
obesity | VOLUME 20 NUMBER 6 | june 2012� 1313

nature publishing group articles
Methods and Techniques

Introduction
Obesity is the major risk factor for the metabolic syndrome 
and, through it, diabetes as well as cardiovascular disease. It 
is becoming clear that the distribution of body fat is more 
important in this regard than simply the amount of fat. For 
instance, android rather than gynoid distribution of fat is 
more often associated with the metabolic syndrome, diabetes, 
and cardiovascular disease (1–6). Therefore, anthropometric 
measurements such as the waist size and the waist-to-hip ratio 
have been shown in epidemiological studies to predict adverse 
outcomes (5,7,8).

More recently it has been demonstrated that even within 
abdominal fat (AF), it is visceral fat (VF) rather than subcuta-
neous fat (SF) that is the major predictor of adverse events (9–
15). Currently, the most commonly used imaging technique 
for measuring VF is abdominal X-ray computed tomography 
(CT) (16–20). Although this technique has been well validated 

it is not optimal as a screening tool for VF because of radiation 
dose, manual image analysis to separate SF and VF, and the 
need for access to heavily utilized clinical equipment. While 
magnetic resonance imaging (MRI), which has also been used 
for measurement of VF measurement (21,22), avoids the radi-
ation exposure encountered with CT, analysis is still largely 
manual and time-consuming, and as with CT, requires heavily 
utilized clinical equipment.

Dual-energy X-ray absorptiometry (DXA) can accurately 
measure body composition with high-precision, low X-ray 
exposure, and short-scanning time (23–26). DXA subdivides 
soft tissue into lean and fat compartments in order to allow 
whole body and regional measurement of body composition. 
Earlier attempts at using DXA measured total AF and did not 
utilize algorithms that segment AF into VF and SF (27,28). As 
a result DXA-derived total AF was not found to offer an advan-
tage over anthropometric measurements.
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Herein, we describe a newly developed fully automated method 
for segmenting AF into SF and VF within the android region using 
DXA that has been approved for clinical use by the US Food and 
Drug Administration. Using this approach we can measure total 
body fat, total AF, abdominal SF, and abdominal VF. We validated 
our newly developed method against CT in a patient population 
with a wide range of BMI. Furthermore, we explored the asso-
ciation between DXA-derived VF and BMI, waist circumference, 
waist-to-hip ratio, and DXA-derived AF and SF.

Methods and Procedures
Patient population and protocol
The protocol was approved by the Institutional Review Board of the 
Oregon Health and Science University, Portland, OR, and all subjects 
provided written informed consent. The study population included 124 
adult men and women volunteers, aged 18–90 years, recruited from a 
wide range of BMI values (18.5–40 kg/m2). For each subject, height, 
weight, and hip and waist circumferences were measured. They were 
then imaged with DXA and CT in a random order within a one hour 
interval in the fasting state.

Sample size calculation
Sample size was calculated to reliably determine whether the correla-
tion coefficient between DXA and CT exceeded a lower limit of r = 0.90. 
Using an internal engineering dataset, we conservatively estimated the 
correlations between DXA and CT VF volume for the study population 
as r = 0.961 for males and r = 0.954 for females. Calculating the power 
of a one-tailed test of the correlation against the value 0.90, α = 0.05, 
applying Fisher’s Z-transformation and using a power of 90% as a basis 
for calculating sample size, the results indicated that a sample consist-
ing of 60 subjects of each gender would suffice if the true correlation 
were 0.95 or greater.

DXA measurements
Total body imaging was acquired using the GE Healthcare Lunar 
iDXA and analyzed using enCORE software version 13.6. Daily qual-
ity control scans were acquired during the study period. No hardware 
or software changes were made during the course of the trial. Subjects 
were scanned using standard imaging and positioning protocols. For 
measuring android fat, a region-of-interest is automatically defined 
whose caudal limit is placed at the top of the iliac crest and its height 
is set to 20% of the distance from the top of the iliac crest to the base of 
the skull to define its cephalad limit (Figure 1). Abdominal SF and VF 
were estimated within the android region. Fat mass data from DXA 
was transformed into CT adipose tissue volume using a constant cor-
rection factor (0.94 g/cm3). This constant is generally consistent with 
the density of adipose tissue (29) and represents a value that was 
optimized in our training algorithm and not altered in the validation 
procedure.

CT measurements
CT scans were acquired using a Philips iCT 256 scanner running 
Extended Brilliance Workspace software version 3.0.0. A noncontrast 
enhanced standard abdominal scan was performed using 120 kVp, and 
5-mm slice thickness. Subjects were placed in the supine position with 
arms above their head. Contiguous cross-sectional abdominal images 
were captured over 150 mm of the abdomen, beginning at the top of S1 
and moving towards the head.

CT images were segmented using a semiautomated method to 
remove the subcutaneous AF, and the remaining tissue volumes 
were reconstructed from DICOM images using the GE Healthcare 
Advantage Workstation (version 4.1). To account for differences in 
patient positioning and variation in attenuation across subjects, a 
subject-specific threshold in Hounsfield units was developed based 

on manual selection of a region of high confidence VF in a single 
slice. The threshold was set for each patient at 2 s.d. from the mean VF 
Hounsfield value in the region-of-interest. This threshold was applied 
to all slices and the volume of VF was reported.

All CT data was analyzed by a single operator. Approximately 20% 
of the data (27 subjects) were randomly selected for verification of 
CT results by a second operator. The average difference in VF vol-
ume between the two testers was 3.3%. This agrees with previous 
reports in the literature showing 3% difference using similar methods 
(30,31).

Data analysis
CT data were transferred to GE Global Research Center (Niskayuna, 
NY), and DXA data were transferred to GE Healthcare Lunar (Madison, 
WI). CT and DXA images were not shared between the two centers in 
order to minimize any potential bias in the algorithm development and 
validation process.

Modeling of VF estimation
Prior to the start of the study, an internal engineering dataset was used 
to model the relationship between DXA estimated and CT measured 
VF volumes. Because the model relies on geometric assumptions of 
fat distribution in the abdomen, modeling parameters were optimized 
separately for females and males. For each sex, analysis of the clinical 
dataset consisted of two predefined phases. In the first phase, a small 
sample of the clinical dataset was identified that reflected population 
heterogeneity in several key areas including age, height, weight, and 
BMI. This subsample was used to estimate algorithm performance and 
ultimately was added to the internal engineering dataset to refine the 
DXA modeling parameters. In the second phase of analysis, validation 
was performed using the remaining dataset.

The android region contains both VF and SF. Generally, the SF forms a 
layer of nonuniform thickness around the abdominal cavity, which con-
tains the VF. Our VF algorithm uses measurements of the total abdomi-
nal thickness, based on X-ray attenuation, and the width of the SF layer 
along the lateral extent of the abdomen along with empirically derived 
geometric constants to estimate the quantity of SF in the android region. 
VF is computed by subtracting SF from the total AF in the android region. 
The geometric assumptions of the model are based on comparing DXA 
and CT image volumes from a training set of images obtained from two 
independent clinical sites.

Figure 1  Sample dual-energy X-ray absorptiometry (DXA) bone and 
tissue images. The straight lines defined by the skeletal image (left) 
represent automated DXA regions of interest. Base of android region is 
keyed off of top of the iliac crest, shown as the top of the pelvic triangle. 
The android region is highlighted with solid white line on DXA soft tissue 
image (right).



obesity | VOLUME 20 NUMBER 6 | june 2012� 1315

articles
Methods and Techniques

Statistical methods
Continuous variables were expressed as mean ± 1 s.d. Measurements 
were compared using paired t-tests with critical value of P = 0.05 used 
for assessing significant differences. Bland−Altman analysis was used to 
assess magnitude bias in the sample as a whole. Subgroup analysis was 
conducted to assess agreement in men and women separately. Pearson’s 
correlation coefficients were computed comparing DXA VF to clinical 
parameters of interest.

Results
Table 1 describes the study cohort. Five of the study subjects 
were excluded because of defects in the CT scan (metal arti-
facts, no iliac crest present). A subsample of males (n = 10) 
was included in the VF algorithm development cohort. The 
remaining 109 subjects (61 females and 48 males) represented 
the validation cohort. All results reported are for the valida-
tion cohort only that consisted of 100 whites, 5 Hispanics, and 
4 Asians. There were no African-Americans in the group.

Due to the lack of practical selection techniques, subjects 
were not recruited on the basis of VF volume, albeit for the 
purposes of validation, a wide range of VF values is ideal to 
demonstrate utility of the measurement tool in a clinically rele-
vant population. Figure 2 shows the distribution of VF volume 
among the subjects. Although the distribution is skewed, there 
was a wide range, with values ranging from 42 to 4,126 cm3 in 
females and 183 to 3,846 cm3 in males.

The primary endpoint of this study was agreement between 
DXA estimated and CT measured VF volume (Figure 3). The 
coefficient of determination (r2) for regression of CT on DXA 
values was 0.959 for females, 0.949 for males and 0.957 com-
bined. The 95% confidence interval for r was 0.968 to 0.985 for 
the combined data (Figure 3a).

Bland–Altman analysis was conducted to characterize dif-
ferences between DXA and CT VF measurements over the 
range of VF volumes included in the analysis. The 95% confi-
dence interval for the mean of the differences between CT and 
DXA VF volume was –96.0 to –16.3 cm3. Bland–Altman bias 
(CT as standard method) was +67 cm3 for females and +43 cm3 
for males. The 95% limits of agreement were –339 to +472 cm3 

Table 1 D escriptive statistics in the validation subjects (mean 
± 1 s.d.)

Variable Female (n = 61) Male (n = 48)

Age (years) 48.5 ± 14.3 50.8 ± 13.4

Height (cm) 164.5 ± 6.7 177.9 ± 6.7

Weight (kg) 72.5 ± 14.4 84.8 ± 14.5

BMI (kg/m2) 26.7 ± 4.7 26.7 ± 3.5

Waist (cm) 87.6 ± 14.3 95.3 ± 10.5

Waist/hip 0.81 ± 0.08 0.89 ± 0.08

DXA AF (cm3) 2,310 ± 1,450 2,334 ± 1,130

DXA SF (cm3) 1,650 ± 810 1,010 ± 469

DXA VF (cm3) 800 ± 960 1,382 ± 946

CT VF (cm3) 730 ± 870 1,337 ± 900

AF, abdominal fat; CT, computed tomography; DXA, dual-energy x-ray absorp-
tiometry; VF, visceral fat.
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Figure 2  Histogram of visceral fat (VF) volumes measured by computed 
tomography (CT). This data highlights the wide distribution of VF within 
our population of subjects with BMI 20–40 kg/m2.
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for females and –379 to +465 cm3 for males. Combined, the 
bias was +567 cm3 with 95% limits of agreement of –355 to 
+468 cm3 (Figure 3b).

We further explored the relationships between VF and sev-
eral other indices of total and central adiposity: BMI, waist 
circumference, waist-to-hip ratio, total DXA-derived AF, and 
DXA-derived SF. Whereas the DXA VF values were signifi-
cantly correlated to varying degrees with all other indices, the 
scatter was large. Figure 4 shows the correlations between DXA 
VF values and BMI, waist circumference, waist-to-hip ratio, 
and DXA AF. Figure 5 shows the weak association between 
DXA-derived VF and SF.

Discussion
In this report, we describe a new fully automated approach to 
quantify VF using DXA. We validated this method against CT, 
which is one of the current gold standards for quantifying VF. 
There was a strong agreement between DXA and CT across 
both genders and a wide range of BMI’s. The average differ-
ence between techniques was 56 cm3, which is small relative 
to the average VF observed in our subjects (~1 kg). Relative to 
waist circumference, a common surrogate marker for abdomi-
nal obesity, the DXA values were better correlated with CT VF 
(r2 = 0.957 vs. 0.686). This is likely due to the inability of waist 

circumference to discriminate between VF and SF, which were 
not well correlated with each other in our study population.

DXA offers several advantages relative to CT or MRI for 
the measurement of VF. The cost of a DXA instrument is sub-
stantially lower than that of CT or MRI. Having such a system 
within an office-based practice or a research enterprise will, 
therefore, be more cost-effective and efficient rather than shar-
ing a hospital-based CT or MRI system. DXA units can also 
be installed in a standard 100 sq. ft. room. The VF analysis is 
generated automatically soon after the total body scan, allow-
ing the clinician to immediately access the VF information and 
communicate results (including images) to the patient while 
they are still in the office. DXA also exposes subjects to a much 
lower radiation dose relative to volumetric CT (0.96 μSv for a 
Standard Mode Total body DXA exam vs. 3,100 μSV of radia-
tion for an abdominal CT scan), making it suitable for repeated 
measurements. Whereas MRI has the advantage of no ionizing 
radiation, it has drawbacks that make it unattractive for incor-
poration into use for routine screening including expense, pro-
cedure time, and availability of systems. Consequently DXA 
could be used as a low-cost screening tool for quantification of 
VF and other adipose tissue in the clinical setting.

VF is now recognized as a risk factor for the metabolic syn-
drome, diabetes, and cardiovascular disease (1–8). Interestingly 
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even in nonobese individuals it has been associated with 
hypertension, abnormal glucose tolerance, insulin resistance, 
metabolic syndrome, and low high-density lipoprotein lev-
els (9,32–39). The exact reason for the propensity of VF to be 
associated with metabolic and cardiovascular abnormalities 
remains speculative, but compared to SF, VF is more metaboli-
cally active, more sensitive to lipolysis, more resistant to insu-
lin, and has a greater capacity to take up glucose and generate 
free fatty acids (40). It is inversely correlated with adiponectin 
(41) and directly correlated with leptin and high-sensitivity 
C-reactive protein (37). VF is also more sensitive to weight loss 
and to effects of drugs such as pioglitazone (42).

Study limitations
There are several limitations in this study. First, while enroll-
ment for the study was open, we had a small representation 
of nonwhite subjects, which is consistent with Oregon demo-
graphics (1.8% African American, 3.7% Asian, and 1.4% 
American Indian). However, racial identity was not considered 
to be among the most important recruiting criteria, since the 
basic assumptions of the VF algorithm require only an ellipti-
cal distribution of abdominal fat. Whereas, to our knowledge, 
there is no evidence that this assumption is specific to one eth-
nic group, larger scale studies need to be done in different eth-
nic groups to confirm the generalizability of our algorithm.

Second, we also did not include morbidly obese (BMI >40 kg/
m2) or subjects under age 18 in this trial. It may be useful to 
expand into these populations in the future. Finally, since our 
DXA VF measurement is fully automated, it cannot be tested 
for observer variability. However, in a series of phantom stud-
ies, precision estimates accounting for inter- and intrascanner 
differences were ~40 g on a 1 kg VF mass.

Summary
Heretofore, there has been no readily available method to quan-
tify VF. Hence crude measures such as BMI, waist circumfer-
ence, and the waist-to-hip ratio have been used to obtain an 

assessment of metabolic and cardiovascular risk. As can be seen 
from our results, these measurements do not reflect VF in a 
reliable manner and, importantly, SF has no significant relation 
with VF. A more reliable measurement of both metabolic and 
cardiovascular risk could potentially result from a direct meas-
urement of VF. Further studies are needed to determine whether 
VF estimation offers incremental value to other more standard 
measures of metabolic and cardiovascular risk in patients.
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