered to get a baseline measurement. At t00 partici-
pants ingested four capsules with water, which contained either
PLA, M10, M20 or M40. The stop signal, set shifting and
spatial working memory tests were administered again at t090
and t0270. The verbal word learning test and the Tower of
London were administered at t0150, followed by delayed
recall and recognition testing of the words approximately
30 min later. At the end of the testing day, participants were
returned to their home.

Data analysis

Data were analyzed using a repeated measures analysis of
variance. Because one subject dropped out, there was a min-
imal deviation from complete balancing of treatment orders
(order 1 0 PLA, M10, M20, M40 (five participants), order 2 0
M10, M40, PLA, M20 (five participants), order 3 0 M20,
PLA, M40, M10 (four participants) and order 4 0M40, M20,
M10, PLA (five participants)). For this reason, treatment order
was entered as a between-subjects factor. Since treatment
consisted of different doses of the same drug, main effects of
the drug were not evaluated. Instead, a priori planned compar-
isons between each dose relative to placebo were tested for
significance, at p<0.05 using LSD correction.

Results

Visual verbal learning test

Mean values of dependent measures of the visual verbal
learning task are presented in Fig. 1. Methylphenidate had
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no effect on immediate recall. However, delayed recall
improved after M20 (F1,1404.937, p<0.05) and M40
(F1,1406.084, p<0.03) compared to placebo.

Median reaction time on the recognition test was slower
after M40 (F1,1405.953, p<0.05). Sensitivity was higher
after 40 mg of methylphenidate (F1,1404.878, p<0.05).

Spatial working memory task

Methylphenidate did not significantly affect spatial working
memory task performance (Table 1).

Set shifting task

Methylphenidate did not affect response time and percentage
correct in the ‘look’ trials in the reward blocks. In the non-
reward blocks, there was also no effect of the drug on percent-
age correct. However, methylphenidate led to faster responses
on the ‘look’ trials of the nonreward blocks after M40 at T90
(F1,1509.589, p<0.01) and after M10 andM40, at T270 (M10:
F1,1405.363, p<0.04, M40: F1,14014.145, p<0.01).

Responses to ‘hear’ trials were faster in the nonreward
parts of the task at T270 (M401,1406.885, p<0.03). Meth-
ylphenidate improved performance in the hear trials in both
reward (M40: F1,15010.261, p<0.01) and nonreward trials
(M20: F1,1504.713, p<0.05, M40: F1,1505.809, p<0.03) at
T90 and reward trials at T270 (M40: F1,1406.764, p<0.03).

Stop signal task

A dose of 20 mg of methylphenidate led to faster go and
stop responses at T270 (go: F1,1405.479, p<0.04; stop:
F1,1409.341, p<0.01). Performance on this task, as mea-
sured by percentage correct, was improved after M40 in stop
trials at T90 (F1,15010.698, p<0.01).

Tower of London

Methylphenidate only positively affected performance of
trials that could be solved in three steps when given at a
dose of 20 mg (F1,1505.065, p<0.05). Participants
responded faster after M10 and in the trials that could be
solved in five steps (M10: F1,1507.616, p<0.02) (Table 2).

Discussion

In this dose–response study, different doses of methylphe-
nidate were tested for their effect on memory and other
cognitive functions in healthy volunteers. Methylphenidate
improved delayed recall of word lists. In addition, set shift-
ing and stop signal test performance improved after meth-
ylphenidate. Methylphenidate had little effect on the Tower
of London task performance and no effect on performance
of the spatial working memory task.

Fig. 1 Means of dependent
measures (a total number of
correctly recalled words in
immediate recall; b number of
words recalled in delayed
recall; c median response time
in recognition test; d sensitivity
of recognition test) of the word
learning test after placebo and
methylphenidate, 10, 20 and
40 mg (PLA, M10, M20 and
M40, respectively). Significant
differences relative to placebo
are indicated by an asterisk
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Based on earlier findings of enhanced declarative mem-
ory consolidation after amphetamine, it was expected that
methylphenidate would improve performance on the 30-
word learning test. Results of the current study confirmed
this expectation. Participants recalled more words in the
delayed recall test after 20 and 40 mg of methylphenidate
compared to placebo. Since no improvement was observed
at immediate recall, enhanced delayed recall is likely caused
by better consolidation. To the best of our knowledge, we
are the first to report better consolidation of word lists after
methylphenidate in healthy adults. Since previous studies
used similar doses (20 or 45 mg), suboptimal dosing is an
unlikely explanation for the lack of performance-enhancing
effects in those studies. An important factor may be word
list length. When testing memory in healthy volunteers, a
ceiling effect is easily reached if relatively short lists are
presented repeatedly. Since it was hypothesized that en-
hanced dopamine activity induced by methylphenidate
may lead to improved word learning test performance, the
use of lists of 12 to 15 words in previous studies (Bray et al.
2004; Hermens et al. 2007; Kuypers and Ramaekers 2007)
may have left no room for improvement.

There are ample indications of dopamine involvement in
(spatial) working memory (Ellis et al. 2007; Landau et al.
2008; Robbins 2005). Indeed, methylphenidate has been
shown to improve spatial working memory performance
(Elliott et al. 1997; Mehta et al. 2000). This effect was,
however, not replicated in the present study. A possibly
important difference between the self-ordered search tasks
used in previous studies and the spatial working memory
task used here is that encoding of spatial locations occurs
under time pressure in the current task. Previous research
has suggested that methylphenidate may induce activity and
arousal in healthy volunteers (Clark et al. 1986; Elliott et al.
1997). Hence, participants may have had difficulties to
encode information due to overarousal.

Methylphenidate generally improved performance of the
set shifting task, as was indicated by both faster responses

and a higher percentage of correct responses. Most effects
were observed on the hear trials, suggesting that methylphe-
nidate affected auditory attention more than visual attention.
It is unclear why this should be the case. Our expectation
that the effect of methylphenidate would be more pro-
nounced in the reward parts of this task was not confirmed.
Participants may not have paid attention to the ‘€’ sign,
which indicated that they were in the reward condition.

Methylphenidate improved stop signal task performance
as was indicated mainly by faster responses. Effects were
most prominent in the go trials. Faster responses (both in the
set shifting and the stop signal task) may partly reflect the
response readiness-enhancing effect of methylphenidate
(Linssen et al. 2011) increasing the speed of performance
(Elliott et al. 1997). Furthermore, taking into account the
relatively high number of statistical comparisons being
made in this study, some of the effects reported here includ-
ing those on the Tower of London task may not be genuine
drug effects. Therefore, the overall pattern of results was
considered when describing drug effects. Thus, generally,
MPH improved measures of declarative memory, attention
and response inhibition.

The effects of methylphenidate were observed within a
rather wide time window, between 90 and 270 min after drug
intake. This likely reflects a relatively long lasting enhance-
ment of dopamine levels in the blood after methylphenidate.
Blood dopamine levels cannot be measured directly, but
changes in prolactin level in blood are a good surrogate
marker, since the prolactin level is known to rise as the
dopamine level decreases and vice versa (Ben-Jonathan
1985). Indeed, prolactin levels were decreased between 60
and 240 min after methylphenidate administration in this
group of participants (Linssen et al. 2011).

Most studies into effects of dopaminergic drugs on
aspects of cognitive performance describe results according
to an inverted U curve when performance is mapped as a
function of degree of neurotransmitter activity (Levy 2009;
Mehta et al. 2004). The design of the present study, using

Table 2 Mean values (SEM) of
dependent measures of Tower of
London (ToL) after placebo and
methylphenidate 10, 20 and
40 mg (PLA, M10, M20 and
M40, respectively)

RT Response time
*p<0.05; **p<0.1

T160

PLA M10 M20 M40

Slope 0.4 (0.0) 0.4 (0.0) 0.4 (0.3) 0.4 (0.0)

2 steps RT 4,277 (300) 4,356 (366) 4,458 (418) 4,760 (508)

% correct 95.8 (2.3) 95.9 (2.1) 95.1 (1.6) 94.9 (2.3)

3 steps RT 6,039 (502) 6,461 (333) 5,835 (446) 6,128 (583)

% correct 95.5 (1.4) 95.1 (1.9) 98.9* (0.7) 94.5 (1.5)

4 steps RT 9,416 (895) 9,197 (861) 8,636 (715) 9,892 (1,153)

% correct 91.6 (2.3) 89.6 (2.1) 93.5 (2.2) 94.3 (2.7)

5 steps RT 13,458 (1007) 15,770 (1,231) 15,076 (1,321) 15,441 (1,291)

% correct 84.1 (3.3) 85.3* (3.0) 79.8 (2.7) 85.4** (3.3)
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three doses of methylphenidate, the highest of which corre-
sponds to 75% blocking of dopamine reuptake sites (Volkow
et al. 1998) should allow to reveal the inverted U curve, if
present. This would be reflected by improved performance at
low and intermediate dosing levels and a drop in performance
enhancement at the higher dose. However, the current findings
suggest that methylphenidate influences memory consolida-
tion in a monotonic positive fashion. Although dose–response
relationships may differ between cognitive domains, it has
been shown that methylphenidate effects on response readi-
ness cannot also be described in terms of the inverted U
function (Linssen et al. 2011). Methylphenidate’s enhancing
effects on response readiness were observed even after a dose
as low as 10 mg and grewmore consistent and prominent with
increasing doses. Hence, our data challenge the existence of
the inverted U relationship, at least with respect to declarative
memory consolidation and response readiness.

In conclusion, this was the first study to find dose-related
effects of methylphenidate on declarative memory consolida-
tion. This result is in line with earlier described findings of
amphetamine-induced enhancement of memory consolidation.
Improved performance was also observed on stop signal and
set shifting tasks.

Acknowledgements This studywas carried out atMaastricht University,
Maastricht, The Netherlands and was sponsored by F. Hoffmann-LaRoche
Ltd., Basel, Switzerland. WJR is an employee of F. Hoffmann-La Roche
Ltd. and was involved in designing the study, analysis and monitoring of the
data and approval of the report. The authors have full control of all primary
data and agree to allow review of the data if requested.

The authors also would like to thank the following people for
contributing to the study:

Dr. Cees van Leeuwen, Irene Lelieveld, Conny Quaedflieg, Saskia
Schneider, Natalie Valle and Lizzy Vuurman.

The experiment complies with the current Dutch law.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Advokat C (2010) What are the cognitive effects of stimulants medi-
cations? Emphasis on adults with attention-deficit/hyperactivity
disorder (ADHD). Neurosci Biobehav Rev 34:1256–1266

Ben-Itzhak R, Giladi N, Gruendlinger L et al (2008) Can methylphe-
nidate reduce fall risk in community-living older adults? A
double-blind, single-dose cross-over study. J Am Geriatr Soc 56
(4):695–700

Ben-Jonathan N (1985) Dopamine: a prolactin-inhibiting hormone.
Endocr Rev 6(4):564–589

Bishop C, Roehrs T, Rosenthal L et al (1997) Alerting effects of
methylphenidate under basal and sleep-deprived conditions. Exp
Clin Psychopharmacol 5(4):344–352

Bray CL, Cahill KS, Oshier JT et al (2004) Methylphenidate does not
improve cognitive function in healthy sleep-deprived young
adults. J Investig Med 52(3):192–201

Brumaghim JT, Klorman R (1998) Methylphenidate’s effects on
paired-associate learning and event-related potentials of young
adults. Psychophysiology 35(1):73–85

Camp-Bruno JA, Herting RL (1994) Cognitive effects of milacemide
and methylphenidate in healthy young adults. Psychopharmacol-
ogy (Berl) 115(1–2):46–52

Clark CR, Geffen GM, Geffen LB (1986) Role of monoamine path-
ways in the control of attention: effects of droperidol and meth-
ylphenidate in normal adult humans. Psychopharmacology (Berl)
90(1):28–34

Cools R, Robbins TW (2004) Chemistry of the adaptive mind. Philos
Transact A Math Phys Eng Sci 362(1825):2871–2888

Elliott R, Sahakian BJ, Matthews K et al (1997) Effects of methylphe-
nidate on spatial working memory and planning in healthy young
adults. Psychopharmacology (Berl) 131(2):196–206

Ellis KA, Mehta MA, Naga Venkatesha Murthy PJ et al (2007) Tyro-
sine depletion alters cortical and limbic blood flow but does not
modulate spatial working memory performance or task-related
blood flow in humans. Hum Brain Mapp 28(11):1136–1149

Evans RW, Gualtieri CT, Amara I (1986) Methylphenidate and mem-
ory: dissociated effects in hyperactive children. Psychopharma-
cology (Berl) 90(2):211–216

Fillmore MT, Rush CR (2002) Impaired inhibitory control of behavior
in chronic cocaine users. Drug Alcohol Depend 66(3):265–273

Fitzpatrick P, Klorman R, Brumaghim JT et al (1988) Effects of
methylphenidate on stimulus evaluation and response processes:
evidence from performance and event-related potentials. Psycho-
physiology 25(3):292–304

Greely H, Sahakian B, Harris J et al (2008a) Towards responsible use
of cognitive-enhancing drugs by the healthy. Nature 11:702–705

Greely H, Sahakian B, Harris J et al (2008b) Towards responsible use
of cognitive-enhancing drugs by the healthy. Nature 456
(7223):702–705

Hannestad J, Gallezot JD, Planeta-Wilson B et al (2010) Clinically
relevant doses of methylphenidate significantly occupy norepi-
nephrine transporters in humans in vivo. Biol Psychiatry 68
(9):854–860

Hermens DF, Cooper NJ, Clark CR et al (2007) An integrative ap-
proach to determine the best behavioral and biological markers of
methylphenidate. J Integr Neurosci 6(1):105–140

Kessels RP, Postma A, de Haan EH (1999) Object relocation: a pro-
gram for setting up, running, and analyzing experiments on mem-
ory for object locations. Behav Res Methods Instrum Comput 31
(3):423–428

Kessels RP, Postma A, Wester AJ et al (2000) Memory for object
locations in Korsakoff’s amnesia. Cortex 36(1):47–57

Klaassen T, Riedel WJ, Deutz NE et al (2002) Mood congruent
memory bias induced by tryptophan depletion. Psychol Med 32
(1):167–172

Kuypers KP, Ramaekers JG (2005) Transient memory impairment after
acute dose of 75 mg 3.4-methylene-dioxymethamphetamine. J
Psychopharmacol 19(6):633–639

Kuypers KP, Ramaekers JG (2007) Acute dose of MDMA (75 mg)
impairs spatial memory for location but leaves contextual pro-
cessing of visuospatial information unaffected. Psychopharmacol-
ogy (Berl) 189(4):557–563

Landau SM, Lal R, O’Neil JP et al (2008) Striatal dopamine and
working memory. Cereb Cortex

Larriviere D, Williams MA, Rizzo M et al (2009) Responding to
requests from adult patients for neuroenhancements: guidance of
the Ethics, Law and Humanities Committee. Neurology 73
(17):1406–1412

Levy F (2009) Dopamine vs. noradrenaline: inverted-U effects and
ADHD theories. Aust N Z J Psychiatry 43(2):101–108

Lezak MD (1995) Neuropsychological assessment, 3rd edn. Oxford
University Press, New York

618 Psychopharmacology (2012) 221:611–619



Linssen AM, Vuurman EF, Sambeth A, et al (2011) Contingent nega-
tive variation as a dopaminergic biomarker: evidence from dose-
related effects of methylphenidate. Psychopharmacology (Berl)

Logan GD (1994) On the ability to control thought and action: a user’s
guide to the stop signal paradigm. In: Dagenbach D, Carr TH
(eds) Inhibitory processes in attention, memory, and language.
Academic Press, San Diego

Luciana M, Collins PF (1997) Dopaminergic modulation of working
memory for spatial but not object cues in normal humans. J Cogn
Neurosci 9(3):330–347

Luciana M, Depue RA, Arbisi P et al (1992) Facilitation of working
memory in humans by a D2 dopamine receptor agonist. J Cogn
Neurosci 4(1):58–68

Maher B (2008) Poll results: lookwho’s doping. Nature 452(7188):674–675
Mehta MA, Sahakian BJ, McKenna PJ et al (1999) Systemic sulpiride in

young adult volunteers simulates the profile of cognitive deficits in
Parkinson’s disease. Psychopharmacology (Berl) 146(2):162–174

Mehta MA, Owen AM, Sahakian BJ et al (2000) Methylphenidate
enhances working memory by modulating discrete frontal and
parietal lobe regions in the human brain. J Neurosci 20(6):RC65

Mehta MA, Goodyer IM, Sahakian BJ (2004)Methylphenidate improves
working memory and set-shifting in AD/HD: relationships to base-
line memory capacity. J Child Psychol Psychiatry 45(2):293–305

Muller J, Dreisbach G, Goschke T et al (2007) Dopamine and cognitive
control: the prospect of monetary gains influences the balance
between flexibility and stability in a set-shifting paradigm. Eur J
Neurosci 26(12):3661–3668

Pietrzak RH, Mollica CM, Maruff P et al (2006) Cognitive effects of
immediate-release methylphenidate in children with attention-deficit/
hyperactivity disorder. Neurosci Biobehav Rev 30(8):1225–1245

Ramaekers JG, Theunissen EL, de Brouwer M et al (2011) Tolerance and
cross-tolerance to neurocognitive effects of THC and alcohol in
heavy cannabis users. Psychopharmacology (Berl) 214(2): 391–401

Robbins TW (2005) Chemistry of the mind: neurochemical modulation
of prefrontal cortical function. J Comp Neurol 493(1):140–146

Roehrs T, Papineau K, Rosenthal L et al (1999) Sleepiness and the
reinforcing and subjective effects of methylphenidate. Exp Clin
Psychopharmacol 7(2):145–150

Rogers RD, Blackshaw AJ, Middleton HC et al (1999) Tryptophan
depletion impairs stimulus-reward learning while methylpheni-
date disrupts attentional control in healthy young adults: implica-
tions for the monoaminergic basis of impulsive behaviour.
Psychopharmacology (Berl) 146(4):482–491

Sahakian B, Morein-Zamir S (2007) Professor’s little helper. Nature
450(7173):1157–1159

Sobczak S, Riedel WJ, Booij I et al (2002) Cognition following acute
tryptophan depletion: difference between first-degree relatives of
bipolar disorder patients and matched healthy control volunteers.
Psychol Med 32(3):503–515

Soetens E, D’Hooge R, Hueting JE (1993) Amphetamine enhances
human-memory consolidation. Neurosci Lett 161(1):9–12

Soetens E, Casaer S, D’Hooge R et al (1995) Effect of amphetamine on
long-term retention of verbal material. Psychopharmacology
(Berl) 119(2):155–162

Townsend J, Adamo M, Haist F (2006) Changing channels: an fMRI
study of aging and cross-modal attention shifts. NeuroImage 31
(4):1682–1692

Volkow ND, Wang GJ, Fowler JS et al (1998) Dopamine transporter
occupancies in the human brain induced by therapeutic doses of
oral methylphenidate. Am J Psychiatry 155(10):1325–1331

Zeeuws I, Soetens E (2007) Verbal memory performance improved via
an acute administration of D-amphetamine. Hum Psychopharma-
col 22(5):279–287

Zeeuws I, Deroost N, Soetens E (2010) Verbal memory improved by
D-amphetamine: influence of the testing effect. Hum Psychophar-
macol 25(5):377–387

Psychopharmacology (2012) 221:611–619 619


	Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Method
	Participants
	Design
	Visual verbal learning test
	Spatial working memory task
	Set shifting task
	Stop signal task
	Tower of London
	Procedure
	Data analysis

	Results
	Visual verbal learning test
	Spatial working memory task
	Set shifting task
	Stop signal task
	Tower of London

	Discussion
	References




