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Preferences are fundamental building blocks in all models of
economic and political behavior. We study a new sample of
comprehensively genotyped subjects with data on economic and
political preferences and educational attainment. We use dense
single nucleotide polymorphism (SNP) data to estimate the pro-
portion of variation in these traits explained by common SNPs and
to conduct genome-wide association study (GWAS) and prediction
analyses. The pattern of results is consistent with findings for
other complex traits. First, the estimated fraction of phenotypic
variation that could, in principle, be explained by dense SNP arrays
is around one-half of the narrow heritability estimated using twin
and family samples. The molecular-genetic–based heritability esti-
mates, therefore, partially corroborate evidence of significant
heritability from behavior genetic studies. Second, our analyses
suggest that these traits have a polygenic architecture, with the
heritable variation explained by many genes with small effects.
Our results suggest that most published genetic association stud-
ies with economic and political traits are dramatically underpow-
ered, which implies a high false discovery rate. These results
convey a cautionary message for whether, how, and how soon
molecular genetic data can contribute to, and potentially trans-
form, research in social science. We propose some constructive
responses to the inferential challenges posed by the small explan-
atory power of individual SNPs.
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There has been growing enthusiasm for the use of molecular
genetic data in social science research. This enthusiasm is

based on a number of potential contributions that such research
could make to social science (1–3). For example, if specific ge-
netic markers can be identified that are associated with a be-
havioral trait, then such predictive markers may shed light on the
biological pathways underlying that trait (3, 4). If a set of genetic
markers is sufficiently predictive, then these markers could be
used in social science research as control variables, as in-
strumental variables (5, 6; for critical perspectives, see refs. 7, 8)
or, under certain conditions, as factors for identifying at-risk
individuals (1–3).
The extent to which this potential of molecular genetic data will

be fulfilled for a given trait hinges on the trait’s “molecular ge-
netic architecture,” i.e., the joint distribution of effect sizes and
allele frequencies of the causal genetic variants (9). The archi-
tecture—which is the result of evolutionary forces, including
mutation, drift, and selection—determines the difficulty with
which the genetic variants associated with a trait can be identified
and what sample sizes will be required for gene discovery. It also
determines the out-of-sample aggregate predictability that can be
derived from a set of genetic markers considered jointly.

Existing studies claiming to have established genetic associa-
tions with economic and political traits typically use samples of
several hundred individuals, and no such study has used a sample
larger than 3,000 individuals (for a recent review, see ref. 10). An
implicit assumption underlying these studies is that there exist
genetic variants whose effects are large enough that they can be
reliably detected in samples of this size.
In this paper, we study the genetic architecture of economic

and political preferences. For these traits, we ask whether the
assumption of large effects of individual genetic variants is jus-
tified. We also explore the implications of the genetic architec-
ture for efforts to realize the potential contributions of molecular
genetic data in economic and political research.
We focus on preferences because they are fundamental

building blocks in the models that economists and political sci-
entists use to predict behavior. For example, measures of risk
preferences predict diverse risky behaviors, such as smoking,
drinking, and holding stocks rather than bonds (11, 12). Exper-
imentally elicited patience predicts body mass index, smoking
behavior, and exercise (13). Political preferences similarly pre-
dict a wide range of political behaviors, including voting (14) and
monetary campaign contributions (15), as well as campaign ac-
tivities like volunteering, attending rallies, and displaying yard
signs (16). Behavior genetic studies, beginning with pioneering
work on social and political attitudes (17, 18), have found that
some of the variation in political and economic preferences can
be statistically accounted for by genetic factors (19–24).
We use a new sample of comprehensively genotyped subjects

from the Swedish Twin Registry. These subjects were recently
administered, as part of a survey called Screening Across the
Lifespan Twin survey, Younger cohort (SALTY), a rich set of
questions measuring economic and political preferences. We study
four fundamental economic preferences—risk aversion, patience,
trust, and fair-mindedness—and five dimensions of political pref-
erences, derived from a factor analysis of a comprehensive battery
of attitudinal items. The five attitudinal dimensions are immigra-
tion/crime, economic policy, environmentalism, feminism/equality,
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and foreign policy. We also study educational attainment because,
even though it is probably more distal from basic biological pro-
cesses, it is available for a larger sample of genotyped individuals.
For comparability with previous work and with our other estimates,
we report twin-based estimates of heritability from this new sam-
ple, and we confirm moderate (30–40%) twin-based heritability
estimates for these traits. However, our main focus is on using the
dense single nucleotide polymorphism (SNP) data to learn about
the genetic architecture of these traits.
As a first step, we use a newmethod (25–27) that uses the dense

SNP data to estimate the proportion of variance in these traits
that can be jointly explained by the genotyped SNPs. The
technique—which we will call genomic-relatedness-matrix re-
stricted maximum likelihood (GREML)—has been applied to
height (25), intelligence (28, 29), personality traits (30), several
common diseases (31), and schizophrenia (32), but never before
to economic and political phenotypes. GREML provides a lower-
bound estimate of narrow heritability that does not rest on the
same set of assumptions relied on in twin studies. A key as-
sumption behind GREML is that among individuals who are not
in the same extended families, environmental factors are un-
correlated with differences in the degree of genetic similarity, or
“relatedness.” In this analysis, genetic relatedness is directly es-
timated from the SNP data, unlike in behavior genetic studies,
where expected relatedness (inferred from the family pedigree) is
used. (Another, distinct approach is to estimate the genetic var-
iance from within-family variation in genetic relatedness; see ref.
33.) A common concern raised about behavior genetic studies of
political and economic traits is that expected relatedness could be
correlated with similarity in environmental factors that are not
endogenous to genotype (as defined by Jencks; ref. 4). Because
there is more random variation in the realized degree of genome
sharing relative to the expected degree as the expected re-
latedness declines (34), environmental confounding is less likely
to drive estimates that are based on realized relatedness among
individuals whose expected relatedness is negligible.
Under the key assumption of no environmental confounding,

an estimator for heritability can be obtained by examining how the
correlation in phenotype between pairs of individuals relates to
the realized genetic distance between those individuals. It would
be an unbiased estimator of narrow heritability if genetic distance
were calculated using all of the genetic variants that are causal for
the phenotype. In practice, because the causal variants are not
known, the SNPs typed on the genotyping chip are used to esti-
mate genetic distance. Because these SNPs are only imperfectly
correlated with the causal variants, relatedness with respect to the
causal variants is measured with error. Consequently, the esti-
mated relationship between phenotype and genetic relatedness is
attenuated, and hence the estimator is a lower bound for narrow-
sense heritability (25). Our GREML-based heritability estimates,
although noisy, are on average about half the size of the twin-based
heritability estimates. This gap may imply that genotyped SNPs tag
about half of the genetic variation in these traits or that twin-based
estimates of narrow heritability are biased upward (35, 36).
We next explore the molecular genetic architecture of the

phenotypes. Specifically, we estimate heritability using relatedness
measured separately by chromosome to test how evenly distrib-
uted the genetic effects are across the genome. We supplement
these results by reporting findings from a standard genome-wide
association study (GWAS) for each trait, in which individual SNPs
are tested for association with the outcome of interest. Finally, we
also perform a risk prediction exercise in which we randomly split
the dataset into a discovery and a validation sample. We use
a pruned set of SNPs from the discovery sample to build a pre-
dictor and then examine to what extent the predictor is correlated
with the outcome in the validation sample. Similar approaches
have been applied in the study of schizophrenia (37), height (38),
and intelligence (28), but none of these methods have been

applied to economic or political preferences. We find essentially
no predictive power for the traits we study.
Our results paint a picture of economic and political prefer-

ences as highly polygenic traits for which individual SNPs explain
only a small fraction of variance. The inferential challenges im-
plied by this genetic architecture suggest—as we later discuss—
that new approaches are needed to study genetic influences on
preferences and behavior.

Results
As a preliminary, we computed the sibling correlations for all 10
variables (SI Appendix, Table S4). (Details on variable construc-
tion and materials and methods are available in SI Appendix.)
The sibling correlations for the SALTY questions on patience
(39), risk aversion*, and political preferences† have previously
been analyzed and are reported to facilitate comparison with the
GREML estimates. The implied heritabilities of the economic
preferences are typically about 30% and the estimates for po-
litical preferences are typically around 40%.
We next estimated, for each trait, the proportion of phenotypic

variation accounted for by measured SNPs, using the GREML
estimator (25–27). These lower-bound heritability estimates for
the nine traits are reported in Table 1. These analyses are all based
on mixed-sex samples, controlling for sex, birth year, and the first
10 principal components of the genotypic data. (The fact that we
observe some GREML point estimates of zero is not surprising.
Because the estimator is constrained to produce a nonnegative
estimate, the bound at zero will often be attained when the true
population parameter is low and estimated imprecisely.)
For economic preferences, only one of the four variables,

trust, is significant, with the point estimate suggesting that the
common SNPs explain over 20% of phenotypic variation (P =
0.047). The remaining effects are lower, in one case zero, and not
statistically distinguishable from zero. For political preferences,
two of the five GREML estimates for the derived attitudinal
dimensions are statistically significant, and one is marginally
significant: 0.203 (P = 0.079) for immigration/crime, 0.344 (P =
0.012) for economic policy, and 0.354 (P = 0.009) for foreign
policy. Keeping in mind that the GREML estimates are noisy
and are lower bounds, taken as a whole they are consistent with
low-to-moderate heritabilities for these traits. The cumulative
effect of the SNPs is much more precisely estimated for educa-
tional attainment because this phenotype is available for all of
the genotyped individuals in the sample. For this phenotype, our
estimate is 0.158 (P = 0.004).
To help interpret our findings, we also report retest reliabil-

ities for the preference measures using data from 491 respond-
ents who answered the survey twice. We find that the political
preferences were on average measured more reliably than the
economic preferences. This finding is consistent with previously
reported retest reliabilities for the risk questions* and the po-
litical preferences† on the SALTY survey. The reliabilities are
given in the bottom two rows of Table 1. The GREML estimates
are noisier (and the P values tend to be higher) for phenotypes
with lower retest reliabilities.
We also conducted the GREML analyses separately by chro-

mosome (as in refs. 40 and 28). Between conventionally unrelated
individuals, realized relatedness is random and independent
across chromosomes, and the expected relatedness measured
from any chromosome is zero. If the genetic variation that pre-
dicts a trait were uniformly distributed across the genome, rather

*Beauchamp JP, Cesarini D, Johannesson M (2012) The Psychometric Properties of Meas-
ures of Economic Risk Preferences. Working Paper, Harvard University, New York Uni-
versity, and Stockholm School of Economics.

†Oskarsson, et al. (2010) Do Genes Mediate the Relationship between Personality and
Ideology? Uppsala University Working Paper.
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than being concentrated in a particular location, then greater
realized relatedness from any given chromosome will predict
greater phenotypic similarity, and this association will be stronger
from longer chromosomes because longer chromosomes make up
a larger fraction of the genome than shorter ones. Table 1 shows
the estimated correlation between chromosomal length, mea-
sured in centimorgans, and the fraction of variance explained by
the estimates of realized relatedness estimated using only data
from one chromosome. The correlation is positive for 7 of 10
phenotypes, significantly so (P < 0.05) in four cases. Positive
correlations have previously been reported for height (40), cog-
nitive ability (28), and schizophrenia (32) and have been inter-
preted as evidence that the trait is highly polygenic with causal
variants distributed across the genome.
Next, we tried to identify individual SNPs that predict economic

and political preferences. For none of the 10 traits did we identify
any SNPs that pass the conventional genome-wide significance
threshold of P < 5 × 10−8 (41). In fact, no single SNP attains a P
value lower than 10−7 for any of the 10 traits. The standard di-
agnostic for population stratification (i.e., ethnic confounding) in
GWAS is inflated test statistics in the Q-Q plot (e.g., ref. 42); there
is no evidence of inflated test statistics across the traits, with es-
timated λs (43) in the range of 0.987 (environmentalism) to 1.014
(educational attainment). While this diagnostic check suggests
that our controls for population structure worked well, it is
somewhat surprising that there is no systematic tendency for the λs
to be larger than 1, given that some inflation is expected under
a polygenic model even without any stratification (44). However,
more inflation is expected in a larger sample, and λs have not been
much larger in other analyses with comparable sample sizes to
ours (28). In SI Appendix, we provide details on the full set of
SNPs with P values <10−5 for the nine preference measures, but
we are skeptical that any of these associations will be replicable.
Finally, we examined the aggregate, out-of-sample predictive

power of the SNPs. Following ref. 37, we first estimate the re-
gression coefficient for each SNP in a discovery sample, composed
of a randomly drawn 90% of the sample. From this set of coef-
ficients, we form a prediction equation on the basis of a pruned set
of 111,957 markers that includes only SNPs that are approximately
in linkage equilibrium (to avoid double counting SNPs that are
correlated with other SNPs). In a validation sample composed of
the remaining 10%, we evaluate the correlation between individ-
uals’ predicted phenotype and observed phenotype. Although the
correlation between the predicted and observed phenotype is
positive, as expected, in 7 cases out of 10, we do not find quanti-
tatively appreciable out-of-sample predictability for any of the
traits: For most phenotypes, the explanatory power of the predictor
is well below R2 = 0.1%. These results are reported in SI Appendix.

Discussion
The data reported here reveal a number of descriptive facts about
the heritability and genetic architecture of political and economic
preferences. First, we estimate sibling correlations for several traits,
some of which have never before been studied in large samples, and
we confirm that there is a robust separation of the monozygotic
(identical twin) and dizygotic (fraternal twin) correlations. We
obtain heritability estimates that are consistent with typical esti-
mates previously reported for both political attitudes (19) and
economic preferences (20, 23, 24), as well as educational attain-
ment (45, 46). Overall, these results are consistent with the hy-
pothesis that, for each of the 10 phenotypes, there exists a
moderate correlation with genetic factors. None of the sibling
correlations are adjusted for measurement error. A plausible
conjecture is that the lower heritabilities of the economic prefer-
ences relative to the political preferences result from attenuation
bias due to greater measurement error in economic preferences, as
evidenced by the lower test–retest reliabilities of the economic
preference measures.Ta
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Second, our molecular-genetic–based estimates of heritability
partially corroborate the twin-based estimates and suggest that
molecular genetic data could be predictive of preferences if the
causal variants were known. When we estimate the cumulative
effect of genotyped SNPs using GREML (25–27), we find that
the estimated heritabilities are lower than the twin-based esti-
mates, but the overall pattern of results suggests that point
estimates are generally nonzero and, for the better measured
variables, statistically distinguishable from zero. Because there is
a lively debate regarding whether twin studies of political be-
havior have established that there is heritable variation in these
traits (35), we note that our evidence for heritability is based on
different assumptions than twin studies.
Previous papers on height (25), intelligence (28, 29), person-

ality traits (30), and several diseases (31, 32) have found that the
SNP-based heritability estimates are between one-quarter and
one-half the size of twin-study estimates. One interpretation of
the gap is that genotyped SNPs tag less than half the additive
genetic variation in those traits (which would occur if causal
variants are imperfectly correlated with SNPs on the SNP arrays,
e.g., because their allele frequencies are lower than those of the
SNPs). The gap may also reflect an upward bias in twin-based
estimates of narrow heritability due to environmental con-
founding (35) or nonadditive variation (36).
Do economic and political preferences parallel other phenotypes

in having SNP-based heritabilities that are half or less the magni-
tude of the twin-study estimates? If so, it would suggest that eco-
nomic and political preferences have a similar genetic architecture,
a similar degree of bias in twin-based estimates, or both. Because
the economic and political preference measures have twin-based
heritabilities around 0.30 (20) and 0.40 (19), respectively, the hy-
potheses of one-half magnitude would be GREML point estimates
of around 0.15 and 0.20. Our evidence, considered in its entirety, is
not inconsistent with these hypotheses, but the point estimates are
quite noisy. An alternative approach is to examine the number of
statistically significant associations. For economic preferences, if
the SNP-based heritability parameter in the population is 0.15, and
if sample estimates have a SE of 0.15 (as suggested byTable 1), then
our power to statistically reject the null hypothesis of zero herita-
bility in a one-sided test at the 5% level is about 26%. For political
attitudes, if we assume a SNP-based heritability parameter in the
population of 0.20, and we assume a SE of 0.15 (again as suggested
by Table 1), then the corresponding statistical power is about 38%.
If the traits are independently distributed, this calculation implies
that for the nine preference variables, we should expect to observe
2.9 significant associations at the 5% level. In fact, we observe three
significant associations at the 5% level and one more at the 8%
level. The results, therefore, are close to what one would expect
under the hypothesis that the SNP-based heritability estimates are
about half the magnitude of the twin-based estimates.
Third, our analysis of individual SNPs does not reveal any

associations that are significant at the conventional threshold of
genome-wide significance required in genetic association studies.
This is unsurprising in light of the accumulating evidence that the
effects of common variants on complex outcomes are small (47),
especially in the context of social science traits (1, 2). SI Ap-
pendix, Fig. S1 displays power calculations, given the SALTY
sample size, for detecting true associations across a range of
effect sizes as measured by the R2. For the preference measures,
the study was well powered to detect individual markers that
explain at least 1.25% of trait variation at a nominal significance
level of 10−7. No single SNP in our sample attains this level of
significance—the lowest P value we observe is 1.1 × 10−7.
Moreover, 1.25% is an upper bound to the effect sizes we can
rule out because: first, because 1.1 × 10−7 is the smallest of many
millions of P values we estimated, it almost surely capitalizes
on chance to some extent and overstates the strongest genetic
association in our data [the well-known “winner’s curse” in

statistical inference (48)]; and second, for many of the variables,
the lowest observed P value was considerably higher than 10−7.
To illustrate our statistical power another way, if across the nine
preference measures there are a total of 10 independently dis-
tributed SNPs each with R2 of 0.75% or larger, our study had
statistical power greater than 90% to detect at least one of
them—and yet we found none. We conclude that it is unlikely
that many common polymorphisms with such effect sizes exist. SI
Appendix, Fig. S1 shows that the study was even better powered
for educational attainment. Hence our failure to detect associ-
ations at these levels of significance indicates that true associa-
tions between common SNPs and economic and political
phenotypes are likely to have very small effect sizes. [Whereas
the survey measures we use here are common in economics (e.g.,
ref. 11), it is also common in economics to measure preferences
using laboratory tasks that attach financial incentives to perfor-
mance (49). As we explain in SI Appendix, our conclusion that
the effect of individual SNPs on preferences are very small would
hold even if measures of preferences were much more reliable
than those we use here.] Of course, our evidence does not rule
out the possibility that there exist rare variants with large effects
on these phenotypes because sufficiently rare variants will have
low correlations with the genotyped SNPs. Because such variants
would be rare, however, a large sample would be required to
detect them, as well.
Fourth, the results from our prediction exercise show that a

standard polygenic risk score estimated in our sample has negli-
gible out-of-sample predictability. This finding does not in any way
contradict the results from the GREML analysis. GREML uses
the measured SNPs to estimate realized relatedness between
individuals, and given the large number of SNPs in a dense SNP
array, realized relatedness can be estimated relatively precisely. In
contrast, estimating a prediction equation that can predict well out
of sample requires precise estimates of the effects of individual
SNPs. In the limit of an infinite sample, it would be possible to
perfectly estimate the effects of individual SNPs and thereby
construct a polygenic risk score whose predictive power reaches
the theoretical upper bound that is estimated by GREML. The
smaller the discovery sample used to estimate the prediction
equation, the noisier are the estimates of the individual SNP
effects, and hence the lower will be the out-of-sample predictive
power of the polygenic risk score that is constructed on the basis of
these estimates. Evidently a discovery sample of 2,900 individuals
(about 90% of 3,200) is far too small to obtain predictive power
for standard measures of economic or political preferences.
These findings fit well with an emerging consensus in medical

genetics that genetic variants that individually explain a sub-
stantial share of the variation in complex traits are unlikely to
exist. If anything, the problem is likely to pose an even greater
challenge in the social sciences because the phenotypes are
usually several degrees removed from genes in the chain of bi-
ological causation (1–3). Our results suggest that much of the
“missing heritability” (50)—the gulf between the cumulative
explanatory power of common variants identified to date and the
heritability estimated in behavior genetic studies—for social
science traits reflects the fact that these traits have a complicated
genetic architecture, with most causal variants explaining only
a small fraction of the phenotypic variation. If so, then large
samples will be needed to detect those variants.
Turkheimer (51) famously proposed three “laws of behavior

genetics”: first, all human behavioral traits are heritable; second,
the proportion of variance attributable to common environment is
smaller than the proportion attributable to genes; and third, a
large portion of individual differences is explained by factors other
than common environment and genes. We believe that there is
accumulating evidence in favor of a fourth “law” regarding the
molecular genetic architecture of behavioral traits: Genetic var-
iants that are common in a population have very small individual
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effects on behavioral traits. If true, this law would help explain the
repeated failure to replicate initially promising candidate gene
findings with large effect sizes (29, 52, 53), as well as the failure to
date of genome-wide association studies to discover genetic var-
iants associated with behavioral traits even in samples numbering
tens of thousands of individuals (54). There is direct evidence for
such an architecture for intelligence (28, 29), personality (30), and
now economic and political preferences. Like Turkheimer’s three
laws, this fourth law is a summary of patterns of empirical results,
not a theoretical necessity, so it could fail to hold in some specific
cases, but we conjecture that it will generalize to most other
behavioral phenotypes.
Our conclusions have a number of implications for research at

the intersection of genetics and social science. There has recently
been an explosion of reported associations in samples that are very
small by the standards of medical genetics. Such studies are only
adequately powered if the genetic marker’s population R2 for the
trait is considerably larger than the upper bounds established by
the GWAS findings reported here. Our findings, based on a sam-
ple an order of magnitude larger than most existing studies, sug-
gest that adequate power actually requires a sample size that is yet
another order of magnitude larger even than ours (1, 2, 55).
Published genetic associations with economic and political

traits, even if statistically significant, should be approached with
caution for two reasons. First, because most published studies
are dramatically underpowered, the probability that an associa-
tion study will detect a true signal is vanishingly small; hence,
when a significant association is observed, Bayesian calculations
indicate that the posterior odds that it is a true association are
low (1, 2, 52). For example, Benjamin et al. (1) show that under
reasonable assumptions about genetic effect sizes on economic
traits, an observed association that is statistically significant at
the 5% level in a sample of a few hundred individuals constitutes
virtually no evidence in favor of a true effect—yet such reported
associations are typical of most published genetic studies of
social science traits. Second, publication bias—the tendency for
findings, as opposed to nonfindings, to be selectively reported by
researchers and selectively published by journals—are magnified
in genetic association work because the typical dataset has many
behavioral measures and many genetic markers (56). Testing for
gene–environment interactions further compounds the problem
of multiple hypothesis testing (57).
Our conclusions regarding the molecular genetic architecture

of economic and political preferences also have implications for
whether, how, and how soon molecular genetic information can
contribute to, and potentially transform, research in social sci-
ence. One possibility is that genetic associations may shed light on
biological pathways through which precursors, such as prefer-
ences, lead to important behaviors and outcomes. More specu-
latively, such insights may also help inspire the development of
new theoretical constructs that are more closely aligned with the
underlying biology than the existing concepts such as “risk aver-
sion” or “patience” that we study here (1, 3). Contributions such
as these require the identification of specific genetic variants that
correlate robustly with behavior. As discussed above, the results
reported here suggest the need to analyze samples which are
several orders of magnitude larger than those presently used in
this sort of research if such markers are to be successfully iden-
tified. Unfortunately, even if these markers are eventually iden-
tified, our quantitative results suggest that many of them will only
explain a tiny share of variance. Moreover, it is possible that such
markers will be too far removed from the behavioral trait in the
chain of causation to elucidate the biological pathway.
Another potential contribution to social science, already being

actively pursued (e.g., 5, 6), is the use of genetic markers as in-
strumental variables in (nongenetic) empirical work. In order for
the gene-as-instrument to be valid, not only must the marker be
robustly associated with the “endogenous regressor,” but all of the

behaviors associated with that marker must be understood. Oth-
erwise, if the marker has pleiotropic effects, then the exclusion re-
striction assumption could be violated, invalidating the instrumental
variable application. As more is understood about genetic path-
ways, researchers will be in a better position to assess the plausibility
of the exclusion restriction assumption on a case-by-case basis.
A different potential use of molecular genetic data in social

science would be as control variables for genetic heterogeneity in
(nongenetic) empirical work, to reduce the variance of the error
term and shrink the SEs of coefficient estimates. For such an
application to have practical utility, the markers that are selected
as controls need to explain a nonnegligible share of the variation.
Similarly, use of genetic data to target interventions requires that
the aggregate predictive power of a set of genetic variants for the
trait be sufficiently large. As we have shown here, given presently
attainable sample sizes, the use of genetic data to predict eco-
nomic and political traits does not appear to be feasible. It is
likely that extremely large—perhaps impractically large—sam-
ples will be required. (Were it the case that economic behaviors,
or their precursors in the form of various preferences, traits, and
skills, could be predicted from molecular genetic information, it
would raise a host of ethical questions about whether and how
such information should be used. The potential benefits we have
emphasized here must be carefully weighed against the costs, for
example, discrimination based on genotype or the breakdown of
insurance markets due to adverse selection.)
In summary, our molecular-genetic–based estimates of herita-

bility partially corroborate the twin-based estimates and suggest
that molecular genetic data could, in principle, be predictive of
preferences. Our other results, however, suggest that excitement
about the practical usefulness of molecular genetic data in social
science research needs to be tempered by an appreciation that
much of the heritable variation is likely explained by a large
number of markers, each with a small effect in terms of variance
explained. As a consequence, for economic and political prefer-
ences, much larger samples than currently used will be required to
robustly identify individual SNP associations or to generate
sizeable predictive power from many SNPs considered jointly.
Rather than being destructive to the enterprise of incorporating

genetic data into social science, our conclusions regarding the
molecular genetic architecture of economic and political prefer-
ences can help guide research in more productive directions. First,
researchers could obtain very large samples that contain both ge-
netic and social science data. Second, to minimize attenuation bias
due to error in measurement and thereby maximize power for any
given sample size, researchers could formulate more reliable
measures of economic and political phenotypes. Third, researchers
could focus on behavioral phenotypes that are more biologically
proximate. One example is smoking, a behavior for which large,
replicated associations have been found with SNPs in the nicotinic
acetylcholine receptor gene CHRNA3 (58). For such biologically
proximate phenotypes, it is more likely that there exist genetic
markers whose associations will have nontrivial effect sizes and
clearer causal interpretations.

Materials and Methods
Beginning inDecember 2010, a total of 9,836 Swedish twinswhopassed initial
laboratory-based quality controls were genotyped using the Illumina
HumanOmniExpress BeadChip genotyping platform. We applied standard
quality controls to thegeneticdata. Inall ourGWASanalyses,wecontrolled for
sex,birthyear, andthefirst10principal componentsof thegenotypicdata,and
we adjusted the SEs for nonindependence within family. We computed the
GREML estimates using the publicly available GCTA software (26). Before
computing the matrix of genetic relatedness for the SALTY sample, we
dropped one twin per pair, always the twin with a larger number of missing
phenotypes. We used a relatedness threshold of 0.025. For our prediction
exercise, we randomly split the sample into a 90% training sample to con-
struct the genetic score and a 10% validation sample to examine its predictive
accuracy. See SI Appendix for all details on the sample and methods.
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