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Recent computational studies indicate that themolecular noise of a
cellular process may be a rich source of information about process
dynamics and parameters. However, accessing this source requires
stochastic models that are usually difficult to analyze. Therefore,
parameter estimation for stochastic systems using distribution
measurements, as provided for instance by flow cytometry, cur-
rently remains limited to very small and simple systems. Here we
propose a new method that makes use of low-order moments of
the measured distribution and thereby keeps the essential parts
of the provided information, while still staying applicable to sys-
tems of realistic size. We demonstrate how cell-to-cell variability
can be incorporated into the analysis obviating the need for the
ubiquitous assumption that the measurements stem from a homo-
geneous cell population. We demonstrate the method for a simple
example of gene expression using synthetic data generated by
stochastic simulation. Subsequently, we use time-lapsed flow cyto-
metry data for the osmo-stress induced transcriptional response in
budding yeast to calibrate a stochastic model, which is then used
as a basis for predictions. Our results show that measurements of
the mean and the variance can be enough to determine the model
parameters, even if the measured distributions are not well-char-
acterized by low-order moments only—e.g., if they are bimodal.
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Building predictive computational models of intracellular
reaction kinetics is still a dauntingly ill-posed task (1), char-

acterized by low-dimensional experimental readouts of the hypo-
thesized high-dimensional process. Single-cell technologies hold
promise to partly alleviate this ill-posedness by exploiting the ob-
served variability for the calibration of stochastic kinetic models
(2, 3). The same technologies, however, also reveal that isogenic
cells in a single population exhibit large cell-to-cell variability
(4, 5). The variation can be shown to be a convolution of two
sources, namely the intrinsic molecular noise and extrinsic factors
that render single cells different even in the absence of molecular
noise; in many cases, the latter was reported to dominate the
former (4, 5). Extrinsic factors comprise difference in cell size,
cell-cycle stage, expression capacity, local growth conditions—
to name but a few (6, 7). Thus, although single-cell technology
offers a way out of the predicament of ill-posedness, it requires
new methods to deal properly with intrinsic and extrinsic varia-
bility. The effect of extrinsic variability on the dynamics of
stochastic models is studied in refs. 7 and 8, whereas first attempts
have been made to address the inverse problem of quantifying the
extrinsic (9) and any additional intrinsic (10) components from
measurements. Because the latter is based on path sampling, its
applicability remains limited to small systems. Naturally, extrinsic
variability is bypassed when calibrating a stochastic model to one
single cell (3, 11), for instance through live-cell imaging data.
However, the extent to which such a single path observation of
the hypothesized stochastic process—given the notoriously sparse
acquisition times—can sufficiently confine unknown process
parameters remains questionable.

Stochastic kinetic models, able to capture the intrinsic noise,
were proposed for modeling single-cell data and its variability (2,

12, 13). Models that track probabilities over the integer-valued
state-space of molecule-counts suffer from the curse of dimen-
sionality and are computationally prohibitive for all but the
simplest systems. Similar limitations apply to approximations
thereof that retain the discreteness of the state-space (14, 15).
While extracting sample paths of such processes is straightfor-
ward (16), acquiring their statistics—often necessary for calibra-
tion—is hampered by the slow convergence of empirical
estimates for high-dimensional models (17). This is particularly
challenging because most calibration or inference methods rely
on iterative schemes, making it necessary to recompute statistics.
Alternative methods set out to reduce the computational burden
by tracking only low-order moments instead of the whole prob-
ability distribution. A standard scheme in this class is moment
closure, which provides a means to capture the stochasticity of
reactions while leveraging the scalability of ordinary differential
equation models (18–20).

Here we introduce a moment-based inference scheme for
calibrating stochastic models with heterogeneous single-cell mea-
surements. We show how by extending the method of moment
closure by conditional moment equations one can properly
account for extrinsic factors. The proposed method requires no
Monte Carlo simulations over extrinsic factors, making this ap-
proach very scalable. Moreover, besides parameter estimates
and their confidence bounds, the method allows one to quantita-
tively characterize the cell-to-cell variability, ultimately dissecting
the unspecific conglomerate of extrinsic factors (6). Every addi-
tionally accounted moment of the stochastic process can make
the calibration less ill-posed; in the same way as the mean of the
process contains information, so does its variance. Importantly,
we show that this also holds true if the process is poorly captured
by the accounted moments, for instance, if we just consider first
and second order moments of a multimodal process distribution.

We instantiate this computational framework by addressing a
widely discussed—and we believe ubiquitous—process motif,
namely the transiently induced gene expression (21, 22). Often
signaling pathways are activated for a short time window, in which
the activated signaling output—such as a mitogen-activated
protein kinase (MAPK)—needs to initiate transcription by trans-
location and interaction with possibly several intermediates. If
many intermediates need to be in place, some cells do not man-
age to transcribe at all, ultimately giving rise to bimodal protein
expression profiles. The particular case study we consider is the
high-osmolarity glycerol (HOG) pathway in budding yeast (23),
where for intermediate induction levels a bimodality in the in-
duced stress proteins was observed (21). We perform time-lapsed
flow cytometry measurements to calibrate a stochastic kinetic
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model and derive population statistics using the proposed frame-
work. This allows us to perform an in silico homogenization of the
cell population and to start quantifying and dissecting the differ-
ent sources of variability.

Results
Population Dynamics and Extrinsic Variability. The probability distri-
bution of stochastic models is governed by the chemical master
equation (CME) whose moments can be approximated using
moment closure techniques (see Materials and Methods). When
considering a heterogeneous cell population, the state of each
cell follows an individual CME that depends on a certain extrinsic
condition. Consequently, a single cell’s dynamics can be described
by a vector of approximate conditional moments ~μjz up to some
order n with z as a realization of some extrinsic variable Z, i.e.,

d
dt

~μjz ¼ Aðθ; zÞ~μjz þ Bðθ; zÞf ð~μjzÞ; [1]

where θ denotes the set of intrinsic parameters that are shared
among cells, matrices Aðθ; zÞ and Bðθ; zÞ are determined by the
model structure and function f is obtained by moment closure. In
this work we assume a constant extrinsic condition or that it varies
on time-scales much larger than the duration of the experiment.
Accordingly, Z is modeled as a random vector, governed by a
multidimensional probability distribution PZ, which is in turn de-
scribed by a set of parameters α that we refer to as the extrinsic
statistics. For instance, one could assume α to be the moments or
a parametrization of PZ. This gives rise to a hierarchical Bayesian
model (24), as illustrated in Fig. 1A.

Single-cell population data is characterized by a convolution of
intrinsic and extrinsic variability. Determining the moments of a
heterogeneous population requires computing the expectation
of ~μz with respect to PZ (see Fig. 1B). One way to achieve this
is to sample values z from PZ, solve system Eq. 1 and then average
over the obtained solutions, which naturally comes with a large
computational effort. However, our analysis in SI Appendix,
section S.1 shows that it is also possible to directly derive a
population-based system of moment equations. The resulting
approximate population moments can be written as

d
dt

~μ ¼ AðθÞ~μþ BðθÞ~μX;Z þCðθÞ ~αþDðθÞgð ~μ; ~μX;Z; ~αÞ
d
dt

~μX;Z ¼ EðθÞ ~μX;Z þ FðθÞ ~αþGðθÞhð ~μ; ~μX;Z; ~αÞ;
[2]

where ~μX;Z contains the cross moments of the species and the
extrinsic variable of order up to n, matrices AðθÞ, BðθÞ, CðθÞ,

DðθÞ, EðθÞ, FðθÞ, and GðθÞ are determined by the model struc-
ture and functions g and h are obtained by moment closure. Note
that Eq. 2 only depends on lower-order moments of PZ, denoted
here by ~α. In order to compute approximations of the population
moments, Eq. 2 is solved with ~α as the extrinsic statistics—and θ
as the intrinsic parameters.

Moment-Based Inference. In practical scenarios, both the intrinsic
parameters as well as the extrinsic statistics have to be inferred
from the measurements. Although an extension to the general
case is straightforward, we assume—for the sake of clarity—that
only a single species is measured from a cell population at time
points tl; l ∈ f1;…; Lg. We define γ ¼ f ~α; θg and denote the
approximate time evolution of the measured species’ k-th order
moment, computed from Eq. 2, as t ↦ ~μkðt; γÞ, k ∈ f1;…; ng.
With the k-th order experimental moments μ̂k ¼ fμ̂kðtlÞ∣
l ∈ f1;…; Lgg and their corresponding estimated variances
σ2
k ðtlÞ with k ∈ f1;…; ng, the posterior distribution over γ is

given by

pðγ∣μ̂1;…; μ̂nÞ ¼
1

K

Yn
k¼1

YL
l¼1

pðμ̂kðtlÞ∣γÞpðγÞ; [3]

with pðγÞ as the parameter prior and K as a normalizing constant
independent of γ. For the large-sample case encountered in flow
cytometry we can make use of the central limit theorem and
assume that pðμ̂kðtlÞ∣γÞ ¼ Nð~μkðtl; γÞ; σ2

k ðtlÞÞ (for more details
see Materials and Methods and SI Appendix, sections S.3.2 and
S.4.5). A common strategy to obtain Bayesian point estimates
is to maximize Eq. 3 with respect to the parameter γ (24) (see
also Materials and Methods).

Whether the moments of the measured distributions carry
enough information to jointly determine the intrinsic parameters
and the extrinsic statistics, in general has to be answered by per-
forming an identifiability analysis of the closed moment system
(1, 25). Using a simple birth-death process, we analytically de-
monstrate that, in principle, this is possible (see SI Appendix,
section S.2).

A Simple Model of Transient Gene Activation. To test whether the
moment-based inference scheme can identify parameters even
in the case of multimodal process distributions, we studied the
four-species model depicted in Fig. 2A, which can be thought
of as a simple model of transiently induced gene expression.
Degradation of A serves as a simplistic mechanism to model a
temporal window of transcription factor activity. During this tem-
poral window, the gene B manages to switch into a state, where
protein C is produced only in a fraction of the cells (parameter
configuration and initial conditions are given in SI Appendix,
Table S.1 and section S.3.2). To generate protein distributions
at 10 different time points, we used Gillespie’s stochastic simula-
tion algorithm (16). We then computed empirical means and
variances of these distributions, treated them as experimental
measurements, and performed a parameter search to maximize
the parameter posterior using a Metropolis–Hastings (M–H)
Markov chain Monte Carlo (MCMC) (26) sampler (seeMaterials
and Methods). The inferred moments are depicted in Fig. 2C.
Even though in this case, mean and variance do not paint a full
picture of the underlying multimodal protein distribution, all
parameters—and thus the protein distributions—were estimated
accurately up to a small approximation error (see Fig. 2B and
SI Appendix, section S.3.2).

Hog1-Induced Gene Expression in Yeast. The moment-based infer-
ence scheme allowed us to study gene expression, activated by the
HOG signaling pathway in budding yeast (23). Upon hyper-osmo-
tic shock yeast cells induce the MAPK Hog1 signaling cascade.

Fig. 1. Hierarchical Bayesian models for the single cell (left) and population
moments (right). (A) The approximate moment dynamics of a single cell ~μjz
depend on the intrinsic parameters as well as the extrinsic condition z. We
assume the extrinsic variable Z to be time-invariant and to stem from a dis-
tribution described by a set of extrinsic statistics α. (B) Marginalization with
respect to the extrinsic condition gives rise to the graphical model of the
approximate population dynamics ~μ, depending on the intrinsic parameters
θ and the moments of Z of order up to n, which are denoted ~α.
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The role of this kinase is twofold. In the cytoplasm, Hog1 phos-
phorylates its substrate to increase the internal concentration of
glycerol in the cell. In parallel, a large fraction of the active Hog1
translocates to the nucleus where it triggers the activation of a
transcriptional program leading to the upregulation of roughly
300 genes (27). Once the internal glycerol concentration allows
to balance the external osmotic pressure, the HOG pathway is
deactivated, leading to loss of active MAPK and a rapid termina-
tion of the transcriptional process.

To quantify the amount of transcription induced by this path-
way a fluorescent expression reporter was generated using the
promoter pSTL1 (promoter of the sugar transporter-like protein
1), a well-characterized Hog1 expression target driving the ex-
pression of a fluorescent protein construct (quadrupleVenus–
qV). It was recently shown in ref. 21 that the transient activation
of the MAPK Hog1 in conjunction with a slow step in the tran-
scription activation process of the promoter results in a bimod-
ality in the expression profiles of this fluorescent expression
reporter.

Nuclear enrichment of Hog1 was measured by microscopy and
the pSTL1-qV reporter abundance was quantified by flow cyto-
metry at nine different time points for NaCl concentrations of
0 M, 0.1 M, 0.12 M, and 0.2 M.

The Model. Components involved in activation and translocation
of Hog1 are present in high abundance (e.g., around 6800 Hog1
molecules per cell) (28). Consequently, intrinsic fluctuations of
active Hog1 are relatively small. Experimental results in ref. 29
and our own data support this and also that Hog1 signaling is
robust against cell-to-cell variations. Motivated by this, we as-
sume Hog1 signaling to be deterministic rather than stochastic
and that the mean dynamics reflect well the signaling behavior
(30, 31). Continuous-time functions of nuclear Hog1 were ob-

tained from the experimental data by linear regression with radial
basis functions (24) across different NaCl concentrations (see SI
Appendix, section S.4.2).

Several transcription factors such as Sko1 or Hot1 are under
control of active Hog1 once it translocates to the nucleus as
shown in ref. 32. This and the experimentally observed switch-like
induction of fluorescent reporter expression suggest a high coop-
erativity in the pSTL1 promoter dynamics. In a purely stochastic
mass-action model, one way to model cooperativity is to require
multiple Hog1 copies to bind to the promoter before messenger
RNAs (mRNA) can be transcribed. However, the previous high
copy-number considerations allow us to simplify this step into
transforming the fitted Hog1 abundance curves using a Hill-func-
tion with tunable parameters (see SI Appendix, section S.4.2). The
output of this function is then treated as a time-varying kinetic
parameter modulating the gene activation rate. Efficient tran-
scription of mRNA requires interaction of the active gene with
chromatin remodeling complexes (generic remodeler denoted
as CR) (21). Translation is modeled as a one-step linear produc-
tion event, depending on the number of ribosomes. We assume
that extrinsic variability enters the system in the chromatin remo-
deling (variability in the number of CR) (33) and the translation
efficiency (variability in the number of ribosomes) (5). A graphi-
cal representation of the model is given in Fig. 3A.

pSTL1-qV Mean and Variance Predict Transient Bimodality. The para-
meters of the model from Fig. 3A were inferred from the time
courses of the experimental means and variances (see Fig. 3B)
using NaCl concentrations 0 M, 0.12 M, and 0.2 M. We then
validated the model by comparing the distributions predicted
by the model for 0.1 M NaCl with the experimental results.
The pSTL1-qV expression profiles for each measurement time
point and NaCl concentration were computed from the calibrated
model using stochastic simulation. A comparison between the ex-
perimental and the predicted distributions is shown in Fig. 4A.
Even though only means and variances were used in the infer-
ence, the bimodal distributions are accurately predicted by the
model (see also SI Appendix, section S.4.5).

We further validated the model using an additional snapshot
dataset from ref. 21, where the pSTL1-qV reporter abundance
was measured for several other NaCl concentrations between
0 M and 0.3 M, 45 min upon osmotic shock. From the model
predictions and the measured distributions, we computed the
coefficient of variation (CV) and a dose-response as functions
of the NaCl concentration (Fig. 4B). The area around 0.1 M
NaCl, where the CV is large and the dose-response curve is rising,
indicates the NaCl concentration interval where the expression
is in a bimodal regime. Note that also at 0.3 M NaCl, a concen-
tration much larger than the concentrations that were used in
the inference, the CV is predicted accurately.

To study the stochastic pSTL1-qV induction, we simulated the
model to estimate the average number of cells that (i) never ac-
tivate the pSTL1 promoter, (ii) activate the promoter at least
once, and (iii) induce transcription. Our model predicts that for
all NaCl concentrations except 0 M all cells manage to activate
the promoter and, therefore, that the bimodality has to be caused
by the subsequent—and comparably slow—chromatin remodel-
ing step (see SI Appendix, section S.4.7). Further, we performed
an in silico knock-down of CR by rescaling each cell’s amount
of CR by a hand-tuned factor, such that the percentage of re-
sponding cells saturated around 60% as measured in the experi-
ment (see Fig. 4B). We found that the transition between the
non- and all-responding domain is shifted to higher NaCl values
and that the slope of the transition edge is decreased.

In Silico Homogenization of the Cell Population.After calibrating the
model, we switched off extrinsic variability by setting each cell’s
extrinsic condition to the inferred mean value. We then recom-

Fig. 2. Moment-based inference using synthetic data. (A) A simple model of
transient gene activation: The binding of A to the target gene B aggregates
all necessary steps involved in gene activation such as the binding of addi-
tional transcription factors, polymerase binding, or chromatin remodeling.
Also protein synthesis is reduced to the simplest possible model—i.e., a first
order production, abstracting messenger RNA (mRNA) transcription and
degradation, translation, and protein folding. (B) The protein distributions
predicted by the calibrated model (red) compared to the distributions gen-
erated from the reference model (black) at four representative time points
(see SI Appendix, section S.3.2 for further time points). Estimates of the dis-
tributions were obtained by stochastic simulation (20,000 runs). (C) The time
evolutions of the approximate protein mean and variance obtained from
moment closure (MC) differ only little from approximations computed by
stochastic simulation (SSA). Therefore, the model parameters can be inferred
up to negligibly small deviations.
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puted estimates of the pSTL1-qV distributions using stochastic
simulation. The resulting average cell can be interpreted as a
homogenized version of the measured population. Again CVand
dose response were computed and plotted in Fig. 4B. Interest-
ingly, we find that extrinsic variability does not affect the dose-
response behavior in pSTL1-qV induction. In contrast, the homo-
genized population shows significant differences in the CV. In
particular, for larger stress levels the CV is relatively small com-
pared to the heterogeneous counterpart, indicating less variability
in pSTL1-qV reporter expression. For intermediate stress levels
the homogenized population still shows a bimodal response.

Cell-Gating Eliminates Only a Fraction of Extrinsic Variability.To study
the extent to which extrinsic variability can be reduced by cell-gat-
ing, we reestimated the extrinsic statistics using the time-lapsed
flow cytometry dataset for gates of different size, applied on the
forward scatter channel (FSC, often used as a proxy for cell
volume). We found that the variability in the translation effi-
ciency is significantly reduced for small gating diameters. In con-
trast, no significant trend was found in the estimated variability in
CR (see Fig. 5).

Discussion
Studying biological systems with mathematical models requires
knowledge of the kinetic rate parameters of the system reactions.
These parameters are often hard to measure experimentally and
have to be inferred from the measurements that are available.
In the simple example of Fig. 2A, measurements of the mean
dynamics alone did not provide enough information to uniquely
identify the parameters (see SI Appendix, section S.3.3). This

Fig. 3. MAPK Hog1 induced pSTL1-qV expression. (A) Osmotic pressure is
sensed at the membrane, and results in the activation of the MAPK signaling
cascade. Once active, double-phosphorylated MAPK Hog1 translocates to the
nucleus, where it can bind via transcription factors to the pSTL1 promoter.
Remodeling of the chromatin structure then allows for efficient transcription
of mRNA, which is exported from the nucleus to yield expression of the fluor-
escent reporter pSTL1-qV. Blue-shaded entities denote species subject to ex-
trinsic variability. (B) Comparison of pSTL1-qV mean and variance obtained
after calibration (Cal) and validation (Val) of themodel using moment closure
(MC) and 20,000 stochastic simulation runs (SSA) with the experimental
estimates obtained from the time-lapsed (TL) flow cytometry (FC) data (ap-
proximately 20;000 cells).
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Fig. 4. Population mean and variance predict bimodal pSTL1-qV response.
(A) Model calibration (Cal) and validation (Val). The parameters were inferred
using time-lapsed (TL) flow cytometry (FC) data of the pSTL1-qV reporter at
three NaCl concentrations (i.e., 0 M, 0.12 M, and 0.2 M) and used to predict
the expression profiles at a NaCl concentration of 0.1 M. (B) Model validation
using flow cytometry snapshot data (SS), recorded 45 min after osmotic
shock for 0 M, 0.1 M, 0.12 M, 0.135 M, 0.15 M, 0.175 M, 0.2 M, and 0.3 M
of NaCl. Left: Coefficient of variation (CV) of pSTL1-qV intensity as a function
of NaCl. Right: Dose-response comparison. All curves indicate a Hill-type
relation. The calibrated model was homogenized (Hom), giving rise to the
average cell’s CV and dose-response curves. Additionally, we studied the
suppression of the chromatin remodeling in silico by reducing the amount
of CR, such that the percentage of responding cells saturated around 60%
(CRΔ) and compared the model predictions to the results reported in ref. 21,
where the authors performed a knock-down of the transcription adapter 2
(Ada2) to demonstrate the impact of chromatin remodeling in pSTL1-qV
induction (Ada2Δ).
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Fig. 5. Cell-gating eliminates only a fraction of extrinsic variability. To study
the influence of cell-gating on cell-to-cell variability we fixed all parameters
but the extrinsic statistics ~α to their previously inferred values. The extrinsic
statistics were reestimated from the time-lapsed flow cytometry data with
increasing FSC gating diameters using MCMC sampling with 100 randomly
drawn initial conditions. Statistics were computed and visualized over the
10 runs that achieved the highest posterior values using boxplots with MA-
TLAB’s (2009b, Mathworks) default settings. The CV of the translation effi-
ciency increases with the logarithmic gating diameter (right), whereas the
CV of the chromatin remodeling remains more or less constant (left).
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demonstrates that averaged population data may contain too lit-
tle information to identify the reaction rates. Contrary to that,
additionally measuring the variance in the example of Fig. 2A
allows one to uniquely identify all the parameters, even though
the measured distributions are bimodal. This implies that the
question of whether the measured distributions are well-charac-
terized by low-order moments only is not necessarily of impor-
tance. In ref. 2 the authors presented a method that makes use
of the information provided by the whole distributions. However,
for larger systems, approximation of the probability distribution
becomes computationally cumbersome. Focusing the analysis on
lower-order moments, as proposed in this paper, means discard-
ing a part of the information but makes the parameter identifica-
tion feasible for larger systems.

The moment-based inference scheme allowed us to estimate
the parameters of a stochastic model of the osmo-stress induced
transcriptional activation in budding yeast using distribution
measurements of a heterogeneous cell population and thereby
enabled us to explain and predict experimental data and to pro-
vide computational support for existing biological hypotheses.
The inferred model characteristics and parameters agree well
with state-of-the-art literature. For instance the predictions, ob-
tained for the in silico knock-down of CR, agree well with results
in ref. 21, where the authors performed knock-down experiments
for different components of the SAGA complex, which is re-
cruited during chromatin remodeling (see Fig. 4B). The pSTL1-
qV half-life was estimated to be around 90 min; this value agrees
well with ref. 34, where the authors report a high stability of
similar fluorescent reporters. The Hill coefficient of the pSTL1
promoter dynamics was estimated to be nH ≈ 6, indicating high
cooperativity in the binding of active Hog1 to the target gene.
This seems to be crucial for the cell to achieve the strong switch-
like behavior observed in the experimental data and agrees well
with previously reported results, where Hog1 dependent tran-
scription factors were shown to have multiple binding sites (35).

The inferred model parameters predict large cell-to-cell varia-
tions in the chromatin remodeling as well as in the translation
efficiency (CVs around 0.3–0.4). This is in agreement with the
experimental results from ref. 33, where the authors found that
several chromatin remodeling factors show large variations—e.g.,
a CV around 0.3 for the transcription adapter 2 (Ada2).

According to our model, variability in the chromatin remodel-
ing is widely independent of the FSC gating radius, indicating that
extrinsic noise is suppressed only in the translation efficiency
by applying gates on morphological features. In conjunction with
the observation that an in silico homogenization of the cell po-
pulation leads to different CVs of the pSTL1-qV distributions
(Fig. 4B), this suggests that studies that solely rely on cell gating
to eliminate cell-to-cell variability may lead to biased results.
Explicitly including extrinsic variability may resolve a systematic
mismatch and, additionally, allows to quantify effects of variabil-
ity on the system. For instance the in silico homogenization of
the cell population (Fig. 4B) indicates that the dose response
is widely insensitive against cell-to-cell variability. This provides
computational support for the hypothesis in ref. 21 that the
partitioning between reporter inducing and noninducing cells is
primarily caused by intrinsic stochasticity.

Materials and Methods
Flow Cytometry Measurements. The yeast cells bearing the integrated pSTL1-
quadrupleVenus (21) were cultivated in synthetic (SD) medium (using a yeast
nitrogen base w/o folic acid, w/o riboflavin). An overnight saturated culture
was diluted and grown in log phase for 24 h (OD600 nm kept below 0.2 by
several dilutions). Hog1 driven gene expression was induced by adding 5 mL
(3x) salt solution (SD medium + NaCl) to 10 mL culture containing flasks. At
each time point a 0.5 mL aliquot was taken and protein translation was
stopped by adding cycloheximide (final CHX concentration: 100 μg∕mL).
After maturation of the fluorescent reporters (about 2 h), 350 μL cells were
added to 400 μL PBS, briefly sonicated and filtered. Finally the fluorescence

was measured using a BD LSR II (excitation: 488 nm, emission: 525∕50 nm). If
not explicitly stated, we applied cell-gates of log-diameter 0.5 with respect
to the forward—and log—diameter 2.5 to the side scatter channel, respec-
tively. Each flow cytometry distribution was obtained from around 55,000
cells, leading to an effective number of cells around 20,000 after applying
the gate.

Moment Closure. Equations that describe the time evolution of all the mo-
ments of the distribution can be derived from the CME (36). Extracting the
equations for the moments up to some order n leads to a finite open system
that possibly depends on higher order moments. Approximating the higher
order moments by some nonlinear function f of the lower-order moments
(see ref. 19 and SI Appendix, sections S.3.1 and S.4.1) leads to a closed system
of the form

d
dt

~μ ¼ AðθÞ~μþ BðθÞf ð~μÞ;

where ~μ is a vector containing the moments of order up to n and AðθÞ and
BðθÞ are determined by the model structure.

Moment Uncertainties and Data Modeling. Asymptotically unbiased estimates
for central moments of order k at time tl were computed fromM samples as

μ̂kðtlÞ ¼
� 1

M∑
M

i¼1
xiðtlÞ k ¼ 1

1
M∑

M

i¼1
ðxiðtlÞ − μ̂1ðtlÞÞk k > 1.

The central limit theorem implies that for large M (i.e., around 20,000 within
our experiments) the moment estimates are approximately normally distrib-
uted—i.e., μ̂kðtlÞ ∼NðμkðtlÞ; σ2

k ðtlÞÞ—with μkðtlÞ as the true k-th moment. We
further validated this assumption for both case studies by comparing boot-
strapped distributions of the empirical moments to normal distributions
using probability-probability (P-P) and quantile-quantile (Q-Q) plots. Addi-
tionally, we used a Kolmogorov–Smirnov–Lilliefors test to assess normality
(see SI Appendix, sections S.3.2 and S.4.5). For k ¼ 1 and k ¼ 2, the estimators
variance can be estimated as

σ2
1 ðtlÞ ¼

1

M
μ̂2
2 ðtlÞ and σ2

2 ðtlÞ ¼
1

M

�
μ̂4ðtlÞ −

M − 3

M − 1
μ̂2
2 ðtlÞ

�
;

respectively.

Modeling Fluorescence Intensities. We assumed that the measured fluores-
cence intensity for a given cell is proportional to the number of fluorescent
proteins (33)—i.e., ITotðtlÞ ¼ ϵÎTotðtlÞ with scaling parameter ϵ. Due to the
nonidentifiability in the translation step (see SI Appendix, section S.4.5), only
the product of the translation rate and ϵ can be determined. Furthermore,
we assumed that the reporter abundance IRðtlÞ is corrupted by autofluores-
cence and measurement artifacts, modeled as an additive random variable
IAFðtlÞ, independent of the reporter abundance—i.e., ITotðtlÞ ¼ IRðtlÞ þ IAFðtlÞ.
Mean and variance of IAFðtlÞ were estimated from the flow cytometry data
for 0 M NaCl, collected over the measurement time points. As this allows very
accurate estimates (M in the order of hundreds of thousands), the uncer-
tainty of those estimates can be well neglected. The experimental means
and variances of pSTL1-qV abundance at a given measurement time point
were calculated as μ̂k

R ðtlÞ ¼ μ̂k
TotðtlÞ − μk

AFðtlÞ for k ∈ f1; 2g. Note that mo-
ment-based inference and analysis of the model can be carried out without
any assumptions on the autofluorescence distribution. In order to compare
protein distributions from the model with experimentally obtained distribu-
tions, we sampled autofluorescence values from the measured flow cytome-
try distribution for 0 M NaCl.

Model Calibration. For all experiments, we assumed flat prior distributions
over parameters γj ∈ γ (with zero probability for negative values). In the
M-H MCMC scheme, for each of the J parameters in γ, we used independent
log-normal proposal distributions such that qðγnewjγoldÞ ¼ Q

J
j¼1 qðγnewj jγoldj Þ

with qðγnewj jγoldj Þ ¼ LNðln γoldj ; v 2
j Þ. A detailed configuration can be found

in SI Appendix, sections S.3.2 and S.4.5. Proposed parameter samples are ac-
cepted with probability

a ¼ min
�
1;

pðγnew∣μ̂1;…; μ̂nÞqðγoldjγnewÞ
pðγold∣μ̂1;…; μ̂nÞqðγnewjγoldÞ

�
:
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From the resulting Markov chain we extracted the parameter configuration
which maximized the posterior density. The distance between predicted and
measured protein distributions was quantified using the Kolmogorov metric
(see SI Appendix, section S.4.5).
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