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Abstract
Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose
back and forth between images. The purpose of this study is to develop a novel method to improve
the accuracy of an intensity-based image registration algorithm in low-contrast regions. A
computational framework has been developed in this study to improve the quality of the “demons”
registration. For each voxel in the registration’s target image, the standard deviation of image
intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was
generated based on their standard deviations. In the masked regions, a tetrahedral mesh was
refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected
as driving nodes. An elastic system driven by the displacements of the selected nodes was
formulated using a finite element method (FEM) and implemented on the refined mesh. The
displacements of these driving nodes were generated with the “demons” algorithm. The solution
of the system was derived using a conjugated gradient method, and interpolated to generate a
displacement vector field for the registered images. The FEM correction method was compared
with the “demons” algorithm on the CT images of lung and prostate patients. The performance of
the FEM correction relating to the “demons” registration was analyzed based on the physical
property of their deformation maps, and quantitatively evaluated through a benchmark model
developed specifically for this study. Compared to the benchmark model, the “demons”
registration has the maximum error of 1.2 cm, which can be corrected by the FEM method to 0.4
cm, and the average error of the “demons” registration is reduced from 0.17 cm to 0.11 cm. For
the CT images of lung and prostate patients, the deformation maps generated by the “demons”
algorithm were found unrealistic at several places. In these places, the displacement differences
between the “demons” registrations and their FEM corrections were found in the range of 0.4 cm
and 1.1cm. The mesh refinement and FEM simulation were implemented in a single thread
application which requires about 45 minutes of computation time on a 2.6 GH computer. This
study has demonstrated that the finite element method can be integrated with intensity-based
image registration algorithms to improve their registration accuracy, especially in low-contrast
regions.
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1. Introduction
Anatomical information contained in computed tomography (CT), four-dimensional CT
(4DCT) or cone-beam CT (CBCT) images can be integrated and used in a variety of clinical
applications [1–3]. For example, in image-guided radiation therapy, images acquired in
different imaging modalities can be matched with each other for target delineation; in
fractionated radiation therapy, as a patient’s anatomy changes in the course of radiation
treatment, radiation dose delivered to each voxel in the patient’s planning CT image could
vary from fraction to fraction. To accumulate the total dose delivered to each voxel, images
need to be acquired at each treatment fraction and aligned on a voxel-by-voxel basis so that
the radiation dose required for the remaining treatment fractions can be re-calculated [4;5].
The voxel-based image alignment can be achieved through deformable image registration
(DIR) techniques.

Intensity-based DIR algorithms [6–9] appear commonly in literature partly due to the merit
of their fully automatic nature. A typical example is the “demons” registration algorithm,
where the registration is driven by the following force equation:

(1)

where m and s represent the intensity of two input images, and α is constant [10]. The
“demons” force ν is often referred to as a displacement vector that can be updated through
an optical flow-based algorithm [11]. The impact of image intensity gradients on the
performance of the “demons” registration is obvious. As the gradient of s continuously
decreases, ν may tend to zero. Consequently, the registration in low-contrast regions cannot
be updated or improved by the “demons” force. In general, for intensity-based DIR
algorithms, their intensity metrics are not sensitive to displacement changes in low-contrast
regions, and their registration in these regions is achieved by regularization forces for non-
parametric algorithms and by interpolations for parametric ones[12;13]. However, there is
no any known solution that can ensure accurate registrations in these regions, nor it is
possible to detect their potential errors visually.

Finite element modeling [14–16] is a technique that can be used to calculate organ
deformation without utilizing image intensity information. The deformation vectors can be
calculated purely based on elasticity theory [17]. Different elasticity models have been
developed and verified with physical tests, and implemented using finite element methods
(FEM). Several groups have utilized FEM techniques to register different organs such as
lung [18;19], prostate [16;20], brain[15] and breast[21]. A major challenge to the FEM
based registrations is that anatomic structures have complex geometries which make it
difficult to configure their boundary conditions in clinical scenarios. To address this issue,
Zhang et al [22] took a contact-impact model to simulate the interaction between the organ
of interest and its surrounding structures, and generated displacement vectors for lung
patients. Al-Mayah et al [23] used a frictionless surface model, and restricted the lung’s
deformation by the internal surface of the chest cavity at different respiratory phases.
Furthermore, Al-Mayah et al [24] investigated the impact of hyper-elasticity models on
registration accuracy. These studies confirmed that FEM is a reliable tool for deformable
image registration. It should be noted that some organs are difficult for segmentation and
meshing, and measuring their exact boundary conditions is still a challenge [16]. In addition,
material properties of high-contrast regions such as lung could also be a concern to
computational modeling, especially when the model is configured only at distant boundaries.
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In contrast, tissue heterogeneities can help improve intensity-based DIR algorithms. These
algorithms can achieve high accuracy in regions with large intensity gradients, but may
suffer uncertainties in low-contrast regions [25;26]. The low-contrast regions more likely
consist of homogeneous materials which may be fitted well by elasticity-based finite
element methods. Because of this reason, we propose and develop a finite element method
to correct the errors of intensity-based deformable image registrations in low-contrast
regions, and improve the regularity of their deformation maps. Briefly, we will use the
“demons” algorithm to “align” image features, and take its resultant displacements in high-
contrast regions as boundary constraints to guide the finite element model to simulate the
deformation of soft tissues. Since the intensity-based “demons” algorithm and the elasticity-
based finite element modeling techniques were developed on the structures of image grids
and geometric meshes, respectively, it is necessary to integrate the computational structures
used in the two techniques. In this paper, we will describe the development of an integration
method for improvement of intensity-based deformable image registrations, and apply the
developed method to both high-contrast lung 4DCT images and low-contrast prostate CBCT
images.

2. Materials and Methods
The image intensity-based “demons” algorithm and the finite element method have been
developed on image grids and structured meshes, respectively. To take the advantages of the
two techniques, a point-to-point correspondence between the image grids and the structured
meshes must be established and the FEM formulation process must be adjusted. In the
following sections, we will describe the details of the proposed method that include
segmentation of high-contrast image regions, region-based mesh refinement, formulation
and solution of elastic equations with displacements pre-assigned to a large number of
internal nodes. We will also develop a benchmark model to evaluate the improvement of the
FEM technique over the intensity-based “demons” registration.

2.1. Segmentation of high-contrast regions
Since intensity-based image registrations may get better performance in high-contrast
regions, the first step of the proposed method is to identify these contrast regions. The
standard deviation σ of image intensity in a target image can be taken as a criterion. The σ(i)
at voxel i can be calculated by

(2)

where Ĩ(i) is the mean intensity of voxel i over its neighborhood Ri which consists of 6×6×2
voxels. The mean standard deviation σ̃ is the average of the standard deviation σ(i) over the
target image domain. The threshold Tc for segmentation of the high-contrast regions was
assumed to be 2.0 and 1.3 times of the mean standard deviation σ̃ for lung and prostate
images, respectively. The segmented regions were taken as a mask to select the driving
nodes of a tetrahedral mesh. The tetrahedral mesh was generated as described below.

A unitary cube was partitioned by ICEM (Ansys Inc., Canonsburg, PA) to generate a
prototype tetrahedral mesh that consists of 131614 nodes and 747384 tetrahedrons [27].
Approved by the Institutional Review Board of Henry Ford Health System, this study used
4DCT images acquired from lung cancer patients, and CBCT images from prostate cancer
patients. The resolution of the CT images is 0.97 mm × 0.97 mm × 3 mm. For each
registration performed on these images, the prototype mesh was scaled to cover the domain
of the registration’s target image, and its resultant tetrahedrons had a volume of 100mm3 on
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average. The resultant mesh is coarse and needs to be refined so that more tetrahedral nodes
can be identified in the segmented regions.

2.2. Region-based refinement of tetrahedral meshes
Due to the limitation of computer memory and computational efficiency [15], the scaled
tetrahedral mesh cannot be partitioned as fine as that of image grids, but this mesh can be
refined in the segmented regions at low computational costs.

For each image voxel in the segmented regions, the tetrahedron of the mesh that contains the
center of this voxel is selected as a candidate for refinement, and the volume of the
tetrahedron is then calculated. If the volume is greater than a threshold Tv, this tetrahedron is
determined as a target for partition. For a consistent tetrahedral mesh, each of its non-
boundary triangular faces is shared exactly by two tetrahedrons. As a partition operation
adds additional nodes to a face of the target tetrahedron, the neighbor tetrahedron that shares
this face with the target is no longer a tetrahedron, and must be divided into sub-
tetrahedrons. The same is true for those that share an edge with the target.

The procedure to refine a tetrahedral mesh is illustrated in Fig 1a. In general, a list of
neighbor tetrahedral elements was created for each node in the original tetrahedral mesh. For
each image voxel in the segmented region, the tetrahedron that contains the center of this
voxel was identified, and the volume of this tetrahedron was calculated. This tetrahedron
would be selected as a target for partition if its volume was greater than the threshold Tv.
The procedure to partition a target tetrahedron is described in Fig 1b, and the sub-
tetrahedrons generated in the target are illustrated in Fig 2a.

After the target partition, tetrahedrons that share a face with the target need to be partitioned.
These tetrahedrons were shared by three of the four neighbor tetrahedron lists built for the
target. We divided each of these shared tetrahedrons into four sub-tetrahedrons as shown in
Fig 2b, and created and updated neighbor tetrahedron lists for all the associated nodes.
Similarly, tetrahedrons that share an edge with the target appeared only in two of the four
neighbor tetrahedron lists built for the target. Each of these edge-shared tetrahedrons was
divided into two sub-tetrahedrons as shown in Fig 2c. The neighbor tetrahedron lists were
then created and updated for all the associated nodes. The partition process was continued
until the threshold Tv was reached.

The new tetrahedral elements were formed as shown in Fig 2. To make the final elastic
equations solvable, the Jacobian of each element must be a positive-definite matrix. That
means the orientations of these new tetrahedrons are consistent with each other. The
orientation of a tetrahedral element can be indicated by the determinant of the Jacobian
matrix of its four nodes (xi, yi, zi), i=1, …, 4, defined by

(3)

If the Jacobian’s determinant is negative, the tetrahedral element needs to switch the order of
its last two nodes. With this procedure, the tetrahedral mesh can be refined the in the
segmented regions.
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2.3. Formulation of an image intensity-guided elastic system
In elasticity theory, deformation of anatomic structures can be described by a system of
partial differential equations [17]. These equations can be converted into a weak form and
represented by a finite set of basis functions [14]. The basis functions and the elasticity
model used in this study were assumed to be linear. The boundary nodes were formed from
two parts: the driving nodes selected from the segmented regions, and the nodes located at
the boundary of the image domain. The displacements of these driving nodes were
computed by intensity-based image registrations. The elastic forces were calculated locally
with the displacements of these nodes and treated as external forces. Through a procedure
similar to [27], the final algebraic equations can be represented as follows:

(4)

where K is the assembled global stiffness matrix [27], F1,…Fk represent the external forces
acting on the nodes located at the image boundary, and d1,…,dk are their corresponding
displacements. dk+1,…,dn are the displacements of those nodes that are neither on the cubic
surface nor in the set of the driving nodes. The material parameters were assigned the same
values as in [25], i.e., Young’s moduli were set to 1 MPa for ribs, 1 kPa for lung, and 10 kPa
for other soft tissue. The Poisson ratio was 0.38 for lung and 0.49 for other elements. The
summation components on the right hand side of Eq. (4) represent external forces calculated
from the displacements of these driving nodes. These displacements were derived from a
“demons” registration.

In Eq. (4), the driving nodes selected from the segmented regions were treated as boundary
nodes, and their correspondent entries in the global stiffness matrix K were removed. To
save computer memory, the zero entries of this matrix were suppressed and the remaining
non-zero entries were saved into a look-up table that was used during the formulation of
these equations. The established equations were solved indirectly using a conjugated
gradient method [27].

2.4. Integration of “demons” registration with finite element modeling
The workflow to integrate an image intensity-based “demons” registration with a finite
element modeling procedure is illustrated in Figure 3. The “demons” algorithm was
modified from the ITK software package[28] and configured with a four-level resolution.
The number of iterations in the four levels was set to 100, 100, 100, and 300, respectively,
and the standard deviation of its Gaussian function was set to one. This algorithm was
performed to generate displacement vector fields in the domain of its target image. High-
gradient regions in the target image were then segmented based on the standard deviations
of their intensities, as described in section 2.1.

Two look-up tables were established from the voxels of the target image to their
corresponding tetrahedral elements and nodes, respectively. The center of each image voxel
in the segmented regions was used to divide its corresponding element into four sub-
tetrahedrons, each having a positive-definite Jacobian matrix. The volume of the
corresponding element was calculated simply from the determinants of the Jacobian
matrices of the four sub-tetrahedrons. If the volume calculated is greater than the given
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threshold Tv, this tetrahedron and its neighbor elements will be divided recursively until the
volumes of the resultant tetrahedrons are less than the threshold.

The mesh refinement allows more driving nodes to be selected from high-gradient regions,
especially in the skin area. These selected nodes may separate the tetrahedral mesh into
disconnected parts, e.g. the inside and outside of the skin. Consequently, external forces
added at image boundaries have no direct impact on other parts. For the sake of simplicity,
the image boundaries were assumed to be force-free. The displacements of the selected
nodes were assigned from the “demons” DVF. Note that if the assigned displacements cause
their underlying tetrahedron flipped over, i.e. the sign of the tetrahedron’s Jacobian
determinant is changed after deformation, these nodes will be removed from the list of the
driving nodes. The displacements of the other nodes in the mesh can be solved from Eq. (4)
and interpolated to get the displacement vector field of the target image using a volume-
based interpolation method [25]. This algorithm has been implemented with C++ on a Linux
workstation.

2.5. Development of a benchmark platform
The goal of the FEM correction method is to reduce the “demons” registration errors in low-
contrast regions. Due to the lack of landmarks or features in these regions, conventional
feature-based validation methods cannot help assess the performance of these algorithms
quantitatively. To evaluate the FEM’s improvement, a benchmark model was developed
based on a lung patient’s CT images.

The “demons” registration was performed on the lung patient’s CT images from the end of
exhalation (EE) to the end of inhalation (EI). Note that due to lack of physical constraints,
the “demons” generated DVF map could be unrealistic, and therefore is not appropriate to
serve as a gold standard to validate other registration algorithms directly. To address this
issue, a geometric mesh was created on the EI image. The nodes in the high-gradient regions
of the EI image were selected as the driving nodes. The “demons” displacements at these
nodes were used as boundary constraints to configure a FEM computational model
developed on this mesh. A displacement vector field (M-DVF) was then generated from this
model, and used to warp the source image (EE) to get a simulation image (SI). The EE and
SI images combined with the M-DVF form a benchmark platform. As a typical use of an
FEM generated DVF, the M-DVF serves as a gold standard to evaluate registrations
performed from the EE image to the SI image.

The benchmark model developed has its diaphragm deformed of amplitude 2.5 cm. A
“demons” registration and its FEM correction were then performed on this platform from EE
to SI. Consequently, their displacements can be compared with the M-DVF voxel-wisely in
the entire image domain that contains both high and low contrast regions.

3. Results
3.1. Mesh refinement in high-contrast regions

The “demons” registrations and their FEM corrections were tested on lung and prostate CT
images, respectively. The standard deviation σ(i) defined by Eq. (2) was calculated at each
voxel and averaged over the domain of their target image. To segment high-contrast regions,
the threshold Tc was set to 2 for the lung image (Fig 4a) and 1.3 for the prostate image (Fig
4c), respectively. With these thresholds, the segmented regions (Fig 4b and 4d), in general,
are coincident with anatomic boundaries where the multi-resolution “demons” algorithm is
likely to generate accurate registrations [25].
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With the method described in section 2.2, the mesh was refined in the segmented regions,
and the volumetric threshold Tv was set to 50. After the refinement, the volume of each
target tetrahedron in the segmented regions is at most 50 times of a voxel’s volume.
Consequently, the distance between the center of each masked voxel and its corresponding
driving node is less than 5 mm on average. The refined mesh consists of 750582
tetrahedrons for the prostate image, and 839155 tetrahedrons for the lung image. The mesh
refining process may take about 10 minutes, and can help generate more driving nodes in
high-contrast regions. The overlays of these nodes and the target images are shown in Fig 4a
and 4c.

3.2. Qualitative analysis of the “demons” errors and their FEM corrections
In this section, the “demons” registrations and their FEM corrections were performed on the
CT images of lung and prostate patients. After these registrations and corrections, the source
images were embedded with constant-intensity planes, and then warped to the target image
using a registration derived DVF. The warped constant-intensity planes may help illustrate
the DVF’s behavior.

3.2.1. Correction of erroneous amplitudes—A “demons” registration was performed
on the 4DCT image of a lung patient from EE to EI. After the registration, two horizontal
planes assigned with a constant intensity were embedded into the 4DCT images at the
positions corresponding to the top of the diaphragm in the EE and EI phases, respectively.
As illustrated by the two planes in Fig 5a and 5b, the diaphragm’s motion amplitude is 1.2
cm. Since soft tissue is nearly incompressible, the lower level plane in Fig 5a should be
pushed down around 1.2cm at the end of inhalation. But, as shown in the image warped by
the “demons” DVF (Fig 5d), this plane was moved down only 0.4 cm. The “demons” DVF
was then corrected by the FEM with the driving nodes shown in Fig 5c. The image warped
by the FEM corrected DVF showed a deformation of 1.2 cm at the center of the diaphragm
(Fig 5e). The overlay of the two warped images was shown in Fig 5f.

Fig 6a shows the target image of a “demons” registration for a prostate patient, and Fig 6b is
its source image warped by the “demons” DVF. Anatomic features in the two images should
be matched to each other if the “demons” registration is accurate. But Figs 6a and 6b show
that the features in the two images are not consistent, and the embedded plane warped by the
“demons” DVF shows a large, unrealistic deformation. The unrealistically deformed plane
was then corrected by the FEM method (Fig 6c). Fig 6d shows that the difference between
the “demons” DVF and the FEM corrected DVF is 1.1cm.

3.2.2. Correction of erroneous curvatures—The flatness of a deformation map can be
described by its curvature. While the correct curvature at a given physical point usually is
unknown, a deformation map that has sharp angles in bone or soft tissues is unrealistic. Such
angles can be found in the “demons” deformation maps for registration of homogeneous
regions such as liver, soft tissues, and pelvic bones. For example, compared with the FEM
corrected DVF, the “demons” has a 6 mm sharp deformation inside the liver (Fig 7c), and
more than 4 mm sharp distortions observed inside the pelvic bones and soft tissues (Fig 7f).

3.2.3. Correction of deformation irregularity—Due to image noises and artifacts, the
“demons” algorithm may result in unrealistic deformation maps, and these maps cannot
preserve a good continuity or conformality in homogeneous tissues where its “demons”
force is weak. As shown in Fig 8, straight planes embedded in a source image could be
deformed into a set of discontinuous points spread over a large area. Such irregularities can
be observed in the “demons” registrations for both lung and prostate CT images. Fig 8a
shows that the plane-embedded lung CT image was warped by the “demons” DVF. The
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warped plane contains a group of discontinuous points in the heart. These points differ from
the FEM corrected results by 7 mm (Fig 8c). Furthermore, it is evident that the CT
reconstruction line artifacts disappeared in Fig. 8a due to the displacement uncertainty of the
“demons” algorithm, while preserved in Fig. 8b.

The deformation irregularity of the “demons” registration for the prostate images can be
observed through the orthogonal planes embedded in its source image. In the deformed
source image (Fig 8d), the warped horizontal plane contained a large number of
disconnected points and the perpendicular plane resulted in a forked curve as indicated by
the dotted circles in Fig 8d. After the FEM correction, the cut of each deformed plane was
restored to a simple curve (Fig 8e), and the topology of the straight planes was preserved.

The irregular deformation of the “demons” algorithm is expected to cause high unbalanced
energy (UE) in a FEM computational model [29]. Fig 8f shows the UE map of the “demons”
registration for the prostate case. It can be observed that the places of high UE values in Fig
8f correspond to the regions with irregular deformations in Fig 8d. This observation may
suggest that when we select the driving nodes for the FEM correction, the tetrahedral nodes
that have high UE values should be avoided.

3.3. Quantitative evaluation of the FEM correction method
In the previous sections, the “demons” deformation maps and their FEM corrections have
been qualitatively analyzed. However, it is more valuable to have a comprehensive,
quantitative evaluation of these deformation maps, especially in low-contrast regions. As
discussed in section 2.5, we created a benchmark platform with a computational model
whose displacements were taken as a standard DVF. A lung patient’s CT image was taken
as a source image which was warped by the standard DVF to create a simulated image. The
“demons” registration was performed from the source image to the simulated image. After
the registration, the source image was embedded with two orthogonal planes, and then
warped by the standard DVF and the “demons” DVF, respectively, with their results shown
in Fig 9a and 9b. The overlay of the two warped images (Fig 9c) manifests that the
deformation of soft tissue in the posterior region has a significant difference as illustrated by
their embedded axial planes.

To correct the “demons” error, an FEM correction was performed with the driving nodes
identified from the high-contrast regions (Fig 9e) that were segmented from the simulated
image with Tc=2.0. The overlay of the simulated image and the selected driving nodes is
shown in Fig 9d. The source image warped by the FEM corrected DVF is shown in Fig 9f,
where the abnormal deformation of the “demons” registration in the posterior region has
been successfully corrected by the FEM correction algorithm.

With the standard benchmark model, the “demons” registration and its FEM correction can
be quantitatively evaluated at each image voxel. For the AP line across the center of the
cardiac region (Fig 9a), the profiles of the standard, “demons” and FEM corrected
displacements along this line are shown in Fig 10a and 10b for their displacement
components in the AP and SI directions, respectively. From these profiles, it can be found
that the FEM corrected displacements are much smoother than the original “demons”
displacements (Fig 10a), and the FEM method has corrected the largest displacement error
of the “demons” registrations in the posterior region (Fig 9c and Fig 10b). After the FEM
correction, the largest error of the “demons” registration relative to the standard
displacements has been reduced from 1.2 cm to 0.4 cm.

In addition to the largest displacement errors corrected in the posterior region, the “demons”
registration also yielded uncertainties in the low-contrast, central cardiac region as marked
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in Fig 11a. With the FEM regulation, the “demons” uncertainties in the low contrast regions
have been corrected (Fig 11b), and the average error of the “demons” registration has been
reduced from 0.17cm to 0.11cm.

4. Discussion
For intensity-based image registrations, their underlying deformable models are driven by
the intensity metric of two images being registered, and these models can be used to
generate displacement vectors in the entire image domain [6;30;31]. The impact of the
intensity metric on the derived displacements depends on the intensity gradients in the
regions of interest. For example, a small change in the intensity metric may cause a large
displacement variation in low-contrast regions, so intensity-based DIRs often have large
errors in low-gradient [9;25] or high-noise regions [8]. A large number of iterations in
optimization may help capture the small intensity change, but this is time consuming and its
overall improvement may still be limited by image noises [8].

4.1. Innovation of the FEM correction method
It has been reported that landmarks or high-contrast features in two CT images can be
registered quickly with the “demons” algorithm which can converge within 60s [8]. It is,
therefore, reasonable to suggest that the displacements of the “demons” registration in these
contrasted regions are taken as an input to a purely mechanical model, and the displacements
of voxels in low-contrast regions are consequently computed from this model using the
finite element method.

To the authors’ knowledge, this is the first study that has an intensity-based registration
algorithm followed by a mechanics-based finite element method in a serial order to improve
the accuracy of deformable image registration. It was reported that the mean sum of squared
differences of image intensities was taken as the external forces that act on the elastic
elements to generate a deformation field [28;32], but the virtual forces introduced by the
image metric could compromise the integrity of the underlying elasticity model. While it
was shown that the compromised quality of the elasticity model can be adjusted by a
“demons” registration [33], the final “demons” registration still could have large
uncertainties in low-contrast regions. On the other hand, pure mechanics-based FEM
registrations were based on segmentation and meshing of individual organs [15;16;18], and
their boundary constraints were obtained through surface-contact models [22;23]. With these
models, inaccuracies in organ segmentation and mesh generation could be propagated
directly into the displacement errors of these FEM registrations. Also the segmentation and
meshing of individual organs required in these organ-based registrations could be a
challenge in many clinical cases.

In contrast, we created a prototype mesh which can be scaled to cover different image
domains. The displacements of the “demons” registrations in high-contrast regions were
taken as boundary constraints. The resultant FEM models have the same accuracy as the
“demons” registrations in high-contrast regions, but get the “demons” performance
improved in low-contrast regions. For computational efficiency, the tetrahedral meshes of
these FEM models, in general, are coarser than their underlying image grids. An image
voxel in high gradient regions is not necessarily close to a tetrahedral node. If the node that
is closest to this voxel is located in low-contrast regions, this node probably is not
appropriate to serve as a driving node. To address this issue, we presented a method to refine
the mesh based on its underlying image gradients. The region-based mesh refinement allows
image intensity information to be used efficiently for FEM modeling.
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4.2. Implementation of the FEM correction method
The proposed FEM correction method contains several components such as creating look-up
tables between image grids and meshes, mesh refinement, and formulation and numerical
solution of system equations. Among these operations, the conjugated-gradient method used
to solve the system equations takes most of the computation time. For a mesh consisting of
130K nodes, the FEM optimization may converge within 200 iterations, and its computation
time is less than 10 minutes on a 2.6 GH computer. After the mesh refinement, the number
of its nodes increased to 160K with the refined tetrahedrons much smaller than other
elements. Large volume variations may compromise the regularity of the mesh, and
consequently, decrease optimization efficiency. On the refined mesh, the optimizer requires
nearly 1000 iterations to converge and its computation time increases to 35 minutes.

For tetrahedron-based FEM modeling, a high-resolution mesh can help improve the
modeling’s accuracy. However, if a mesh has a resolution similar to that of the underlying
image grid, it could be a challenge with regard to computer memory and computational
efficiency. Therefore, we chose to refine the FEM mesh in selected regions as a practical
solution. We used the two parameters Tc and Tv to control the mesh’s resolution in high-
contrast regions. The refined mesh can help improve the accuracy of the FEM boundary
constraints which is crucial for the FEM model to derive correct displacement vectors in
other regions. With the refined mesh, the FEM correction requires nearly 5 GB of computer
memory.

4.3. Evaluation of the FEM correction method
The presented FEM method is supposed to correct the “demons” registration errors and
irregularities in low-contrast regions. To evaluate the efficiency of the FEM corrections,
qualitative analysis of the “demons” deformation maps was performed using marked planes
embedded in the registration’s source images. Through the planes warped by the pre-derived
“demons” DVF, the unrealistic deformation amplitudes, curvatures and mapping
irregularities in low-contrast regions were illustrated. It has been shown that these
abnormalities can be successfully adjusted by the FEM correction method.

In addition to the case-by-case analysis, we further developed a benchmark platform based
on a computational model and a lung CT image. The “demons” algorithm and the FEM
correction method were tested on this platform. Their displacements were compared to the
benchmark model at each voxel. It has been found that the FEM correction can reduce the
mean error of the “demons” registration from 0.17 cm to 0.11 cm and its maximum error
from 1.2 cm to 0.4 cm. These results have manifested that the FEM correction method can
help improve the accuracy of the “demons” registrations.

Note that contact-surface based FEM modeling has its constraints configured at the lung’s
distant boundaries only [23], and the displacements of the internal structures are determined
largely by its material model. It has been reported that hyper-elasticity models outperformed
the linear material model significantly in the contact-surface based FEM modeling [23].
However, the FEM correction method presented in this study has its constraints defined not
only at the lung’s boundaries, but also in the lung’s internal structures (Fig 4a). The
increased number of the constrained nodes makes the FEM correction method less
dependent on its material model and parameters. In addition, hyper-elasticity models will
result in a non-linear algebraic system that could be ten times slower than a linear system
[27], so the overall gains of incorporating a non-linear model into the FEM correction
method could be limited. Nevertheless, advanced models can help improve the FEM
accuracy, especially in regions that are lack of constraints, and therefore should be
investigated further in future studies.
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As the “demons” algorithm is more accurate in high-contrast regions than in any other
places, more driving nodes selected from these contrast regions may help improve the FEM
correction method. However, errors may still exist in these regions for the “demons”
registration, and these errors may subsequently compromise the accuracy of the FEM
correction in other regions, so the displacements of these driving nodes should be pre-
evaluated before used for the FEM correction.

4.4. Application of the FEM correction method
In adaptive treatment planning, the total radiation dose delivered can be calculated from
energy deposited in previous fractions using a Monte Carlo method [34]. This method
counts deposited energy at each particle’s incident location. Consequently, sub-voxel
displacement errors could directly impact the reconstructed dose. The method proposed in
this study takes the “demons” displacements in high-gradient regions as an input to the FEM
model to correct the “demons” irregularities in low-contrast regions. This may help improve
the accuracy of dose reconstruction in adaptive treatment planning. Sub-voxel registration
uncertainties could also have a major impact on 4DCT-based ventilation images
reconstructed with deformable image registration methods [35]. The FEM correction method
can reduce the registration uncertainties, and consequently improve the quality of the
reconstructed ventilation images.

Image grids coupled with tetrahedral meshes allow the material information of anatomic
structures contained in images to be used efficiently for mechanical modeling and analysis.
The element-wise analysis helps identify errors in the “demons’ derived deformation maps
and consequently correct these errors. Different from conventional FEM registration
approaches, the proposed FEM simulation is performed in the image domain with no need of
organ-specific segmentation and meshing. It is, therefore, appropriate to be used for Monte
Carlo based adaptive treatment planning as well as many other clinical applications.

5. Conclusion
In this study, we have proposed a finite element method that utilizes the displacements of an
intensity-based image registration in high-contrast regions to drive a mechanical model to
generate a displacement vector field over the entire image domain. The feasibility of this
method has been tested on lung and prostate patients. The preliminary results have
demonstrated that this method can improve the quality of the “demons” registration
significantly, especially in low contrast regions.

Acknowledgments
The authors gratefully acknowledge the financial support from the National Institutes of Health grant number R01
CA140341.

Bibliography
1. Peters TM. Image-guidance for surgical procedures. Phys Med Biol. Jul; 2006 51(14):R505–R540.

[PubMed: 16825730]

2. Kessler ML. Image registration and data fusion in radiation therapy. Br J Radiol. Sep; 2006 79(Spec
No 1):S99–108. [PubMed: 16980689]

3. Chen G, Sharp G, Mori S. A review of image-guided radiotherapy. Radiological Physics and
Technology. Jan; 2009 2(1):1–12. [PubMed: 20821123]

4. Yan D. Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol. Apr;
2010 20(2):79–83. [PubMed: 20219545]

Zhong et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Zhong H, Weiss E, Siebers JV. Assessment of dose reconstruction errors in image-guided radiation
therapy. Phys Med Biol. Feb; 2008 53(3):719–736. [PubMed: 18199911]

6. Christensen GE, Rabbitt RD, Miller MI. 3D brain mapping using a deformable neuroanatomy. Phys
Med Biol. Mar; 1994 39(3):609–618. [PubMed: 15551602]

7. Wang H, Dong L, O’Daniel J, Mohan R, Garden AS, Ang KK, Kuban DA, Bonnen M, Chang JY,
Cheung R. Validation of an accelerated ‘demons’ algorithm for deformable image registration in
radiation therapy. Phys Med Biol. Jun; 2005 50(12):2887–2905. [PubMed: 15930609]

8. Nithiananthan S, Brock KK, Daly MJ, Chan H, Irish JC, Siewerdsen JH. Demons deformable
registration for CBCT-guided procedures in the head and neck: convergence and accuracy. Medical
Physics. Oct; 2009 36(10):4755–4764. [PubMed: 19928106]

9. Yang D, Lu W, Low DA, Deasy JO, Hope AJ, El NI. 4D-CT motion estimation using deformable
image registration and 5D respiratory motion modeling. Medical Physics. Oct; 2008 35(10):4577–
4590. [PubMed: 18975704]

10. Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical
Image Analysis. Sep; 1998 2(3):243–260. [PubMed: 9873902]

11. Barron JL, Beauchemin SS. Performance of optical flow techniques. International Journal of
Computer Vision. 1994; 12:43–77.

12. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using
free-form deformations: application to breast MR images. IEEE Trans Med Imaging. Aug; 1999
18(8):712–721. [PubMed: 10534053]

13. Lu W, Chen ML, Olivera GH, Ruchala KJ, Mackie TR. Fast free-form deformable registration via
calculus of variations. Phys Med Biol. Jul; 2004 49(14):3067–3087. [PubMed: 15357182]

14. Zienkiewicz, OC.; Taylor, RL. Finite Element Method (5th Edition) Volume 1 - The Basis.
Elsevier; 2000.

15. Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-D
intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans
Med Imaging. Dec; 2001 20(12):1384–1397. [PubMed: 11811838]

16. Crouch JR, Pizer SM, Chaney EL, Hu YC, Mageras GS, Zaider M. Automated finite-element
analysis for deformable registration of prostate images. IEEE Trans Med Imaging. Oct; 2007
26(10):1379–1390. [PubMed: 17948728]

17. Ogden, RW. Non-Linear Ealstic Deformations. Ellis Horwood; 1984.

18. Brock KK, Sharpe MB, Dawson LA, Kim SM, Jaffray DA. Accuracy of finite element model-
based multi-organ deformable image registration. Medical Physics. Jun; 2005 32(6):1647–1659.
[PubMed: 16013724]

19. Chi Y, Liang J, Yan D. A material sensitivity study on the accuracy of deformable organ
registration using linear biomechanical models. Medical Physics. Feb; 2006 33(2):421–433.
[PubMed: 16532950]

20. Alterovitz R, Goldberg K, Pouliot J, Hsu IC, Kim Y, Noworolski SM, Kurhanewicz J. Registration
of MR prostate images with biomechanical modeling and nonlinear parameter estimation. Medical
Physics. Feb; 2006 33(2):446–454. [PubMed: 16532952]

21. Samani A, Bishop J, Yaffe MJ, Plewes DB. Biomechanical 3-D finite element modeling of the
human breast using MRI data. IEEE Trans Med Imaging. Apr; 2001 20(4):271–279. [PubMed:
11370894]

22. Zhang T, Orton NP, Mackie TR, Paliwal BR. Technical note: A novel boundary condition using
contact elements for finite element based deformable image registration. Medical Physics. Sep;
2004 31(9):2412–2415. [PubMed: 15487720]

23. Al-Mayah A, Moseley J, Brock KK. Contact surface and material nonlinearity modeling of human
lungs. Phys Med Biol. Jan; 2008 53(1):305–317. [PubMed: 18182705]

24. Al-Mayah A, Moseley J, Velec M, Brock KK. Sliding characteristic and material compressibility
of human lung: parametric study and verification. Medical Physics. Oct; 2009 36(10):4625–4633.
[PubMed: 19928094]

25. Zhong H, Kim J, Chetty IJ. Analysis of deformable image registration accuracy using
computational modeling. Medical Physics. Mar; 2010 37(3):970–979. [PubMed: 20384233]

Zhong et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



26. Kashani R, Hub M, Balter JM, Kessler ML, Dong L, Zhang L, Xing L, Xie Y, Hawkes D,
Schnabel JA, McClelland J, Joshi S, Chen Q, Lu W. Objective assessment of deformable image
registration in radiotherapy: a multi-institution study. Medical Physics. Dec; 2008 35(12):5944–
5953. [PubMed: 19175149]

27. Zhong H, Wachowiak MP, Peters TM. A real time finite element based tissue simulation method
incorporating nonlinear elastic behavior. Comput Methods Biomech Biomed Engin. Jun; 2005
8(3):177–189. [PubMed: 16214712]

28. Ibanez L, Schroeder W, Ng L, Cates J. The ITK Software Guide. 2005

29. Zhong H, Peters T, Siebers JV. FEM-based evaluation of deformable image registration for
radiation therapy. Phys Med Biol. Aug; 2007 52(16):4721–4738. [PubMed: 17671331]

30. Kim J, Fessler JA. Intensity-based image registration using robust correlation coefficients. IEEE
Trans Med Imaging. Nov; 2004 23(11):1430–1444. [PubMed: 15554130]

31. Christensen GE, Rabbitt RD, Miller MI. Deformable templates using large deformation
kinematics. IEEE Trans Image Process. 1996; 5(10):1435–1447. [PubMed: 18290061]

32. Ferrant, M.; Warfield, SK.; Guttmann, CRG.; Mulkern, RV.; Jolesz, FA.; Kikinis, R. 3D Image
Matching Using a Finite Element Based Elastic Deformation Model. In: Taylor, CJ.; Colchester,
ACF., editors. Lecture Notes in Computer Science. 1679. 1999. p. 202-209.

33. Teverovskiy LA, Carmichael OT, Aizenstein HJ, Lazar N, Liu Y. Feature-based vs. Intensity-
based Brain Image Registration: Comprehensive Comparison Using Mutual Information.
2007:576–579.

34. Zhong H, Siebers JV. Monte Carlo dose mapping on deforming anatomy. Phys Med Biol. Oct;
2009 54(19):5815–5830. [PubMed: 19741278]

35. Zhong H, Jin JY, Ajlouni M, Movsas B, Chetty IJ. Measurement of regional compliance using
4DCT images for assessment of radiation treatment. Medical Physics. Mar; 2011 38(3):1567–
1578. [PubMed: 21520868]

Zhong et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A flowchart of (a) refining a tetrahedral mesh and (b) partitioning a target tetrahedron.
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Figure 2.
Refinement of (a) a target tetrahedron, (b) a tetrahedron sharing a face with the target, and
(c) a tetrahedron sharing an edge with the target. ni (i=1,…,4) represents an original vertex
of the mesh, and Pi (i=1,…,6) represents a new node inserted for tetrahedron partition.
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Figure 3.
the flowchart of the FEM method for correcting deformable image registration errors.
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Figure 4.
(a) the overlay of the lung CT image and the selected nodes; (b) the masked high-contrast
regions; (c) and (d) are the corresponding figures of the prostate image.
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Figure 5.
The coronal cut of the lung CT image embedded with two planes at (a) the end of exhalation
(EE) and (b) the end of inhalation (EI); (c) the overlay of the EI image with the driving
nodes; The EE image embedded with the lower-level plane in (a) was warped by (d) the
“demons” DVF and (e) the FEM corrected DVF; (f) the overlay of (d) and (e) to illustrate
the positional difference between their warped planes;
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Figure 6.
(a) The axial cut of the target CT image for a “demons” registration; (b) and (c) are the
plane-embedded source image warped by the “demons” DVF and the FEM corrected DVF,
respectively, and (d) illustrated the positional difference between the warped plane in (b)
and (c).
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Figure 7.
The axial cut of the lung CT image at the liver warped by (a) the “demons” DVF, and (b) the
FEM corrected DVF; (c) the overlay of (a) and (b) to illustrate the positional difference
between their warped planes; The coronal cut of the prostate CT image warped by (d) the
“demons” DVF, and (e) the FEM corrected DVF; (f) the overlay of (d) and (e) to illustrate
the positional difference between their warped planes.
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Figure 8.
A plane-embedded 4DCT image warped by (a) the “demons” DVF, and (b) the FEM
corrected DVF; (c) the overlay of (a) and (b) to illustrate the positional difference between
their warped planes; A prostate image embedded with two orthogonal planes warped by (d)
the “demons” DVF, and (e) the FEM corrected DVF; (f) the unbalanced energy of the
“demons” DVF for the prostate image.

Zhong et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
The plane-embedded source image warped by (a) the standard DVF and (b) the “demons”
DVF, respectively; (c) the overlay of (a) and (b) to illustrate the positional difference
between their warped planes; (d) the simulated image overlaid with the driving nodes; (e)
the segmented high-contrast region; (f) the plane-embedded source image warped by the
FEM corrected displacements.
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Figure 10.
The profiles of the standard, “demons”, and FEM corrected displacements along the AP line
shown in Fig 9: (a) the AP components and (b) the SI components.
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Figure 11.
Displacement errors from (a) the demons registration, and (b) the FEM correction. (c) Low-
contrast regions in red vs. high-contrast regions in blue;
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