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Over the last few years, increasing attention has been directed toward the problems inherent to measuring the quality of healthcare
and implementing benchmarking strategies. Besides offering accreditation and certification processes, recent approaches measure
the performance of healthcare institutions in order to evaluate their effectiveness, defined as the capacity to provide treatment that
modifies and improves the patient’s state of health. This paper, dealing with hospital effectiveness, focuses on research methods
for effectiveness analyses within a strategy comparing different healthcare institutions. The paper, after having introduced readers
to the principle debates on benchmarking strategies, which depend on the perspective and type of indicators used, focuses on the
methodological problems related to performing consistent benchmarking analyses. Particularly, statistical methods suitable for
controlling case-mix, analyzing aggregate data, rare events, and continuous outcomes measured with error are examined. Specific
challenges of benchmarking strategies, such as the risk of risk adjustment (case-mix fallacy, underreporting, risk of comparing
noncomparable hospitals), selection bias, and possible strategies for the development of consistent benchmarking analyses, are
discussed. Finally, to demonstrate the feasibility of the illustrated benchmarking strategies, an application focused on determining
regional benchmarks for patient satisfaction (using 2009 Lombardy Region Patient Satisfaction Questionnaire) is proposed.

1. Introduction

Over the last few years, increasing attention has been directed
toward the problems inherent to measuring the quality of
healthcare. Accreditation and certification procedures have
acted as stimulating mechanisms for the discovery of skills
and technology specifically designed to improve perfor-
mance. Total Quality Management (TQM) and Continuous
Quality Improvement (CQI) are the most widespread and
recent approaches to implementing and improving health-
care quality control [1].

Besides offering accreditation and certification processes,
recent approaches measure the performance of health struc-
tures in order to evaluate National Health Systems. For
example, various international Agencies [2–4] measure the
performance of health structures in different countries,
considering three main dimensions: effectiveness, efficiency,
and customer satisfaction.

In this perspective, performance measurement for
healthcare providers, structures, or organizations (from here,

hospitals) is becoming increasingly important for the im-
provement of healthcare quality.

However, the debate over which types of performance in-
dicator are the most useful for monitoring healthcare quality
remains a question of international concern [5].

In a classic formulation, Donabedian [6] asserted that
quality of care includes (i) structure (characteristics of the re-
sources in the healthcare system, including organization and
system of care, accessibility of services, licensure, physical
attributes, safety and policies procedures, viewed as the
capacity to provide high quality care), (ii) process (measures
related to evaluating the process of care, including the man-
agement of disease, the existence of preventive care such as
screening for disease, accuracy of diagnosis, the appropri-
ateness of therapy, complications, and interpersonal aspects
of care, such as service, timeliness, and coordination of care
across settings and professional disciplines), and (iii) clinical
outcomes.

A clinical outcome is defined as the “technical result of
a diagnostic procedure or specific treatment episode” [7],
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“result, often long term, on the state of patient well-being,
generated by the delivery of a health service” [8].

Specifically, ongoing attention has been placed on the
importance of combining structural aspects (such as gover-
nance and the healthcare workforce) with measures of out-
comes to assess the quality of care [6, 9]. This consideration
was taken into account by the Institute of Medicine, which,
in 1990, stated that “quality of care is the degree to which
health services for individuals and populations increase the
likelihood of desired health outcomes and are consistent with
current professional knowledge” [10].

This definition has been widely accepted and has proven
to be a robust and useful reference in the formulation of prac-
tical approaches to quality assessment and improvement,
emphasizing that the process of care increases the probability
of desirable outcomes for patient, reducing the probability of
undesired outcomes.

This paper deals with hospital effectiveness, defined as
the capacity of hospitals to provide treatment that modifies
and improves the patient’s state of health. Of particular
importance in this perspective is the concept of “relative
effectiveness” that is, the effectiveness of each specific
hospital in modifying the patient’s state of health within a
strategy comparing different healthcare institutions, in short,
effectiveness evaluation in a benchmarking framework [6].

Benchmarking in healthcare is defined as the continual
and collaborative discipline of measuring and comparing
the results of key work processes with those of the best
performers in evaluating organizational performance [11].

Two types of benchmarking can be used to evaluate
patient safety and quality performance. Internal benchmark-
ing is used to identify best practices within an organization,
to compare best practices within the organization, and to
compare current practice over time. Competitive or external
benchmarking involves using comparative data between
organizations to judge performance and identify improve-
ments that have proven to be successful in other organiza-
tions.

Our aim is to discuss the statistical aspects and possible
strategies for the development of hospital benchmarking
systems.

The paper is structured as follows: the next section in-
troduces readers to the principle debates on benchmarking
strategies, which depend on the perspective and type of in-
dicators used. Section 3 presents statistical methods, while
Section 4 explores the methodological problems related
to performing consistent benchmarking analyses. Section 5
describes an application based on patient satisfaction that
demonstrates the feasibility of the illustrated benchmarking
strategies. Section 6 offers conclusions.

2. Perspective and Type of Indicators

The conceptual definition and assessment of “effectiveness”
rests on a conceptual and operational definition of “quality
of care”, which is an exceptionally difficult notion to define.

An important contextual issue is the purpose for which a
performance indicator is to be used and by whom.

Performance indicators can be used for various objec-
tives: to gain information for policy making or strategy
development at a regional or national level, to improve
the quality of care of a hospital, monitor performance of
healthcare, identify poor performers to protect public safety
as well as to provide information to consumers to facilitate
the choice of hospital.

In general, the broader the perspective required, the
greater the relevance of outcome measures, as they reflect the
interplay of a wide variety of factors, some directly related
healthcare, others not. Because outcome measures are an
indicator of health, they are valid as performance indicators
in as much as the quality of health services has an impact on
health. As the perspective narrows, to hospitals, to specialties,
or indeed to individual doctors, outcome measures become
relatively less indicative and process measures relatively more
useful.

Process measures have two important advantages over
outcome measures. In fact, if differences in outcome are
observed, before one can conclude that the difference reflects
true variations in the quality of care, alternative explanations
need to be considered. In contrast, a process measure lends
itself to a straightforward interpretation (e.g., the more
people without contra-indications who receive a specific
treatment, the better). Second, the necessary remedial action
is clearer (use the treatment more often), whereas for an
outcome measure (e.g., higher mortality rate) it is not
immediately obvious what action needs to be taken.

Despite these limitations, outcome measures have a
role in the monitoring of the quality of healthcare that is
important per se. To know that death rates from a specific
diagnosis vary across hospitals is an essential finding, even if
the reasons for the differences cannot be explained through
the quality of care. Further, outcome measurement will
reflect all aspects of the processes of care, although only a
subset is measurable or measured (e.g., technical expertise
and medical skill). Such aspects are likely to be important
determinants of outcome in some situations and describe
not only that a correct procedure is performed, but also the
results for the patients.

Another possible reason why outcome indicators are
often used in some countries is that available data refer to
routine information systems (administrative archives) which
regularly record clinical aspects and other dimension useful
for case mix adjustment.

In the Italian context, at patient level, the Hospital
Discharge Card (HDC) is the only available administrative
archive in the health sector. The HDC, introduced in
Lombardy in 1975 with the introduction of reimbursement
system of the Diagnostic Related Group (DRG), collects
clinical information about patient discharge.

In this perspective, the debate on the use of clinical
administrative data to furnish useful information on quality
assessment remains open.

Many authors have criticized the use of clinical outcomes
in the evaluation of quality of the care and, particu-
larly, mortality rates [12, 13]. According to Vincent and
colleagues [14], administrative data does not provide a
suitably transparent perspective on quality or improvement.
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Others suggest that limited clinical content may compromise
its utility for this purpose, posing serious caveats against
drawing definitive conclusions [15, 16].

Despite such concerns, major consensus exists on the
use of clinical outcomes from administrative data as a
useful screening tool for identifying quality problems and
targeting areas in which quality should be investigated in
greater depth [4, 16, 17]. Excluding mortality, various clinical
outcomes which could indicate malpractice, are widely
accepted by private or public Agencies [1–3, 18, 19] which
evaluate national health sectors, for example, unscheduled
surgical returns to the operating room within 48 hours,
discharges against medical advice, death in low mortality
DRGs, or failure to rescue (indicating deaths among patients
developing specified complications during hospitalization).

2.1. Outcome Variability. In order to consider the method-
ological problems that may limit benchmark strategies, it is
necessary to explore the possible causes of variation in an
outcome. Four major categories of explanation need to be
considered. The first of these is whether observed differences
might be due to differences in the type of patient cared for in
the different hospitals (e.g., age, gender, comorbidity, severity
of disease, etc.).

The importance of this cause of variation is illustrated
by studies where differences in crude outcome disappear
when the outcomes are adjusted to take account of these
confounding factors. To this end, researchers propose risk-
adjustment methodologies as proper methods of equitable
comparisons for evaluating quality and effectiveness of
hospitals [12, 15, 20].

A second cause of variation in outcome (or its risk-
adjusted version) is differences in the way data is collected.
Differences in the measurement of events of interest (e.g.,
deaths) or in the population at risk (typically the denomina-
tor of an event rate) depending on different inclusion criteria
for determining denominators, or when different case-mix
data is used to adjust for potential confounding, will lead to
apparent differences in outcome.

Thirdly, observed differences may be due to chance.
Random variation is influenced both by number of cases
included and by the frequency with which the outcome
occurs. To this end, a fundamental issue is whether the
outcome indicator is likely to have the statistical power to
detect differences in quality. Statistical power depends upon
how common the occurrence of the outcome is. For some
rare events, the limited number of patients experiencing the
events limits the power of the study [21].

Finally, differences in outcome may reflect real, although
unobservable, differences in quality of care. This may be
due to variations in different measurable or less measurable
aspects such as the interventions performed or the skill of the
medical team.

Hence, as these are different causes of an outcome
variation, the conclusion that a variation in outcome is due to
a difference in quality of care among hospitals is essentially a
diagnosis through exclusion: if variation cannot be explained
in terms of previous components (case-mix, data collection,

chance), then hospital quality of care (relative effectiveness)
becomes a possible explanation.

3. Statistical Methods

As described above, if one cannot explain the variation in
terms of differences in type of patient, in how data is col-
lected, or in terms of chance, then quality of care becomes
a possible explanation. Following the perspective that vari-
ations in outcome are due to a difference in quality of care
only as diagnosis through exclusion, institutional agencies
gather larger data sets from administrative archives and apply
risk-adjustment in order to validate quality indicators and to
benchmark hospitals.

Administrative archives are less prone to the problem
related to how the data is collected, and reduce the possibility
that differences in outcome may be due to chance (although
this risk increases when analyzing rare outcomes). Usually,
the sizes of such databases cover the entire population of
hospitalizations, enhancing their statistical power to detect
important differences in outcomes.

Therefore, the last exclusion criterion invokes a consis-
tent statistical model allowing comparisons between hos-
pitals, in order to estimate relative effectiveness [22]. To
this end, statistical methods for risk-adjustment identify
and adjust variations in patient outcomes stemming from
differences inpatient characteristics (or risk factors) across
hospitals and, therefore, allow fair and accurate interhospital
comparisons.

However, the kind of adjustment required for assessing
effectiveness is not the same for the various subjects inter-
ested in the results. To this regard, it is useful to distinguish
between two types of effectiveness. In fact, potential patients
(users) and institutional stakeholders (agents) are interested
in different types of hospital effectiveness.

Following the approach of Raudenbush and Willms
[23], in a comparative setting, the relative effectiveness is
usually assessed through a measure of performance adjusted
for the factors out of the control of the hospital, so the
difference between effectiveness simply lies in the kind of
adjustment. The authors identify Type A and Type B relative
effectiveness: Type A effectiveness deals with users interested
in comparing the results they can obtain by enrolling in
different hospitals, irrespective of the way such results are
yielded; the performance of the hospital adjusted for the
features of its users is evaluated. Type B effectiveness deals
with Stakeholders interested in assessing the “production
process” in order to evaluate the ability of the hospitals to
exploit the available resources; in this case, the performance
of the hospital is adjusted according to the features of its
users, the features of the hospital itself, and the context in
which it operates.

In the nineties, numerous authors proposed to estimate
the concept of “relative effectiveness” by means of multilevel
or hierarchical models [24, 25]. In fact, when the behaviour
of individuals within organizations is studied, the data
have a nested structure. Individuals/patients constitute the
sampling units at the first and lowest level of the nested



4 The Scientific World Journal

hierarchy. Organizations/hospitals constitute the sampling
units at the second level.

Several recent statistical papers deal with risk-adjusted
comparisons, related to the mortality or morbidity out-
comes, by means of Multilevel models, in order to take into
account different case-mixes of patients (for a review, see
Goldstein and Leyland [26] and Rice and Leyland [27]).

One of the most attractive features of multilevel models
is the production of useful results in healthcare effectiveness
by linking individual (patient) and organizational (hospi-
tal) characteristics (covariates). Multilevel models overcome
small sample problems by appropriately pooling information
across organizations, introducing some correction or shrink-
age, and providing a statistical framework that quantifies and
explains variability in outcomes through the investigation of
patient/hospital level covariates [27].

Quality indicators are typically calculated and dissemi-
nated at hospital level, dividing the number of events (in-
hospital death or adverse event as a clinical error which
results in disability, death, or prolonged hospital stays) by the
number of discharged patients at risk.

However, at the patient/individual level, the event of
interest is typically a dichotomous variable and the Multilevel
model version for this kind of outcome is the Logistic
Multilevel Model (LMM, [25]).

For patient i nested in hospital j, let πi j be the probability
of occurrence of a dichotomous adverse event Yij , where Yij

is Bernoulli distributed with expected value E(Yij) = P(Yij =
1) = πi j . Instead of πi j , the LMM specifies, as dependent
outcome, its logistic transformation (ηi j = log(πi j /1−πi j)) as
a function of possible covariates, where log is the logarithmic
transformation and (πi j /1 − πi j) the ratio of the probability
that the adverse event occurs to the probability that it does
not is called the odds of the modelled event.

The LMM without patients and hospital covariates
(intercept-only LMM) assumes that ηi j depends only on
the particular hospital charging patient i, specified by γ0 j a
nominal variable designating the jth hospital; the hospital
effect is assumed to be random, meaning that hospitals
are assumed randomly sampled from a large population of
hospitals. Equations (1) and (2) define the intercept-only
LMM:

ηi j = γ0 j , (1)

γ0 j = γ00 + u0 j , u0 j ∼ N
(
0, σ2

0

)
, (2)

where γ0 j is the intercept (effect) for the jth hospital which
can be decomposed in γ00 representing the average proba-
bility of adverse events (in the logit metric) across hospitals
and u0 j , a specific effect capturing the difference between
the probability of adverse event for hospital j and the
average probability of adverse event across hospitals. These
random effects are assumed to be independent and normally
distributed with zero mean and variance σ2

0 , which describes
the variability of hospitals’ effects. The intercept-only model
constitutes a benchmark value of the degree of misfit of
the model and can be used to compare models involving
different covariates at different levels. Further, this model
allows decomposing the total variance of the outcome into

different variance components for each hierarchical level.
Specifically, the Intraclass Correlation Coefficient (ICC),
defined as the ratio between the variability among hospitals
σ2

0 and total variability (σ2
0 plus the variability among

patients within the hospitals, σ2
e ) captures the proportion of

total variability of a given risk factor that is due to systematic
variation between hospitals. Nevertheless, in the case of a
dichotomous outcome Yij , the usual first level residuals ei j ,
and hence their variance σ2

e , are not in the model (1). This
occurs since the outcome variance πi j /(1 − πi j) being part
of the specification of the error distribution depends on the
mean πi j and thus does not have to be estimated separately.

However, approximating the variability of the first level
with the variance of the standard logistic distribution (π2/3)
and summing this variance with the variability of the
second level (σ2

0 ) allows separating the total variance in
two components, giving the intercept-only model ICC =
σ2

0 /(σ
2
0 + π2/3). This measure is used to assess the percentage

of outcome heterogeneity existing between the hospitals
involved in the analysis.

As the second step, the probability (in the logic metric
ηi j) of an adverse event occurrence for patients can be a
function of patients’ characteristics (case-mix), other than
the hospital effect. Hence (1) can be extended assuming that
ηi j depends on P (p = 1, . . . ,P) patient covariates (xpi j)

ηi j = γ0 j +
∑P

p=1
γp jxpi j , (3)

γ0 j = γ00 + u0 j , (4)

γp j = γp0 + up j , (5)

where γp j is the slope (regression coefficient) of the pth
person characteristic in hospital j which is allowed to
randomly vary across hospitals (e.g., the effect of length of
stay on adverse event occurrence varies among hospitals). In
the formulation (4), the specific effect for the jth hospital
on the outcome (u0 j) is adjusted for the effects of the P
person-level characteristics (xi j p). In (5) γp0 represent the
average slope across hospitals and up j the specific effect of
hospital j to the average slope (random effect). However, in
effectiveness analyses, slope parameters (γp j) are assumed to
be fixed (putting up j = 0 in (5) for p = 1, . . . ,P), whereas
only the intercept u0 j is allowed to randomly vary across
hospitals. Such models, in which the regression slopes are
assumed fixed, are denoted as variance component models.

In the model composed by (3)-(4) and (5) with up j = 0,
the u0 j reflects the relative effectiveness of the jth hospital,
depurated only by individual case-mix characteristics, and
thus potentially depending on different hospital character-
istics (Type A effectiveness).

For Type B effectiveness, one can move to the next
step, accounting for variation in intercept parameters across
hospitals by adding Q (q = 1, . . . ,Q) hospital variables zq j to
level 2 equations. Hence, (4)-(5) become

γ0 j = γ00 +
∑Q

q=1
γ0qzq j + u0 j , (6)

γp j = γp0 +
∑Q

q=1
γpqzq j , (7)
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in which slope parameters (γp j) referring to (3) are specified
as nonrandom covariates across hospitals, but possibly
varying depending on characteristics of hospital j(zq j).

Methodologically, this step is justified when in the
model (3)-(4) the intercepts u0 j do significantly vary across
hospitals (by investigating the associated residual ICC), once
the patients’ characteristics are controlled for.

The compact form of (3)-(6)-(7) is

ηi j = γ00 +
P∑

p=1

γp0xpi j +
Q∑

q=1

γ0qzq j

+
P∑

p=1

Q∑

q=1

γpqxpi jzq j + u0 j ,

(8)

where the double sum in (8) captures possible cross-level
interactions between covariates at different levels (e.g., γpq
exhibits that, for hospital j, the effect of length of stay
(xpi j) on adverse event occurrence (ηi j) may depend on the
specialisation level zq j of the hospital).

In model (8), the parameters u0 j , called level 2 resid-
uals, specify the relative effectiveness of the hospital j
(Type B effectiveness): they show the specific “managerial”
contribution of the jth hospital to the risk of adverse
event, depurated by overall risk (γ00), individual case-mix
(
∑

pγp0zpi j), structural/process characteristics of the hos-
pitals (

∑
qγ0qzq j), and their interactions (

∑
p

∑
qγpqxpi jzq j).

To make this interpretation clear, (8) can be rewritten by
isolating the u0 j in the right term of expression (8): the
effectiveness parameter u0 j is thus a hospital unexplained
deviation of the actual outcome (ηi j) from the expected
outcome (γ00 +

∑
pγp0xpi j +

∑
qγ0qzq j +

∑
p

∑
qγpqxpi jzq j). The

expected outcome is the outcome predicted by the model
based on the available hospital and patient-level covariates.
For patient i of hospital j, the difference between actual
and expected outcome has a hospital-level component u0 j

(the effectiveness). Notice that, since the expected outcome
depends on the covariates, the meaning of effectiveness
depends on how the model adjusts for the covariates (Type
A or Type B).

One method of estimating u0 j is to use the empirical
Bayes (EB) residual estimator [24]. The EB estimator can
be interpreted as the difference between the “average” we
actually observe for a hospital (average of the actual outcome
for a hospital) and the “average” that is expected for the
hospital after controlling for the individual and hospital
factors that influence the average (average of the expected
outcome for a hospital). Hence, adjusting for both individual
and hospital level sources of variation, the EB residual is
that part of the evaluation of the variable at hand (adverse
event occurrence) that we believe to be due to management
practices. The exponential value of the estimated hospital-
specific random effect u0 j is the odds ratio (OR): the odds
of experimenting an adverse event at the jth hospital divided
by the odds of an average hospital, after controlling for the
individual and hospital factors. Patients who are treated at
hospitals with positive random effects (OR > 1.0) have
greater odds of adverse event than patients who are treated

at an average hospital, whereas patients who are treated at
hospitals with negative random effects (OR < 1.0) have lower
odds of adverse event than patients who are treated at an
average hospital.

However, since the residuals are affected by the sampling
variability and other sources of error, the corresponding
ranking has a degree of uncertainty. Such uncertainty is
difficult to represent, since it involves multiple comparisons.
If Hospital A’s risk-adjusted outcomes are significantly better
than those of Hospital B’s, then we are more confident
that Hospital A offers high quality of care, but we cannot
assume that Hospital A is actually better than Hospital B.
Therefore, several authors [4, 8, 27] suggest avoiding hospital
rankings based on their risk-adjusted outcomes, but to place
hospitals into a limited number of groups, based on statistical
criteria. In a conservative approach, the usual procedure is
to build 95% pairwise confidence intervals (CI) of level 2
residuals, or their exponentiated values, and situate hospitals
into three groups: effective (problematic) hospitals are those
with CIs entirely under (over) the risk-adjusted mean (e.g.,
regional) of warning event, whereas CIs that cross the risk-
adjusted mean define the intermediate group. Further, the
effectiveness of two hospitals is statistically different whether
the 95% pairwise ICs of u0 j do not overlap.

3.1. Case-Mix Adjustment. Typically, appropriate adjust-
ment instruments must control for the principal diagnosis
within a Diagnostic-Related Group-(DRG) (categorization
of each hospitalization based on the average resources used
to treat patients), contain demographics as proxies for preex-
isting physiological reserve (e.g., gender, age, marital status,
socioeconomic status), and measure the number and severity
of comorbidities [28].

Comorbidities, or coexisting diseases, are obtained by
DRG and principal-secondary diagnoses, whereas comor-
bidity severity is measured with different strategies: among
others, (i) aggregating comorbidities reflecting different con-
ditions leading to hospitalization [29], (ii) aggregating DRG
reflecting admission gravity (disease staging, [4, 30]). For ex-
ample, disease staging maps from the list of comorbid
diagnoses to a severity scale that ranges from 1 to 4 where
stage one is the least severely ill and stage four is death.
In absence of institutional software measuring severity,
possible alternatives contained in Hospital Discharge Cards
data are length of stay, admission type (planned/urgent),
hospitalization type (surgical/other), DRG, and DRG weight,
a numeric value assigned to each discharge based on the
average resources consumed to treat patients in that DRG.

In this end, risk-adjustment methods that use only
administrative data appear to be a viable alternative to widely
accepted severity adjustment methods when additional clin-
ical data (medical chart, laboratory values, etc.) required by
existing severity adjustment strategies are not available [31].

3.2. Decomposing Total Variance. Various approaches have
been proposed to examine the proportion of explained
variance and to indicate how well the outcome is predicted
in a multilevel model. A straightforward approach consists
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of examining the residual error variances and residual ICC
in a sequence of models.

However, in an LLM, if we start with an intercept-
only model, and then estimate a second model where we
add a number of covariates (the linear predictor in (3)),
we normally expect the variance components to become
smaller. However, in logistic regression the first level residual
variance is again π2/3. These implicit scale changes make it
impossible to compare regression coefficients across models,
or to investigate how variance components change [25].
One possible solution is a multilevel extension of a method
proposed by McKelvey and Zavoina [32] that is based on
the explained variance of a latent outcome in a generalized
linear model. In this formulation, for a specific model with
m covariates, the variance of ηi j is decomposed into the
first level residual variance, which is fixed to π2/3, the
second-level intercept variance σ2

0 and the variance σ2
F of the

linear predictor (obtained by calculating the variability of the
predictions arising from the fixed part of the model). The
variance of the linear predictor is the systematic variance in
the model, whereas the other two variances are the residual
errors at the two levels. In this specification, we can rescale
the variance estimates σ2

0 and π2/3 of a specified model
with m covariates by an appropriate scale correction factor,
that rescales the model to the same underlying scale as the
intercept-only model. Let σ2 = σ2

0 + π2/3 denote the total
variance of the intercept-only model, and σ2

m = σ2
0 + π2/3 +

σ2
F for the “model m” including m first-level covariates.

Applying the scale correction factor σ2/σ2
m to the variance

components of model m, the corrected variance components
can be used for assessing ICC and the amount of variance
explained at the two levels.

3.3. Aggregate Data and Rare Events. Often dichotomous
data may be available at higher levels than the patient
level (e.g., aggregated adverse events occurring in the kth
Specialty belonging to hospital j). In that case, the individual
dichotomous outcome Yij becomes a proportion or an event
rate, defined as the number of events divided by the total
person of experience (πk j). Specifically, πk j is the ratio
between Yk j , the counts of adverse events occurring in kth
Specialty of the jth hospital (stratum k j), and nk j , the size
of the population at risk in stratum k j. Conditional on
the covariates, Yk j is assumed to have a binomial error
distribution, with expected value πk j and variance πk j(1 −
πk j)/nk j , where nk j is the number of trials or the population
at risk (e.g., discharged patients) in stratum k j.

In this case, with aggregate data, we can continue to use
LMM. Here, first level refers to Specialty k, instead of patient
i. In each stratum k j, we have a number of patients who may
or may not experiment the adverse event. For each patient i
in stratum k j, the probability of a warning event is the same,
and the proportion of respondents in the kth Specialty of
the jth hospital is πk j , which is the dependent outcome to
be modelled. This formulation does not model individual
probability and does not use individual-level covariates.
However, in the presence of individual dichotomous data
(Yik j for patient i in the stratum k j), we could have a model

where each individual’s probability varies with individual-
level covariates in a three-level model.

With aggregate data, another possible way to model
proportions is to use regression count models. Count data
is increasingly common in clinical research [33]. Examples
include the number of adverse events occurring during a
follow-up period or the number of hospitalizations. Poisson
Regression (PR, [34]) is the simplest regression model for
count data and assumes that each observed count Yk j is
drawn from a Poisson distribution with the conditional
mean μk j on a given vector xk j for stratum k j. If Yk j is
assumed to be drawn from a Poisson distribution, the mixed
Poisson regression is useful if researchers are interested in
whether the (logarithm of) expected rates (μk j/nk j), which
are incidence densities, varied across Specialty and hospital
characteristics or not. Here, nk j may denote both the size of
the population at risk in stratum k j or the size of the time
interval over which the events are counted varies.
Indicating ηk j = log(μk j/nk j), once having substituted index
i with index k, (8) identifies the Poisson Multilevel Model. It
involves, as the dependent variable, an event rate, such as the
ratio of clinical errors resulting in patient death to the total
discharges in the kth Specialties belonging to hospital j or
the number of clinical errors resulting in patient death per
charge period. The random error u0 j continues to represent
the specific managerial contribution of hospital j to the rate
of clinical errors, once Specialties characteristics (case-mix)
and hospital structural characteristics are taken into account.

The main feature of the Poisson model is that the
expected value of the random variable Yk j for stratum k j
is equal to its variance. However, its assumption of equi-
dispersion, resulting in an underestimation of the outcome
variability, is too restrictive for many empirical applications.
In practice, the variance of observed count data usually
exceeds the mean (overdispersion), due to the unobserved
heterogeneity and/or when modelling rare events. In this
situation, one classic cause of over-dispersion is the presence
of the excess of zeroes in the analyzed outcome distribution
(e.g., when many hospitals are not responsible for adverse
events). Ignoring over-dispersion seriously compromises
the goodness of fit of the model, which also leads to an
overestimation of the statistical significance of the explicative
variables.

In this perspective, as described in the previous sections,
a fundamental issue for statistical models is whether the
outcome indicator is likely to have the statistical power to
detect differences in quality. In the presence of a rare event,
the small number of patients experiencing said event limits
the power of the study (at a given significance level) and
one cannot conclude that some hospitals are better than the
rest, or that a specific hospital with low performance (high
complication rate) is worse, as these differences might have
arisen by chance.

When the data show over-dispersion and excess of zeros
(rare events) compared to the expected number under
the Poisson distribution, other count models, such as the
Negative Binomial Regression model (NBR, [34]) and Zero-
Inflated regression models, appear to be more flexible. NBR
is able to model count data with over-dispersion, because
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NBR is the extension of PR with a more liberal variance
assumption, modelled by means of a dispersion parameter.
Instead, Zero-Inflated regression models address the issue
of excess zeroes in their own right, explicitly modelling the
production of zero counts. Specifically, it is assumed that
there are two processes that produce the data: some of the
zeros are part of the event count and are assumed to follow a
Poisson model (or a negative binomial). Other zeros are part
of the event taking place or not, a binary process modelled
in a binomial model (logistic equation). These zeros are not
part of the count; they are structural zeros, indicating that
the event never takes place.

Thus, for count data with the evidence of over-dispersion
and when over-dispersion results from a high frequency of
zero counts (rare events), several modelling strategies give
satisfactory fitting measures.

3.4. Continuous Outcomes. The rationale underlying the
specification of (8) can be generalized to the case in which
the outcome variable is assumed to be continuous (or
is a scale in which the responses to a large number of
questions are summated to one score) with a normal error
distribution. However, two main differences arise. Firstly,
in a Linear Multilevel Model [24], instead of modelling
the logit of Yij , we directly model Yij and, secondly, the
model now involves the level 1 residuals ei j (assumed to
have a normal distribution with zero mean and variance
σ2
e and to be independent from the level 2 residuals u0 j).

The parameter can be estimated by the full or restricted
maximum likelihood method [24].

In the intercept-only model, the ICC (= σ2
0 /(σ

2
0 + σ2

e ))
indicates the proportion of the variance explained by the
grouping structure in the population. Since, with additional
covariates, all residual variance components become smaller,
at each step, we can decide which regression coefficients or
variances to keep based on the significance tests, the change
in the deviance, and changes in the variance components
(residual ICC).

When the response variable does not have a normal
distribution, the parameter estimates produced by the max-
imum likelihood method are still consistent and asymp-
totically unbiased, meaning that they tend to get closer
to the true population values as the sample size becomes
larger. However, the asymptotic standard errors (variance-
covariance matrix of the estimated regression coefficients)
are incorrect, and they cannot be trusted to produce accurate
significance tests or confidence intervals for fixed effects
[24, page 60]. One available correction method to produce
robust standard errors is the so-called Huber/White or
sandwich estimator [35], where variances of the estimated
regression coefficients are obtained by empirical residuals of
the model (robust standard errors). This makes inference less
dependent on the assumption of normality.

Further, when the problem involves violations of
assumptions and the aim is to establish bias-corrected
estimates and valid confidence intervals for variance compo-
nents, a viable alternative to asymptotic estimation methods
is the bootstrap [25].

3.5. Outcomes Measured with Error. In specific circum-
stances, effectiveness analyses may be conducted by using
quality of life outcomes (or patient satisfaction) which can
constitute the basis for assessing different hospitals in a
comparative setting. Quality of life indicators refer to the
general condition of health of the patient (physical and
mental health, functional state, independence in daily living,
etc.) and describe the conditions in which services are
distributed.

Although such variables are not directly observable, they
can be estimated by analyzing tests administered to patients.
Suppose we wish to analyze the data of a given class of n
independent subjects. Let ξ denote the latent outcome (or
patient satisfaction). The associated Linear Multilevel Model
is

ξi j = γ00 + u0 j +
P∑

p=1

γp jxpi j + ei j , (9)

where ei j , conditioned on variables in the linear predictor
and ξ, have zero mean and variance σ2

e and u0 j , conditioned
on covariates and ξ are independent normal variables with
zero mean and variance σ2

0 . However, ξi j is latent and we only
observe a fallible measurable version (Yo

i j). In accordance
with the Classical Test Theory, which assumes that the
observed scores for K tests measure the same true latent
outcome score, plus an error term, this defines an explicit
measurement model for the latent outcome:

Yo
i j = ξi j + δi j , δi j | ξi j ∼ N

(
0, σ2

i

)
(10)

in which the error term δi j is normally distributed with zero
mean and variance σ2

i , which varies across subjects (i =
1, . . . ,n) in the same manner across hospitals. For example,
Yo
i j can be thought as the total score obtained by summing

scores for patient i in hospital j over K administered tests
or as a composite score, estimated by using one of the
known models for continuous latent variables. From (10) we
can decompose the variance (Var) of Yo

i j as the sum of its
orthogonal variance components:

Var
(
Yo
i j

)
= Var

(
ξi j
)

+ σ2
δ , (11)

where σ2
δ = N−1Σiσ

2
i denotes the average of the individual

standard errors of the measurement.
In such circumstance, when the variable measured with

errors is the response variable of the model, its measurement
error is captured by the model error and there are no
consequences on the estimated parameters, but this has
serious consequences on variance components. In fact, (11)
illustrates that, due to measurement error, the variance of
the estimated latent variable overestimates the true latent
variable variance.

Therefore, since instead of ξi j we observe an error-
contaminated estimation Yo

i j , by adding δi j to both terms, the
model (9) becomes

Y◦i j = ξi j + δi j = γ00 + u0 j +
P∑

p=1

γp jxpi j + ei j + δi j (12)
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in which σ2
δ (the variance of measurement errors) enters as

an additional random component in the total variance of Yo
i j ,

thus modifying formulas to obtain ICC.
For the intercept-only model, ICC = σ2

0 /(σ
2
0 + σ2

e + σ2
δ ),

which resulted in an attenuated version of the true ICC, thus
underestimating the variability of outcome across hospitals.
Hence, when the outcome is measured with error, ICC must
be disattenuated (ICC§), by subtracting the term σ2

δ in the
denominator of the attenuated ICC.

To this end, different approaches can be utilized to esti-
mate σ2

δ (and thus ICC§). These concerns can be addressed
within the context of Rasch measurement models [36]
providing measures underlying Likert scales with optimal
characteristics. The Rasch model directly furnishes individ-
ual estimates of σ2

i (the standard error of the estimated
outcome for person i, measured across K items), and
averaging them provides an estimate of σ2

δ .
Another possibility deals with factor analysis (FA).

Without loss of generality, let us consider K congeneric tests,
allowing different error variances for K tests and removing
the assumption that all tests are based on the same units
of measurement. Supposing that the scores of K items for
n subjects are embedded in the vector of K variables Yo =
(Yo

1 , . . . ,Yo
K )′, and let Yo = λξ + δ denote a single-factor

analysis model for K items, where λ = (λ1, . . . , λK )′ and
δ = (δ1, . . . , δK )′ indicate the vector of partial regression
coefficients of ξ in the regression of Yo on ξ, and the error
terms, respectively. In the FA model, σ2

δ can be estimated
once the reliability of the composite ρ = 1−(σ2

δ /σ
2), defined

as the ratio of true variance to observed score variance σ2, is
estimated.

Unlike traditional methods for computing composites as
total scores, the use of maximally reliable composite scores
[24] minimizes measurement error in the items contributing
to each scale, thus increasing the reliability of the computed
scale scores. More specifically, let ξ∗ = λ∗′Σ∗−1Y◦ denote
the factor score estimates for the individuals, where Σ∗ is
the estimated covariance matrix of the observed indicators
and λ∗ the estimated vector of regression coefficients; the
reliability of the composite ξ∗ is estimated as

r = w∗′ (Σ∗ −Θ∗)w∗

(w∗′Σ∗w∗)
, (13)

where w∗ is the estimated vector of factor score regression
weights (w∗ = λ∗′Σ∗−1) that maximize r and Θ∗ is the
diagonal matrix of estimated error terms variances δK .

Finally, measurement error bias becomes more serious
when the model involves a covariate measured with error
(e.g., when the outcome at baseline is used as a covariate
to estimate performances), causing bias in the estimated
parameters. This arises because the measurement error of the
outcome at baseline is correlated with ei j + δi j in (12).

4. Methodological Problems

As described, the proposed analyses on large adminis-
trative archives can be used for benchmarking purposes.
Notwithstanding the illustrated advantages, these analyses

also present specific challenges, due to the following potential
areas for bias.

4.1. The Risk of Risk Adjustment. Firstly, risk adjustment can
only adjust for factors that can be identified and measured
accurately (case-mix fallacy). Consequently, risk adjusted
benchmarking, using administrative data, can be hampered
by underreporting, that is, the potential endogeneity of the
recorded patient-level covariates (outcomes are correlated
with the propensity to record information across hospitals)
and the potential for nonconsidered covariates (misspecifi-
cation). For example, if an important severity measure is
missing from the database, assuming that the distribution
of this unmeasured covariate will vary across hospitals, the
variability of adjusted outcomes among hospital may be
overestimated [30].

Furthermore, when using administrative archives for
adverse events, claims data is problematic in nature, given
the limited number of claims generally emerging from
administrative sources (underreporting, or lack of close calls
or near misses/errors that do not result in injury) and the lack
of information on the causes of medical errors causing injury
to patients (e.g., processes and systems of care that may be
responsible).

Secondly, unmeasured risk factors are not randomly
distributed across hospitals, due to clustering of certain types
of patients in certain hospitals’ practices. Users can easily
draw incorrect conclusions, because the hospitals that appear
to have the worst outcomes may simply have the most
seriously ill patients. To this end, the practice of routinely
disseminate risk-adjusted hospital comparisons has been
strongly criticized, since an institution’s position in rankings
strongly depends on the method of risk adjustment used
[37].

Third, since differences in the quality of care within
hospitals (e.g., DRGs and/or Specialties) may be greater than
differences between hospitals, there is no clear evidence of
high correlation between how well a hospital performs on
one standard of effective care and how well it performs
on another. After risk adjustment, the remaining hospitals
variability (type B effectiveness) may be imputable to com-
plex factors, typically depending on a reciprocal interaction
between patient case mix (pathologies, clinical severity)
and the institutional form of the hospital (profit, not-for-
profit/public, private, University hospital, etc.). Therefore,
the unexplained hospital variability appears to be physiolog-
ical and not possible to eliminate completely [8, 22, 37]. In
this perspective, it has become imperative to evaluate which
benchmarks keep the risk of comparing noncomparable
hospitals to a minimum.

To this end, some authors [38] propose to use additional
factors, which contribute most to variability in patient ex-
perience, as supplementary adjustment variables for patient
mix or as stratification variables in order to present transpar-
ent benchmarking analyses.

4.2. Selection Bias. Patient selection bias is a distortion of
results due to the way subjects are selected for inclusion in
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the study population. Patients are not randomly assigned to
hospitals. Whereas randomized and controlled trials reduce
self-selection bias through randomization by evenly dis-
tributing subjects among treatment/hospital, observational
studies based on administrative database are nonrandomized
and effectiveness results may be confounded by selection bias
due to systematic differences in admission practices between
(private/public) hospitals or differences in hospital referral
patterns. Such selection biases may result in the preferential
admission (or exclusion) of patients with different under-
lying prognoses, independently of the severity of patients’
illness.

Estimates of the effects and outcomes can be biased due
to a correlation between factors (such as baseline health
status) associated with hospital selection and outcomes
(endogeneity). In fact, effectiveness random parameters u0 j

are assumed as independent and uncorrelated with fixed
explicative variables. When this correlation occurs (e.g., this
may occur since the patients are selected in hospital), the
hypothesis is not valid and the model is not appropriate.
Such a correlation can result in erroneous inferences about
the magnitude and statistical significance of hospital effects
[25]. Assessment of such bias, which limits a suitable relative
effectiveness of hospitals [39], would be extremely difficult
and would require information about all possible hospital
admissions.

A straightforward remedy to endogeneity due to a
possible covariate xp is to add the hospital mean of xp to
the model equation: this makes the patient level covariate xp
uncorrelated with the hospital effects, so valid estimates of
the Type A effects can be obtained. In this sense, the bias is
shifted to Type B effects by the endogeneity of hospital-level
covariates that typically occurs for the omission of relevant
covariates at this level.

Furthermore, to control for selection bias in observa-
tional data, different statistical techniques can be used for
evaluating hospital effectiveness that adjust for observed
and unknown differences in the baseline characteristics and
prognostic factors of patients across hospitals. Propensity
Score (PS), Instrumental Variable (IV), and Sample Selection
Models (SSM) are three techniques developed to minimize
this potential bias [39, 40].

PS is the individual probability that a patient will receive
a particular treatment (i.e., chooses hospital j) and is esti-
mated by logistic regression that predicts a patient’s choice
as a function of covariates, including patients’ pretreatment
characteristics (sociodemographic, comorbidities, diagnosis,
and urgency-related factors). Using PS, potential bias due to
hospital choice is minimized if the choice and the outcome
being evaluated are conditionally independent given the
measured pretreatment characteristics.

Further, in a second stage, ad hoc models (e.g., LMM
or multilevel version of count regression models when data
are aggregated) are used to estimate relative effectiveness
across hospitals in the outcome equation, adjusting for
posttreatment characteristics and propensity scores. This can
be done by adding PS as additional continuous covariate or
by estimating hospitals effectiveness in the outcome equation
within propensity scores strata, typically quintiles.

Sample Selection Models (SSMs) attempt to control the
bias introduced by unobserved variables in hospital selection,
which are also correlated with the outcome of interest. SSMs,
widely used in the econometrics literature, are a special
case of Instrumental Variable (IV) Models. The concept
behind an IV is to identify a variable, the “instrument,”
that is associated with a subset of the variables that predict
hospital choice but is independent of the patient’s baseline
characteristics. If a good IV is identified, both measured
and unmeasured confounders can be accounted for in the
analysis.

Typical instruments include severity of illness, territorial
supply of healthcare providers that may or may not offer
specific treatments the distance from each patient home to
either the nearest hospital that does specific treatments; or
the nearest hospital, that may or may not provide specific
treatments [41].

SSMs are two-stage methods. Before estimating the
outcome equation (second-stage model), the probability that
patient i has chosen hospital j is predicted as an endogenous
variable, as a function of observed patient and hospital
characteristics, including instrumental variables. Further, all
instrumental variables are excluded from the second-stage
model.

The residual from the first stage is then added as an
explanatory variable to the outcome equation. It captured
the unobservable nonrandom component and allowed us to
control for selection bias. Instead, IV techniques, contrary to
SSMs, use a single equation to estimate the relative effective-
ness without estimating the choice equation that is replaced
by the presence of instruments in the outcome equation.

5. Application

To clarify the potentiality of the presented methods, this
section focuses on hospital effectiveness concerning patient
satisfaction. In Lombardy, the monitoring of patient sat-
isfaction, mandatory for hospitals, is performed using the
Official Customer Satisfaction (OCS) questionnaire of the
Lombardy region. It contains 12 items regarding acceptance,
healthcare performance, satisfaction with physicians and
nurses, accommodation, discharge, and two items asking for
an overall judgement of satisfaction. Each item is scored on a
seven-point Likert scale ranging from 1 to 7. Scores of 5 and
over indicate increasing levels of satisfaction, whereas scores
of 3 and below indicate dissatisfaction.

Available data, provided by the regional Directorate of
Healthcare, refers to all Lombard hospitals in 2009, which
between April and November 2009, delivered the OCS
questionnaires to a random sample of discharged patients,
proportional to their annual number of discharges in 2009.

For the analysis, we select only patients with planned
admissions to general hospitals (excluding urgency admis-
sions and specialist hospitals) in order to minimize the risk of
patient selection for analysed hospitals. Globally, the sample
is composed by 46,096 patients, nested in 64 hospitals (an
average of 720 patients per hospital). Exploring the patient
covariates embedded in the OCS, patients differ by gender
(46% are female), age class (7% < 24 years, 37% in the
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Table 1: Item Analysis: missing values, percentage of patients satisfied, and item-component correlation (n = 46, 096).

Missing % Satisfied Y1 Y2 Y3

Item description values (scores 6+7) ClinSAT GenSAT WaitLists

Nurses’ courtesy, attention, availability 370 88.5% 0.70 0.04 0.09

Doctors’ courtesy, attention, availability 606 89.4% 0.83 0.19 0.08

Satisfaction of the care provided 1309 89.3% 0.81 0.06 0.07

Health status (and discharge) information 609 85.1% 0.79 0.06 0.05

Privacy and consent information 635 88.6% 0.72 0.11 −0.05

Comfort, bed, food, cleanliness 2150 83.6% 0.12 0.78 0.11

Organisation of the process of the care 627 81.6% 0.11 0.78 0.02

Recommend hospital (friends or relatives) 1346 85.2% 0.12 0.73 −0.03

Overall satisfaction 704 85.3% 0.05 0.72 0.01

Waiting time to be admitted to the hospital 1417 75.7% 0.01 −0.02 0.99

age class 25–54 and 55% > 54 years), schooling level (5%
primary school, 50% middle school, 36% high school, 9%
university degree), and nationality (94% are Italian).

Available hospital structural characteristics involve sector
(Private/public), typology (University or not), size (in three
bed-size categories), and whether the hospital has an emer-
gency unit. Hospital process measures (all measured in 2009
and obtained by Hospital Discharge Cards) involve number
of specialties in the hospital (N Specialties), percentage
of beds utilized (% Beds), number of operating rooms
utilized (N OpRoom), total number of hours operating
room utilized (Hours OpRoom), average monthly hours per
operating room (Ave MH OpRoom), and the case-mix of
charged patients during 2009.

The case-mix is measured as the percentage of (surgical
and medical) discharges having DRG weight above (High
case mix) or below (Low case mix) the regional median DRG
weight. In the analyzed sample, 52% are public hospitals,
85% have emergency unit, 8% are University hospitals, and
36% have more than 250 beds (5% < 50 beds).

Analyzing items scores (Table 1) with Confirmative Fac-
tor Analysis, we found three orthogonal (Varimax rotation)
composites: the first deals with clinical aspects satisfaction
(Y1: ClinSAT), the second with general and accommodation
aspects of satisfaction (Y2: GenSAT), and the third coincides
with the single item dealing with satisfaction on waiting time
to be admitted in hospitals (Y3: WaitLists). For the first two,
coefficients alphas (αY1 = 0.92; αY2 = 0.90) and composite
reliability (rY1 = 0.89; rY2 = 0.84) indicate acceptable inter-
nal consistency and reliability for the estimated composites.

Despite many patients being very satisfied in many
domains (column 3 of Table 1), a multilevel analysis is
performed to assess whether there are meaningful differences
between hospitals in evaluations of patient satisfaction
and whether these differences remain, after controlling for
patient and hospital characteristics (hospital effectiveness).
Specifically, we specify a Linear Multilevel Model for the
composites Y1 and Y2, whereas a Logistic Multilevel Model
is used for predicting the probability of being dissatisfied
with waiting time, using as dependent outcome Y3d (Wait-
DISSAT), a dichotomous variable that is equal to 1 when
the score on the Waiting time item ≤3 and is equal to 0
otherwise.

Table 2: ICC and significant hospital characteristics.

Y1 Y2 Y3d

ClinSAT GenSAT WaitDISSAT

ICC 13.0%§ 14.8%§ 12.2%

Residual ICC 2.7%§ 9.5%§ 1.2%#

Hospital Characteristics Model coefficients and significance

Private Hosp n.s 2.068∗∗ 0.0420∗∗∗

University Hosp 1.729∗∗ n.s n.s.

% Beds −0.020∗ −0.056∗∗ n.s.

N Specialties −0.079∗∗∗ −0.281∗∗∗ −0.0040∗∗∗

N OpRoom 0.072∗∗∗ −0.102∗ n.s.

% High medical casemix 3.515∗ n.s n.s.

Hours OpRoom n.s 0.001∗∗∗ n.s.

Ave MH OpRoom n.s −0.058∗∗∗ −0.0004∗
§

corrected for measurement error, #rescaled with scale correction factor.
∗∗∗ P-value < 0.01, ∗∗P-value < 0.05, ∗P-value < 0.10, n.s. = not
significant.

The upper part of Table 2 exhibits, for Y1 and Y2,
the corrected (disattenuated) ICCs in the intercept-only
model and the residual ICCs (the remaining proportion of
variability due to hospitals differences, once that covariates
are inserted in the models). For Y3d, the Residual ICC
is rescaled with the scale correction factor, in order to be
comparable to the ICC of the intercept-only model.

The three patient outcomes appear to be highly influ-
enced by the inclusion in the different hospitals; for con-
tinuous outcomes, the disattenuated ICCs (higher than the
attenuated versions that equal 8.2% and 10.4% for Y1
and Y2, resp.) demonstrated that a high proportion of the
differences in the outcomes is attributable to differences
between hospitals. This especially occurs for Y2, meaning
that almost 15% of the variance in overall satisfaction
(14.8%) is across hospitals.

To explain these differences, available covariates are
used. The lower part of Table 2 exhibits covariates that are
significant at least for one outcome. Firstly, individual patient
characteristics and other hospital characteristics (such as the
chirurgical case-mix, hospital dimension, and presence of
emergency unit) are found to be not significant (at the 0.05
significance level).
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This highlights that the three patient satisfaction dimen-
sions are not affected by patient characteristics and do not
significantly vary among available hospital characteristics.

In contrast, for Clinical Satisfaction (Y1), most of the
variation is associated to the difference in the number of
specialties (inversely linked with Y1) and of the number
of operating rooms (positively linked with Y1) between
hospitals, with higher levels of Y1 for university hospitals,
demonstrating that clinical satisfaction is higher in special-
ized university hospitals.

The overall satisfaction (Y2) is higher for private hos-
pitals with high volumes of operating room hours utilized
and decreases for hospitals with several specialties and high
utilization rates of operating rooms. Observing Y3d, it is
of note that the significant covariates for predicting overall
satisfaction (Y2) act in exactly the same manner in predicting
the dissatisfaction for waiting time, (higher for private
hospitals with several specialties) and the high utilization
rates for operating rooms.

After checking for hospital characteristics, the residual
ICCs become very small, except for Y2 that decreases to 9.5%
from 14.8%. Globally, the significant hospital covariates
explain 81%, 34%, and 90% of the outcome variability
among hospitals for Y1, Y2, and Y3d, respectively.

The remaining hospital differences (residuals) are pur-
ported to define effects of management practices (Type B
effectiveness) to increase patient satisfaction in the three
domains.

Before investigating the obtained rankings, we explore
possible covariate endogeneity by means of three generalized
linear models which specify, for each outcome, the hospital
residuals (u0 j) as dependent variable. In these models, the
effects of hospital covariates are found to be not significant
(at the 0.01 significance level).

The global F-tests, referring to the hypothesis that all
covariates’ coefficients are equal to zero, versus the alternative
that at least one does not, are largely not significant (FY1 =
0.41, P-value = 0.954; FY2 = 0.49, P-value = 0.913; FY3d =
0.51, P-value = 0.987), meaning that no serious endogene-
ity is found, so valid effectiveness parameters are obtained.

As a last step of the analysis, we check the concordance
of three hospitals rankings based on the estimated u0 j (Type
B effectiveness). Spearman correlations (r) exhibit weak
agreement between estimated rankings for all outcomes,
showing three independent dimensions. Specifically, the
ranking based on overall satisfaction is significantly and
positively correlated with the ranking based on clinical
satisfaction (r = 0.375, P-value = 0.002) and with those
based on satisfaction with waiting time (r = 0.304, P-value =
0.014), although of modest strength. Instead, the correlation
between the rankings of clinical and waiting time satisfaction
is positive, but at the limit of statistical significance (r =
0.252, P-value = 0.045).

6. Conclusion

Using clinical outcomes for quality assessment represents
an important approach to documenting the quality of
care. Consumers of indicator information (stakeholders,

clinicians, and patients) need reliable and valid information
for benchmarking, making judgments, and determining
priorities, accountability, and quality improvement.

Where health services have effects on outcome, use of
outcome measures as performance indicators is appropriate
and efforts should be taken to ensure that the benchmarking
strategies can be interpreted reliably. However, the conclu-
sion that differences in outcome are due to differences in
quality of care will always be tentative and open to the
possibility that the apparent association between a given
unit and poor outcome is due to the confounding effect of
some other factor that has not been measured, measured
inadequately, or misspecified.

As the empirical application has shown, estimated hospi-
tal rankings must be interpreted in scrupulous detail. Despite
such limitations, clinical administrative data is broadly
considered as a useful screening tool for identifying quality-
related problems and in targeting areas, which potentially
require in-depth investigation. The simultaneous monitor-
ing of several outcomes, which indicate malpractice appears
to offer a useful strategy in facilitating hospitals and stake-
holders in detecting trends and identifying extreme outliers.

Once a benchmark for each performance measure is
determined, analyzing data results becomes more meaning-
ful.

However, moving from the evaluation step towards the
phase of statistical implications mainly depends on the way
in which monitored (e.g., adverse) events are distributed
among hospitals. If a large proportion of adverse events are
concentrated among relatively few hospitals, the traditional
quality control approach targeting error prone, ineffective
health structures for specific attention has high potential
value. When variation is discovered through continuous
monitoring, or when unexpected events suggest performance
problems, members of the organization may decide that
there is an opportunity for improvement.

The opportunity may involve a process or an outcome
that could be changed to better meet customer feedback,
needs, or expectations.

In contrast, when ineffective hospitals are more diffusely
distributed, targeting specific hospitals may be a less efficient
strategy than investigating the clinical processes in the frame-
work of continuous quality improvement with an emphasis
on careful examination, rigorous, scientific testing methods,
statistical analysis, and the transparent adjustment of clinical
processes.

To this end, exhaustive and exclusive measure specifica-
tions should be described, including specific definitions of
the clinical indicators and standards and identification of the
target population and data sources.

Steps can be taken to minimize the possibility of a false
conclusion being drawn on the quality of care based on
outcome measurement.

Standardising how data is collected can reduce the extent
to which differences in measurement can potentially cause
observed variation. Including sufficient numbers of patients
will reduce the possibility of random variation mask-
ing real differences or making spurious differences appear.
Development of sophisticated case-mix adjustment systems
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can reduce the possibility that observed differences are due
to differences in the types of patient, developing of an
analytical plan with descriptions of the statistical and clinical
significance of results to be assessed when comparing groups
or comparing a group to a standard.

As part of the development process, indicator measure-
ment can be made more efficient when incorporated into
routine patient care as part of clinicians’ and administra-
tors’ documentation of required information on patient
characteristics and care delivery, already being recorded for
clinical purposes (medical record data). This would eliminate
duplicative clinical data collection for the purposes of clinical
care and quality assessment.

In conclusion, another important topic that affects the
evaluation quality of the care in a benchmarking perspective
is the institutional condition of the healthcare system and its
modifications over time.

For example, the English National Health Service (NHS)
has developed from 2002 onwards a new era of hospital
market (New Labour). Under this model, competition arises
from patient choice, selective contracting of purchasers
(primary care trusts) with providers and from competition
between different providers (NHS trusts, private providers,
independent sector treatment centres, and NHS foundation
trusts).

In Italy, since 2001, the healthcare system has moved
in the direction of a welfare-mix system, characterized by
freedom of choice for the consumer and by the joint-
presence of state agents (operating with functional financial
autonomy), private profit or nonprofit accredited companies
endowed with autonomous decision-making and managerial
procedures and by freedom of choice for the consumer.

Hence, the specific question is to evaluate the relation
between hospital competition and hospital quality. To this
end, some recent econometric studies focusing on NHS
find causal effects of hospital competition on care quality.
Specifically, they show that competition improves clinical
quality (as measured by reduction in hospital mortality rates
after myocardial infarction) and also reducing waiting times
[42, 43].

In this perspective, other open questions remain crucial:
does available evidence-based result support institutional
proposals to extend competition? How does competition
compares with other policies to increase hospital quality?
More applied research is required for these topics.

Overall, the present paper suggests a launching board for
discussions with experts in the field of administrative data,
risk adjustment, and performance measurement reporting.
Clinicians and researchers should actively participate in
designing future administrative databases to ensure that they
are clinically meaningful and useful for quality measurement,
offering regional stakeholders the opportunity to gain a
deeper understanding of the problematic areas in clinical risk
assessment.
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