
Regression and Data Mining Methods for Analyses of Multiple
Rare Variants in the Genetic Analysis Workshop 17 Mini-Exome
Data

Joan E. Bailey-Wilson1, Jennifer S. Brennan2, Shelley B Bull3,4, Robert Culverhouse5,
Yoonhee Kim1, Yuan Jiang2, Jeesun Jung6,7, Qing Li1, Claudia Lamina8, Ying Liu9, Reedik
Mägi10, Yue S. Niu11, Claire L. Simpson1, Libo Wang12, Yildiz E. Yilmaz3,4, Heping Zhang2,
and Zhaogong Zhang13

1Inherited Disease Research Branch, National Human Genome Research Institute, National
Institutes of Health, Baltimore, MD
2Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven,
CT
3Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
4Dalla Lana School of Public Health, University of Toronto, ON, Canada
5Department of Medicine, Washington University School of Medicine, Saint Louis, MO
6Department of Medical and Molecular Genetics, Indiana University School of Medicine,
Indianapolis, IN
7Center for Computational Biology and Bioinformatics, Indiana University School of Medicine,
Indianapolis, IN
8Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical
University, Innsbruck, Austria
9Department of Statistics, Columbia University, New York, NY
10Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
11Department of Mathematics, University of Arizona, Tucson, AZ
12Department of Statistics, Purdue University, West Lafayette, IN
13Department of Mathematical Sciences, Michigan Technological University, Houghton, MI

Abstract
Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of
complex traits using DNA sequence data. These issues included novel methods for analyzing rare
genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of
various study designs to increase power to detect effects of rare variants, and the use of machine
learning approaches to model highly complex heterogeneous traits. Various published and novel
methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the
simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected)
dependent on locus-specific heritability or contribution to disease risk, large samples will be
required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs

Corresponding Author: Joan E. Bailey-Wilson, NIH/NHGRI, 333 Cassell Drive, Suite 1200, Baltimore, MD 21224,
jebw@mail.nih.gov, Phone: 443-740-2921.

NIH Public Access
Author Manuscript
Genet Epidemiol. Author manuscript; available in PMC 2012 May 27.

Published in final edited form as:
Genet Epidemiol. 2011 ; 35(Suppl 1): S92–100. doi:10.1002/gepi.20657.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



may increase power for smaller laboratory costs, methods that allow joint analysis of multiple
variants per gene or pathway are more powerful in general than analyses of individual rare
variants, population-specific analyses can be optimal when different subpopulations harbor private
causal mutations, and machine learning methods may be useful for selecting subsets of predictors
for follow-up in the presence of extreme locus heterogeneity and large numbers of potential
predictors.
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Introduction
The overarching theme of Genetic Analysis Workshop 17 (GAW17) was the comparison of
statistical methods for detecting genetic contributions to variability of complex traits using
whole-exome DNA sequence data. The papers contributed to GAW17 were grouped by
theme for discussion and comparison of performance of methods. The contributors to Group
14, on regression and data mining methods for multiple rare variants, addressed several
issues in the 13 papers submitted to the workshop. These issues included novel methods for
analyzing rare genetic variants in an aggregated manner (often termed collapsing rare
variants), evaluation of various study designs to increase power to detect effects of rare
variants, and the use of machine learning approaches to model highly complex
heterogeneous traits.

Collapsing Rare Variants
Conventionally, rare variants refer to variants (single-nucleotide polymorphisms [SNPs])
with a minor allele frequency (MAF) of 0.5% to 1%, and very rare variants refer to SNPs
with MAF < 0.5%. In Mendelian diseases, a single causal gene or pathway often harbors
large numbers of individually very rare causal variants. Evolutionary theory suggests that
even for complex traits, it is likely that causal genes (and related pathways) will harbor
multiple very rare variants (in the population) that will contribute to the susceptibility to the
disease, with individual families each segregating different causal variants in the same gene
(or pathway). Association methods have limited power for mapping very rare variants in
population studies because of the small number of sampled individuals carrying such a
variant. For these methods to have adequate efficiency to detect individual rare variants of
moderate effect size, the sample size needs to increase substantially as the MAF decreases.
In the general context of biostatistics, the problem is known as the imbalance in the
covariate distributions. For binary traits with categorical covariates, the problem can be
translated into low cell counts in a cross-tabulation table. Therefore grouping and collapsing
rare variants within genes or pathways is the most feasible option to improve power when
studying rare variants in a sample of individuals who may each harbor different rare causal
variants.

The remaining question is, What is the most powerful way to generate a surrogate for the
aggregated genetic effect from a set of rare variants? Usually, grouping is constructed on the
basis of functional relevancy, physical proximity, or both. Once rare variants are grouped,
their genotypic information is typically combined or collapsed into a univariate score.
Subsequently, the association between this group of rare variants and the disease is studied
by means of the association between the score and the disease traits. Dering et al. [2011]
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provide an excellent review of various published rare variant association methods, including
single-marker, multimarker, and various collapsing strategies.

A popular alternative to collapsing genotypic information is to combine single-SNP
statistics. Six work groups to Group 14 attempted to address these issues using novel
methods, and two work groups evaluated previously published methods using the GAW17
data. The new methods all use weights to aggregate the effects of multiple markers. Some
methods derived weights from the data simultaneously with the association analysis,
whereas others assumed uniform weights or weights inverse with MAF before performing
the association tests. One can expect that the derived-weight approaches may lose some
power because some of the data are used to estimate the weights. The uniform- or inverse-
weight approaches rely on the accuracy of their assumptions concerning the effects of rare
variants to gain power, but if these assumptions are incorrect, then their power may not be
optimal.

Study Designs
Sequencing studies are expected to remain fairly expensive for several years, and large
samples are needed to detect the effects of rare variants of small effect size. Therefore study
designs that can increase power are desirable. Several contributors to Group 14 proposed
ideas to incorporate information on extreme phenotype values at the design and analysis
stages of their association studies. In addition, some work groups compared study designs in
which analyses were performed on stratified subpopulations followed by meta-analysis with
designs in which analysis were performed on the complete sample while adjusting for
subpopulation membership. Four work groups focused in full or in part on optimal st dy
design methods.

Machine Learning Methods
Over the past decade, technological advances have led to the ability to determine large
numbers of possible predictors (genotypes and environmental exposure values) that may
play a role in variation of a quantitative trait or risk of a disease. This has led to the so-called
small n, large P problem, where the number of potential predictors P to be tested for
association with the trait is many orders of magnitude larger than the number of individuals
n who are studied. When one considers possible interactions among these predictors, the
number of tests becomes so large that traditional frequentist tests have no power after
correction for multiple testing. The various highly nonparametric methods that model risk of
disease or variation of a quantitative trait and that rely on bootstrapping approaches to rank
potentially causal predictors have been termed machine learning methods. Dasgupta et al.
[2011] provide a review of the published machine learning methods that were used at
GAW17. Two work groups applied three existing machine learning methods to the GAW17
data.

In the remaining sections of this paper, we summarize the simulation model and the methods
and results for each paper under the three mentioned categories and discuss the results in
light of the data-generating model. Some interesting observations from the analysis are also
highlighted for further follow-up.

Data
Of the two genetic data sets provided for analysis at GAW17, all contributors to Group 14
used the set that consisted of 697 unrelated individuals sequenced by the 1000 Genomes
Project from seven ethnically homogeneous samples representing three geographically
distinct ancestries: Asia, Africa, and Europe. A subset of whole-exome DNA sequence data
from the 1000 Genomes Project was used to simulate a common, complex disease trait and
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three related quantitative traits. All four traits were modeled to have complex causation,
involving both genetic and environmental factors. The sequence data, the simulation
process, and the generating models for the one qualitative and three quantitative traits are
described by Almasy et al. [2011]. Briefly, in the trait models, at causal loci for each trait,
all genetic effects were additive on the quantitative trait or liability scale and the allele with
the lower frequency always had a positive effect on the quantitative trait value or on the
disease risk. Overall, SNP locus-specific heritability (h2) averaged over 200 replicates of the
complete data were all extremely small, with few variants having a locus-specific h2 > 1%
[Wilson et al., 2011]. Quantitative trait Q4 had a heritability of 0.7, but none of this was due
to genes in the mini-exome sequencing set. For Q1, a gene-environment interaction was
simulated for the KDR gene and the Smoking covariate. Although population origin of the
1000 Genomes Project participants was not used in the phenotype simulations, the causal
allele frequencies differed across the different ethnic groups. No epistatic interactions were
simulated for any of the traits.

Methods for Collapsing Rare Variants
In GAW17 Group 14, six work groups proposed novel approaches to collapse rare variants,
as summarized in Table I. In addition, two work groups evaluated previously published
collapsing methods. By collapsing multiple markers into one unit for analysis, each
approach limited the number of conducted tests in an attempt to increase power compared to
the situation in which all rare variants were tested individually. Only a short description of
the methods and m in results are presented here, and readers are referred to the original
papers for other details of each method.

Three work groups [Brennan et al., 2011; Niu et al., 2011; Wang et al., 2011] aimed to
generate a linear combination of genotypes within a gene and relied on various regression
techniques to test for association of the trait with individual genes. Jung et al. [2011] used
the count of rare variants within a gene as the surrogate for the gene, but in their association
test this count became the response variable and the phenotype became the independent
variable in a zero-inflated Poisson regression model. Jiang et al. [2011] proposed a two-step
procedure that relied on classification trees to combine markers into multiple groups, some
containing markers within the same gene (step 1) and others containing markers in genes
physically close to each other (step 2). Then the collapsed group was tested for association
with the phenotype using traditional regression analysis. These four methods focused on the
grouping of markers, whereas Liu et al. [2011] aimed to divide samples into subgroups as
well. They proposed a metric measure, denoted by a genotypic similarity score, to calculate
the pairwise similarity among samples at a given marker. Then, unsupervised hierarchical
clustering was applied to the aggregated similarity scores among markers within genes to
divide the genes into groups. As a result, the samples were also divided into a fixed number
of groups. To evaluate the existing collapsing methods, Culverhouse et al. [2011] used the
data sets to compare the performance of two similar methods proposed by Li and Leal
[2008]. Mägi et al. [2011], on the other hand, evaluated the effect of missing genotypes and
therefore applied rare variant mutational load analysis on the provided data sets with some
proportions of the genotypes randomly set as missing.

Zero-Inflated Poisson Regression for Multiple Rare Variants
Jung et al. [2011] applied a zero-inflated Poisson regression model that took into account the
excess of 0’s caused by the extremely low frequency of rare variants. To implement this,
Jung and colleagues created an indicator variable for each SNP based on the presence or
absence of the rare variant. Then, summation of the variables within a gene was used to
collapse rare variants. The sum is essentially a count of all rare SNPs in a gene. Treating the
counts as response variables, Jung and co-workers applied a zero-inflated Poisson model
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based on the results of collapsing the variants, with Affected status (or quantitative traits Q1,
Q2, or Q4), Age, Sex, and Smoking status as covariates, at the same time adjusting for
population substructure using PLINK [Purcell et al., 2007]. This method had over 90%
power to detect FLT1 for both Q1 and the disease trait at a p-value of at least 1.56 × 10−5.
KDR was detected at this p-value in more than 50% of replicates for Q1. However, many
noncausal genes were also significant at these same p-values in large numbers of replicates.

LASSO for Collapsing Multiple Variants
Brennan et al. [2011] considered a two-step approach of analyzing rare variant data by
incorporating the least absolute shrinkage and selection operator (LASSO) technique
(reviewed by Dasgupta et al. [2011]). In the first step, Brennan and colleagues c nducted a
gene-level screening on SNPs within each gene using the LASSO method. In particular,
indicator variables were created on the basis of the rare variants. A selection model was used
to generate a linear combination of these new constructs, subsequently producing a new
marker that represented the SNP group. A new marker was accepted only if the
corresponding linear combination was nonzero in at least 5% of the subjects. In the second
step Brennan and colleagues screened the remaining genes by performing clustering analysis
on the positions of the SNPs in the genes that were left after the first step. The LASSO
method was used to generate a representative marker for each cluster. In Brennan and
colleagues’ analysis, the first simulated replicate analyzing the disease trait Affected was
used to generate markers. The other 199 replications were used to evaluate the set of
constructed markers using a classification tree method. Two causal genes were identified in
18% and 28% of replicates, and 16 noncausal genes were identified as significant in 18–55%
of replicates. Future development of this method could involve the use of more data to
generate markers or incorporation of pathway information in the second step in lieu of
clustering genes by distance. In nonsimulated data analyses, the data could be split into
training and testing subsets and permutation could be used to control type I error.

Partial Least-Squares for Collapsing Multiple Variants
Partial least-squares components are also linear combinations of the predictor variables,
which are constructed to maximize an objective criterion based on Cov(X*w, Y), the sample
covariance between X*w (a linear combination of the original predictors) and the Affected
trait Y. Wang et al. [2011] adopted partial least-squares components for collapsing multiple
rare variants within genes and compared the method to analyses of single SNPs.
Specifically, for each gene, Wang and colleagues constructed partial least-squares
components using cross-validation. Then, they used the penalized orthogonal component
regression estimation (POCRE) algorithm [Zhang et al., 2009] to analyze the collapsed “new
markers” along with Age, Sex, and Smoking status as covariates. FLT1 was the only causal
locus that was estimated to have a nonzero effect in a large number of replicates (41% in
SNP-only analyses and 17.5% in gene-based analyses) with three other causal loci having
nonzero estimated effects in 3–10% of replicates. False-positive effects were replicated in at
least 3% of replicates for nine genes. Future work will evaluate whether inclusion of
pathway information improves performance.

Group ISIS for Collapsing Rare Variants
Niu et al. [2011] used the group iterative sure independence screening (group ISIS)
approach to select important genes and the SNPs within. The model considered is given in
Table I. Niu and colleagues assumed that the model was bilevel sparse [Breheny and Huang,
2009], which means that only a small number of genes were related to the phenotype of
interest and only a subset of the SNPs in these related genes were important. This is a
reasonable assumption for high-dimension modeling when there is a group structure among
the predictors. This method performed well in the low- and medium-noise cases when
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results were averaged across multiple replicates. However, when only a single replicate was
used, it had lower power (e.g., only two causal genes, FLT1 and KDR, were detected for
Q1). As with many other methods, Niu and colleagues approach exhibited high false-
positive rates when only a single replicate was used.

Tree Method for Multiple Variants
Jiang et al. [2011] used a two-step supervised recursive partitioning process to automatically
detect SNP interactions and to define markers by these interactions. In the first step, separate
trees were constructed to model Affected status (Y) using the SNPs contained in each gene
on a chromosome. A new bilevel marker could be constructed: One level of the marker
represented the paths in the tree that led to terminal nodes with a majority of case subjects,
and the other level of the marker represented paths that led to terminal nodes with a majority
of control subjects. A new single marker for each gene was recorded only so long as the
least frequent level was not rare (a user-defined threshold; Jiang and colleagues used 1 −
0.992 = 0.0199 in these analyses). In the second step, Jiang and colleagues performed a
clustering analysis to group SNPs within nearby genes using the genes that did not result in
a marker in step 1; a tree was built for the phenotype Affected for each cluster group. A new
single marker for each group was recorded so long as it was not rare. In their analysis, Jiang
and colleagues used the first replicate to generate markers. The remaining 199 phenotype
replications were used to conduct logistic regressions, adjusting for Sex, Age, Smoking
status, and ethnic group cluster covariates. Using a Bonferroni correction for the number of
constructed markers used in the final analysis, Jiang and colleagues found that FLT1 was
significant in 10 out of 199 analyses and that many other markers were significant in
individual replicates but were not replicated more than eight times. When the false discovery
rate was used, FLT1 was significant in 17 out of 199 replicates but at the expense of
increasing false-positive rates. In nonsimulated data analyses, the data could be split into
training and testing subsets, and permutation could be used to control type I error.

Inverse-Probability Weighted Clustering
Liu et al. [2011] proposed a novel approach for gene-based grouping and collapsing of SNP
genotypes. They defined inverse-probability weighted similarity scores to overweight
genotypic differences observed for rare variants. Specifically, for an individual 1 with
genotype aa and an individual 2 with genotype Aa, because a is the minor allele, the (a, a)
match will dominate the (a, A) mismatch and these two individuals will have a high
similarity score according to the proposed weighting scheme. Similarities at different SNP
loci within a gene were aggregated by summation. Then Liu and colleagues used a bounded
monotone-decreasing exponential transformation to convert the obtained similarity into
distance. For each gene, unsupervised hierarchical clustering was done on the basis of the
resultant multi-SNP weighted distances, and partitions of individuals were created for that
gene by subsequently cutting the hierarchical clustering tree into a prespecified number of
groups (partition sizes 5 to 10 were compared). Liu and colleagues then evaluated the
association between a phenotype trait and the partition constructed from the genotypes using
three association tests (one-way analysis of variance, chi-square test, and the partition
retention method [Chernoff et al., 2009; Zheng et al., 2010]). For Q1, both FLT1 and KDR
were identified in more than 50% of replicates, with FLT1 detected in all the replicates. For
Q2, six genes that contained causal SNPs were identified as top genes, but only VNN (22%)
was identified in more than 5% of replicates. However, as with all the methods applied to
the GAW17 data, some of the genes that were identified in multiple replicates were false
positives.
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Evaluation of Previously Published Collapsing Methods
In addition to the novel methods, Culverhouse et al. [2011] compared the performance of
two published methods [Li and Leal, 2008] on Q1, Q4, and affection status. The first method
was simply a count of how many rare alleles an individual carried for a particular gene. The
second method was dichotomous, indicating whether or not an individual carried at least one
rare allele in a particular gene. The two methods performed similarly in the GAW17 data,
particularly for the strongest associations. This simply suggests that in these data the outliers
in phenotype were not also outliers in terms of the count variable for any gene. Clearly, this
cannot be generalized to other genetic models. In addition, Culverhouse and colleagues, like
all other investigators using the GAW17 data, observed that there were many more highly
significant false positives than expected for traits Q1 and affection status. However, in their
analysis of Q4, the type I error rate did not appear inflated. Thus they concluded that it was
unlikely that the inflation of type I error in the analyses of the other traits was a completely
random effect of using multiple replicates of the same genotypes. They also noted that one
outlier individual (with an extreme phenotype at Q1 in nearly every replicate) was the only
carrier of rare variants in multiple genes, and this fact became significant only when this
person was included in the data.

Mägi et al. [2011] used rare variant mutational load analysis [Li and Leal, 2008; Morris and
Zeggini, 2010], as implemented in the program GRANVIL
(http://www.well.ox.ac.uk/GRANVIL), to examine the 1,297 causal genes with at least two
rare variants. Within the generalized linear model framework, the method collapses the
variants for each individual and uses the counts of minor alleles divided by the number of
called alleles for a set of markers (e.g., those belonging to the same gene) as one covariate,
denoted as the mutational load, in the regression analysis. This approach differs from other
collapsing methods using the count of rare variants [Jung et al., 2011] because of the
additional loading weights based on call rates for each individual. Because rare variants are
more prone to be sequenced unsuccessfully than common (MAF > 0.05) variants are, Mägi
and colleagues evaluated the power and type I error of these methods when various
proportions of the genotype data were missing. As with other methods, at a nominal
Bonferroni-corrected threshold of p ≤ 3.86 × 10−5, they observed association for the Q1
causal FLT1 gene in all replicates, for the Q1 causal KDR gene in about 23% of replicates,
and for other causal genes in any of the traits in only small numbers of replicates. The
observed power to detect association with causal genes was not dramatically affected by call
rate. Similarly, the type I error rate for noncausal genes was relatively unaffected by the rate
of missing genotypes but was somewhat inflated at all levels of call rates (as observed for all
methods). Their results suggest that the GRANVIL approach for testing association with the
mutational load of rare variants within a gene is relatively robust to missing genotype data,
which occur either at random or with differential allele-specific failures.

Study Designs to Increase Power to Detect Rare Causal Variants
Several methods were proposed to increase power when analyzing sequence data by
utilizing information on extreme phenotype values or by stratifying on subpopulations.

Oversampling Schemes Based on Extreme Values
In studies where resources are limited, sequencing might be restricted to a subset of the
entire cohort. One natural choice is to sequence the upper and lower tails of a quantitative
trait distribution. But is this really the best sampling design? If a subset is sampled from the
entire cohort, what analysis method should be used? Yilmaz and Bull [2011] evaluated these
questions by comparing the following sampling schemes, among others: a 50% simple
random sample, an extreme phenotype sampling (taking the upper and lower 25% of the
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quantitative trait distribution), and a 50% sampling design that gave each individual a
nonzero chance to be drawn but with higher probability assigned to those with extreme
values. To avoid bias and inflation of type I error, statistical methods have to account for the
specific sample ascertainment scheme. These methods include an inverse regression
conditioning on the phenotype and standard survey methods with inverse-probability
weighting.

As expected, the simple random sample design could not be recommended because of a high
loss of power. The quantitative-trait-dependent sampling designs investigated by Yilmaz and
Bull [2011], though, did emerge as cost-effective alternatives with the oversampling or
complete selection of the extremes of the distribution performing well when analyzed with
Poisson regression or linear regression with inverse-probability weighted estimation. The
simulation study results suggest that the quantitative-trait-dependent selection designs
generally yield greater than 50% relative efficiency compared to using the entire cohort,
implying cost-effectiveness of 50% sample selection and worthwhile reduction of
sequencing costs.

It was clear, however, that linear regression using the complete distribution of the
quantitative trait was more powerful than any of the methods using only 50% of the data.
Was the power loss of extreme-value approaches just a result of a smaller sample size?
Lamina [2011] investigated this question by restricting the analysis to the tails of the
distribution (bottom 10% versus top 10%) using methods specifically designed for the
detection of rare variants. Rare variants were collapsed within genes by means of an
indicator variable that coded whether the individual had at least one rare variant in the gene.
Within this analysis, the sample size was increased (1) by combining pairs of replicates into
a single sample, thus doubling the number of individuals with extreme phenotype values in
each of 100 combined replicates, and (2) by widening the tails to include the top and bottom
20% or 30% of the sample. Thus Lamina analyzed extreme tail samples, which
corresponded to only 20%, 40%, or 60% of the original sample size. Linear regression
approaches applied to the extreme tail subsets showed inflated type I error, but methods
appropriate for case-control tests and adjusted for population stratification exhibited better
control of false-positive rates. Linear regression of the complete data set had higher power
than any approach using only the upper and lower 10% of one sample (i.e., using only 20%
of the original sample size). However, when sample size was increased by taking the
extreme top and bottom 10% from a larger sample (i.e., from two combined replicates; 40%
of the original sample size), Lamina observed comparable or even higher power compared
to analyzing the complete sample. Increasing the sample size by adding v lues closer to the
median of the quantitative trait distribution, however, did not improve the power. Lamina
concluded that enriching the analysis by gathering a greater proportion of individuals with
extreme values in the phenotype of interest than in the general population led to a higher
power to detect rare variants compared to analyzing a population-based sample with
equivalent sample size.

Candidate Gene Analysis Design Guided by Extreme Values
Both Yilmaz and Bull [2011] and Lamina [2011] proposed a specific selection of individuals
based on extreme values. In contrast, Zhang et al. [2011] used information on extreme
values for the selection of candidate genes. Their proposed hybrid approach combines an
iterative regression strategy with an extreme-value strategy. The extreme-value strategy is a
gene-based method whereby a gene is identified as a candidate if at least one individual with
extreme values (>95% quantile) has at least one rare variant within the gene. This strategy
addresses the multiple testing problem by testing only candidate genes. The iterative
regression involves a variant-based multimarker score test aimed at identifying a group of
significant variants. The hybrid approach combining both strategies was shown to
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outperform the reference method—the combined multivariate and collapsing (CMC) method
[Li and Leal, 2008]—with regard to power. However, work remains to be done to determine
the optimal value of the number of SNPs to include in step 1 of the iterative procedure,
because too small a number will exclude causal SNPs but too large a number will also cause
power loss by the addition of noise terms. More important, the validity of approaches to
utilize extreme trait values to increase power depends on the degree of truth in the
assumption that rare variants with the largest effect drive the quantitative trait values to the
tail. Depending on the trait, one may run the risk of missing causal variants that increase the
variance, but not the mean value of the trait, by targeting only variants associated with the
extreme trait values. Zhang and colleagues also showed that a small number of phenotypic
outlier individuals caused inflated type I errors in Q1. This problem was resolved after
transforming the data, highlighting the importance of removing or adjusting for outliers in
these types of analyses.

The papers discussed in this section used information about extreme phenotype values in the
sampling design, analysis stage, or candidate gene selection process. Overall, these work
groups showed that it was useful to incorporate some kind of extreme-value approach for the
detection of rare variants if appropriate statistical methods were used. The question remains
of how extreme values should be defined. Depending on the phenotype of interest, one must
balance the informative value of restricting samples to the far extremes with the ability to
obtain an adequate sample size.

Meta-Analysis Design Adjusted for Population Substructure
Additional questions concerning study design for rare variants were addressed by
Culverhouse et al. [2011]. The first question examined whether a larger sample of unrelated
individuals would have given more power to detect rare variants. The second question was
whether it was more powerful to analyze the complete set of unrelated individuals (a sample
that was made up of distinct population-specific subsamples) while adjusting for population
structure through the use of covariates or to analyze each subpopulation separately. When
analyzing the complete sample for Q1, only FLT1 was significant at p < 1 × 10−6 in all
replicates, and no other causal gene was significant in at least 50% of replicates. As sample
size was increased using meta-analysis of 10 and all 200 replicates, Culverhouse and
colleagues detected some additional causal loci, thus showing that increased sample size can
detect some of the variants with lower locus-specific heritability. However, when
subpopulations were analyzed (combining 10 replicates by meta-analysis), Culverhouse and
colleagues detected additional causal loci in the subpopulations. FLT1 contained multiple
rare variants with relatively large effect on Q1. Because some causal variants were present
in all subpopulations except the Luhya (representing more than 84% of the data), pooling the
data and using Population as a covariate maximized power. However, the single causal
variant for Q1 in VEGFA was a private mutation in the Luhya population. Meta-analysis of
the Luhya subjects alone (total N = 5,400) resulted in extremely significant association (p =
2.1 × 10−94), whereas it required meta-analysis of 50 replicates of the full data (total N =
34,850) before this gene surpassed the 10−6 significance threshold (p = 1.4 × 10−14). These
results show that including population as a covariate is not always an effective substitute for
analyzing the subpopulations separately and suggest that population-specific analyses may
help to detect genes with causal variants private to a single population, as has been
suggested by Keen-Kim et al. [2006].

Machine Learning Methods for Rare Variant Analysis
It has been suggested that machine learning methods may be particularly powerful when
epistatic interactions exist between predictors [Dasgupta et al., 2011]. In the Group 14
contributions, three machine learning methods were evaluated.
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Machine Learning Methods to Screen for Causal Variants
Kim et al. [2011] applied random forests [Breiman, 2001] and logic regression [Ruczinski et
al., 2004] to Q2 in the 321 members of the Asian subpopulation (to avoid issues of
population substructure) to screen for loci that contributed to variation in this trait. Kim and
colleagues selected a subset of predictors that they had determined made the strongest
contributions to the final models and evaluated the performance of each method by assessing
how often the true causal versus noncausal variants were included in the top-ranked subset
of predictors across 200 replicates. The same metric was also applied to traditional single-
marker analysis results from simple linear regression for comparison purposes. They
compared analyses of individual SNP genotypes using dominant coding (only in random
forests) or additive coding (only in simple linear regression), using indicator variables
generated by collapsing rare variants within genes or a pathway [Li and Leal, 2008], and
recoding common variants using dominant and recessive coding.

When rare variants were collapsed within genes, random forests and logic regression
outperformed simple linear regression when the percentage of causal variants ranked in the
top 10% of predictors across at least 10 replicates was compared. Random forests ranked the
same causal gene among the top 10% of predictors in up to 40% of replicates, and logic
regression selected the same causal gene among the 10 predictors in the final logic
regression model in up to 53% of replicates. Random forests showed similar performance,
although at lower levels of replication, for analysis of uncollapsed SNP variants and of
collapsed SNPs by pathway variants. However, for logic regression, Kim et al. [2011]
observed elevated replication of noncausal genes in the top-ranked predictors; they showed
by small-scale permutation tests that logic regression had little potential to select the true
causal variants over what was expected by chance in these data.

Kim et al. [2011] found that all three methods selected larger proportions of causal variants
than noncausal variants in their top-ranked predictors (random forests and simple linear
regression) or in the final logic regression models across multiple replicates, indicating
statistical validity. However, for all three methods, when analyzing the uncollapsed and
gene-collapsed variants, most causal variants were not ranked in the top 10% of predictors in
large proportions of replicates. This low power is most likely due to the simulation model
for Q2 in the Asian population, which was essentially polygenic, with small locus-specific
heritabilities of any causal variants and no epistatic interactions. One causal variant had an
average (across 200 replicates) locus-specific h2 [Falconer and Mackay, 1996] of 0.04, five
causal variants had locus-specific h2 between 0.011 and 0.017, and the remaining causal
variants had locus-specific h2 < 0.01. Thus there was little power to detect causal variants in
this small Asian sample using any statistical method and, as expected, the loci with higher
locus-specific h2 were included in the top predictors in the largest numbers of replicates.
These results suggest that for polygenic models with small locus-specific h2, such as the one
simulated here, (1) larger samples would be desirable and (2) in a similarly small study, at
least the top 5–10% of predictors should be used in follow-up studies to give a reasonably
high probability that at least one causal locus is selected.

Bayesian Network Structure Learning to Detect Causal SNPs in Candidate Genes
Schlosberg et al. [2011] applied Bayesian network structure learning (BNSL) [Needham et
al., 2007] for a different purpose. Rather than attempting to screen all variants to detect
those that were most likely to contribute to the etiology of a trait, they focused on the
situation in which target genes that harbor causal variants for the disease trait Affected have
already been chosen for resequencing; the goal was to detect true causal SNPs from among
the measured variants in these candidate genes. Examining all the available SNPs in the
known causal genes, BNSL produced a Bayesian network from which two subsets (the
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Markov blanket and the descendants of Affected) of SNPs were extracted and then measured
for statistical significance using the hypergeometric distribution. As applied to these data,
overall the method did not demonstrate the ability to detect more causal SNPs than would be
selected by chance, although Schlosberg and colleagues’ analyses did suggest that improved
performance for this highly polygenic trait could be attained in larger sample sizes. Their
analyses of ethnic subgroups also suggests that BNSL may be a valuable strategy for real
data if different causal variants exist across subpopulations.

Discussion
The traits simulated for GAW17 were extremely complex, exhibiting both locus and allelic
heterogeneity, wide variation in locus-specific allele frequency and effect size, and private
causal variants in certain subpopulations. Many of the lessons learned from the analyses of
these data with novel methods are reiterations of classic results in statistical genetics. Power
and type I error depend on sample size, effect size, degree of heterogeneity, and data
characteristics that violate assumptions of the statistical methods. Readers should keep the
simulation model in mind as we evaluate the performance of each analysis method.

The simulated traits were highly polygenic with different distributions of rare variants across
subpopulations and small genetic effects of individual causal variants. The observed results
were highly dependent on locus-specific heritabilities of the causal variants. For quantitative
trait Q1, there were 39 causal SNPs in 9 genes, with mean SNP locus-specific h2, averaged
over 200 replicates of the complete data, ranging from 0.0009 to 0.152 [Wilson et al., 2011].
Only 11 and 5 of the Q1 causal SNPs exhibited locus-specific h2 greater than 1% and 3%,
respectively. The five SNPs with the largest effect size were located in the FLT1 gene (h2 =
0.152, 0.083, 0.037) and the KDR gene (h2 = 0.031, 0.031, 0.025), For Q2, there were 72
causal SNPs in 13 genes, with SNP locus-specific heritability ranging from 0.00098 to 0.016
[Wilson et al., 2011], with only 2 SNPs (one in VNN1 and one in VNN3) having locus-
specific h2 greater than 1%. The Affected status trait is due to a combination of signals from
Q1, Q2, Q4, and a latent disease liability. No simulated causal SNP is expected to have a
large effect on risk of affection.

Results Consistent with Locus Effect Size
The Affected status trait was analyzed by several work groups comparing different
collapsing methods. Multiple methods consistently detected causal effects for a few causal
genes, such as FLT1 and KDR, but with different observed power in the different methods.
For example, partial least-squares identified FLT1 as associated with the disease trait in 35
out of the 200 replicates, whereas inverse-probability weighted clustering detected FLT1
and KDR in more than 50% of the simulated replicates. These two genes are causal for Q1
and harbor causal variants with the highest locus-specific h2 in all the GAW17 simulated
data. Indeed, most analyses of Q1 tended to detect FLT1 with adequate power in all
replicates at stringent significance thresholds. Unlike Q1, causal SNPs for Q2 and those that
are specific to Affected status had much smaller effect sizes and were harder to map.
Overall, one can conclude that power is dependent on locus-specific heritability, which is
dependent on both allele frequency in the population being studied and on the effect of the
locus on variation of the trait or risk of the disease (a classic result that applies to the novel
methods presented here).

Increased Power by Collapsing Rare Variants and Strategic Sampling
As expected, collapsing rare variants either within genes or within pathways increased the
power to detect causal variants given the extreme allelic heterogeneity simulated for these
traits. Also as expected, increasing sample sizes did increase power to detect loci with
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smaller locus-specific h2, although extremely large samples will be required to detect effects
of rare variants with small effect sizes. In GAW17 all rare variants have positive effects.
This may not be the case in real association studies. It is worth applying the collapsing
methods utilized in GAW17 to real sequence data and/or to more complex simulated data
sets and evaluating the performance therein.

A machine learning method, random forests, performed as well as or somewhat better than
simple linear regression when analyzing collapsed variants for selecting a fairly large subset
of predictors for follow-up in additional studies in the extremely polygenic Q2 trait.
Additional evaluation of such methods in the presence of epistatic interactions would be
useful.

Different methods for collapsing or aggregating variants within a candidate locus were most
powerful for different loci, especially when the genetic signals were not strong. This
suggests that a multiple method approach may be valuable for future association studies of
DNA sequence data and complex traits.

Furthermore, most of the proposed methods have fewer underlying assumptions than
existing ones [Li and Leal, 2008] and show promise for detecting at least some loci in
realistic situations. Different study designs may be powerful to detect different types of loci.
In particular, sampling designs can affect power where sampling from extremes can be
beneficial if analyzed properly by the various collapsing methods. Analyses from Group 14
showed that even with the identical genetic model applied to multiple subpopulations,
sample size was not the only factor determining power. If rare causal variants are private to
a subpopulation, then stratified analysis may be more powerful than a combined analysis,
despite a considerable decrease in sample size. Thus studies conducted in different
populations may be required to detect many rare variants. The complex models utilized in
GAW17 show clearly that small samples will have low power to detect loci with small
effects on a trait and that even large samples may not be adequate to reliably detect rare
variants with extremely small effects on variation of the trait or risk for a disease.

Potential Culprits for Type I Error
An interesting observation is the phenomenon that was labeled consistent false positives
during the GAW17 conference. Specifically, a few noncausal genes were identified by more
than one method consistently. Possible reasons for this, based on the analysis of different
groups, include (1) population stratification; (2) the detection in multiple replicates of
noncausal SNPs that are strongly associated with causal variants, because the same
genotypes were used in all of the 200 replications; (3) outliers and genetic disequilibrium.
Given the small sample size and the large number of SNPs, the contributors to GAW17
observed that a set of noncausal SNPs were perfectly correlated with some of the rare causal
variants, which thus led to some of the false-positive results. When applying the various
collapsing methods to rare variant sequence data, as a precaution, one should take additional
steps to address the aforementioned issues. For example, whenever population information
is available, existing methods such as EigenSoft [Price et al., 2006] or PLINK [Purcell et al.,
2007] can be used to adjust for population stratification. Removing outliers or applying
appropriate transformations might also help to improve the performance of the proposed
methods. The GAW17 results also suggest that evaluation of the correlation structure among
associated loci is a reasonable strategy when interpreting the results of analyses of DNA
sequence data, particularly in small samples. If strong correlations are observed among
multiple rare associated variants that are distant (or on separate chromosomes), this may
indicate that several variants are all highly correlated with a private causal variant in a single
individual in the sample.
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Conclusions
As expected, the different methods used by Group 14 contributors showed variation in the
causal loci detected. Different research groups studied different phenotypes and used
different thresholds for declaring significance. However, some consistent findings are that
(1) power and type I error depend on sample size, effect size, degree of heterogeneity, and
classic causes of erro s; (2) analyses of very rare variants requires some form of grouping;
and (3) rare variants introduce novel sources of error as a result of co-occurrence of private
mutations within single individuals in small samples, suggesting that large samples of
sequenced unrelated individuals will be needed to avoid high false-positive associations of
rare variants with disease.
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