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Summary
Neurodegenerative diseases target large-scale neural networks. Four competing mechanistic
hypotheses have been proposed to explain network-based disease patterning: nodal stress,
transneuronal spread, trophic failure, and shared vulnerability. Here, we used task-free fMRI to
derive the healthy intrinsic connectivity patterns seeded by brain regions vulnerable to any of five
distinct neurodegenerative diseases. These data enabled us to investigate how intrinsic
connectivity in health predicts region-by-region vulnerability to disease. For each illness, specific
regions emerged as critical network “epicenters” whose normal connectivity profiles most
resembled the disease-associated atrophy pattern. Graph theoretical analyses in healthy subjects
revealed that regions with higher total connectional flow and, more consistently, shorter functional
paths to the epicenters, showed greater disease-related vulnerability. These findings best fit a
transneuronal spread model of network-based vulnerability. Molecular pathological approaches
may help clarify what makes each epicenter vulnerable to its targeting disease and how toxic
protein species travel between networked brain structures.
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Introduction
Neurodegenerative diseases have long been linked to neuronal networks by the clinical and
anatomical progression observed in patients (Braak and Braak, 1991; Pearson et al., 1985;
Saper et al., 1987; Weintraub and Mesulam, 1996). Emerging network-sensitive
neuroimaging techniques have allowed researchers to demonstrate that the spatial patterning
of each disease relates closely to a distinct functional intrinsic connectivity network (ICN),
mapped in the healthy brain with task-free or “resting-state” fMRI (Buckner et al., 2005;
Seeley et al., 2009). Collectively, these findings raise mechanistic questions about whether
and how connectivity in health predicts regional neurodegeneration severity in disease. In
Alzheimer’s disease, increasing evidence suggests that pathology may begin within key
vulnerable “hubs”, defined as central nodes within the target network’s architecture
(Buckner et al., 2009). Still, open questions remain with regard to why each disease adopts a
network-related spatial pattern. At least four disease-general hypotheses have been offered
and can be summarized as: (1) “nodal stress”, in which regions subject to heavy network
traffic (i.e. “hubs”) undergo activity-related “wear and tear” that gives rise to or worsens
disease (Buckner et al., 2009; Saxena and Caroni, 2011); (2) “transneuronal spread”, in
which some toxic agent propagates along network connections, perhaps through “prion-like”
templated conformational change (Baker et al., 1994; Frost and Diamond, 2010; Frost et al.,
2009; Jucker and Walker, 2011; Lee et al., 2010a; Prusiner, 1984; Ridley et al., 2006;
Walker et al., 2006); (3) “trophic failure”, in which network connectivity disruption
undermines inter-nodal trophic factor support, accelerating disease within nodes lacking
collateral trophic sources (Appel, 1981; Salehi et al., 2006); and (4) “shared vulnerability”,
in which networked regions feature a common gene or protein expression signature that
confers disease-specific susceptibility evenly distributed throughout the network. Although
these hypothesized network degeneration mechanisms need not be considered mutually
exclusive, they make competing predictions with regard to how healthy network architecture
should influence disease-associated regional vulnerability (Figure 1).

Here, we explored the relationship between healthy functional architecture, as assessed with
graph theoretical analyses of task-free fMRI data, and neurodegenerative disease
vulnerability, as assessed by quantifying regional atrophy in patients. Our previous work
showed that each of five distinct neurodegenerative syndromes featured an atrophy pattern
that mirrored the healthy functional ICN seeded by the cortical region most atrophied in
patients with that syndrome (Seeley et al., 2009). The present study, in contrast, examined
every brain region within the five disease-related atrophy maps to identify the regions whose
connectivity pattern in health most resembled the atrophy map seen in each syndrome (see
Figure 2 for a methods schematic). The resulting dataset fully specified the node pair
connectivity strengths across all regions atrophied in any of the five diseases; collectively,
these regions traversed most cerebral cortical and subcortical structures. With this
information in hand, we used graph theoretical analyses to test model-based predictions of
how network architecture in health relates to disease-associated tissue loss (Figure 1).
Although previously described spatial atrophy patterns (Seeley et al., 2009) specified the
brain regions interrogated for the current study, all network connectivity analyses were
performed on an independent dataset of 16 healthy subjects aged 57 to 70 (8 females, all
right-handed and psychoactive medication-free; see Experimental Procedures). The resulting
connectivity patterns and graph metrics were used to relate each region’s healthy
connectivity profile to that region’s disease-specific vulnerability, defined as its atrophy
severity in patients.
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Results
Focal epicenters anchor each disease-associated large-scale network

In previous work (Seeley et al., 2009), we identified regional atrophy maxima for five
neurodegenerative syndromes: Alzheimer’s disease (AD), behavioral variant frontotemporal
dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA), and
corticobasal syndrome (CBS). Then, using healthy subjects scanned with task-free fMRI, we
used these five atrophy maxima as “seed” regions to derive five ICNs, representing regions
whose blood oxygen level-dependent (BOLD) signal time-series significantly correlated
with that of the seed. The atrophy maxima seeded ICNs that resembled the parent atrophy
maps, supporting the view that neurodegenerative disease patterns are network-based. By
studying only one seed region per atrophy pattern, however, this approach could not
determine which regions featured maximal connectivity to the other vulnerable regions. We
anticipated that each disease-associated pattern would harbor focal “epicenters,” regions
whose connectivity patterns—in the healthy brain—most closely mirrored the disease
vulnerability pattern. To seek out these epicenters, here we took a more comprehensive,
data-driven approach by studying all regions within each of the five atrophy patterns. For
example (Figure 2), we created 1,128 4 mm-radius spherical regions of interest (ROIs)
covering the entire bvFTD atrophy pattern and built 1,128 functional ICN maps, one seeded
by each ROI, for each of our 16 healthy subjects. We then derived 1,128 group-level ICN
maps for comparison to the (binarized) bvFTD atrophy pattern. Applying this general
strategy to all five syndromic atrophy patterns, we used group-level goodness-of-fit (GOF)
analyses (see Experimental Procedures) to reveal five sets of distinct and focal epicenters
(Figure 3 and S1, Table S1), whose large-scale connectivity maps in health showed highest
GOF to the binarized syndromic atrophy patterns. Remarkably, although atrophy severity
values made no contribution to epicenter identification, the epicenters uncovered here were
seated in or near the most atrophic regions identified in our previous work (Seeley et al.,
2009) (Figure S1), suggesting that epicenters—in addition to being broadly connected with
regions atrophied in a disease—are often among the most atrophied (and perhaps earliest-
affected) regions in that disease. Although the terms “epicenter” and “hub” have been used
interchangeably to describe transmodal convergence zones within healthy large-scale brain
networks (Mesulam, 2011), we chose “epicenter” to describe the regions identified here
because (1) “epicenter” carries a pathogenic connotation, describing a region that is often
but not necessarily the site of maximal damage and (2) “hub” evokes a brain region with
high node centrality (“hub-ness”), as defined within the network science lexicon. Our
epicenter identification strategy, however, did not include graph theoretical measures and
thus provided no guarantee that the identified epicenters would represent true network hubs.

Having identified a set of focal epicenters within each atrophy pattern, we next sought to
examine where the epicenters fit within their target network’s functional architecture. To
this end, we generated five intra-network healthy connectivity matrices covering all ROIs,
including the epicenters, contained within the five binary spatial atrophy patterns (Figure 3).
Specifically, we first generated unthresholded subject-level intra-network matrices, using
ROIs as nodes and connectivity z-scores between ROI pairs as the weights of the undirected
edges (see Experimental Procedures). Group-level intra-network healthy connectivity
matrices were then derived for each network using one-sample t-tests. Significant edges
were determined by thresholding at p < 0.01, false-discovery-rate (FDR) corrected for
multiple comparisons across the matrix; non-significant edges were assigned a weight of
zero. Examination of these matrices revealed that the epicenters related to each disease
showed broad-based connectivity with other nodes in the target network, consistent with the
manner in which they were identified (Figure 3). We further questioned whether these
epicenters, though defined by their healthy ICN’s resemblance to the (binary) parent atrophy
pattern, might also serve as functional hubs, defined as nodes with high weighted degree
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centrality (total connectional flow) within the target network (Sporns et al., 2007). As shown
in Figure S2, although at least some epicenters for each disease ranked among the nodes
highest in total intra-network flow, this relationship remained nuanced and varied by disease
pattern, and many non-epicenter regions showed equal or greater total flow. These
observations indicated that the amount of network traffic experienced by each node may
influence but does not determine the network’s disease-critical epicenters. In addition, the
dissociation between epicenters and hubs suggested that graph metrics related to these
concepts might make dissociable contributions to atrophy severity.

Nodes with higher intra-network centrality and functional proximity to epicenters in health
show greater vulnerability to disease

Next, we sought to address how the brain’s healthy connectional architecture, defined in a
graph theoretical framework, relates to disease-associated regional vulnerability, defined by
atrophy severity in patients. We translated the four major mechanistic models into
distinctive sets of connectivity-related predictions (Figure 1). The nodal stress model would
predict that metabolic demands or other activity-dependent factors conferred by higher nodal
information flow will accelerate vulnerability, worsening nodal atrophy severity. The
transneuronal spread hypothesis would predict greatest degeneration in regions
connectionally closest to the node of onset, operationally defined here as those regions
having the shortest functional path to any of the epicenters. The trophic failure model would
predict that eccentric nodes with low total information flow and low clustering coefficients
will prove less resilient due to a lack of redundant trophic inputs. The shared vulnerability
model, in contrast to all others, predicts no direct impact of intra-network architecture on
vulnerability, which is driven instead by a common gene or protein expression profile.

To compare the model-based predictions, we used the healthy intrinsic connectivity matrices
(Figure 3) to generate three graph theoretical metrics for each region within each target
network: total flow, shortest path to the epicenters, and clustering coefficient (see
Experimental Procedures). We then examined the correlation between these nodal metrics,
derived from healthy subjects, and nodal atrophy severity in the five neurodegenerative
syndromes (Figure 4 and Table S2). A node’s total flow in health showed a positive
correlation with disease vulnerability (Figure 4, row 1; p < 0.05 family-wise-error corrected
for multiple comparisons) in AD (r = 0.43, p = 8.4e−40), bvFTD (r = 0.35, p = 4.9e−36), SD
(r = 0.29, p = 9.9e−15), PNFA (r = 0.40, p = 5.4e−7), and CBS (r = 0.40, p = 7.9e−21). A
shorter functional path from a node to the disease-related epicenters also predicted greater
atrophy severity (Figure 4, row 2; p < 0.05 family-wise-error corrected for multiple
comparisons) in all five diseases: AD (r = −0.62, p = 3.2e−90), bvFTD (r = −0.30, p =
3.1e−25), SD (r = −0.60, p = 1.0e−67), PNFA (r = −0.34, p = 1.2e−5), CBS (r = −0.33, p =
7.0e−13), an effect that remained significant after controlling for the Euclidean distance (in
Montreal Neurological Institute (MNI) space) from each node to its functionally nearest
epicenter. Finally, no consistently significant positive or negative correlations were
identified between nodal clustering coefficient and vulnerability across the five diseases
(Figure 4, row 3): AD (r = −0.15, p = 2.1e−5), bvFTD (r = 0.05, p = 0.56), SD (r = −0.20, p =
9.9e−8), PNFA (r = 0.16, p = 0.03), CBS (r = 0.28, p = 7.7e−11)). To reinforce the pairwise
correlation findings while considering the influence of all network-based metrics together,
we performed stepwise linear regression analyses in which atrophy served as the dependent
measure, graph metrics served as independent predictors, and Euclidean distance from node
to epicenter and region type (cortical vs. subcortical) were entered as nuisance covariates.
These analyses revealed that although total flow accounted for a significant proportion of the
variance in atrophy severity for all five syndromes, the shortest functional path to the
epicenters explained more of the atrophy variance within the AD and SD patterns (Table
S3). Overall, these intra-network findings are compatible with both the nodal stress and
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transneuronal spread models and suggest that these mechanisms may play differing roles in
shaping regional vulnerability across the five syndromes. Predictions derived for the trophic
failure and shared vulnerability models were not supported by these experiments.

Off-target network nodes with greater functional proximity to epicenters in health show
greater vulnerability to disease

Neurodegenerative diseases are known to spread from their initial target network to “off-
target” networks in later stages of disease (Forstl and Kurz, 1999; Miller and Boeve, 2009;
Seeley et al., 2008). We reasoned that vulnerability within off-target network regions may
also be governed by connectional profile. To test this idea, we created a single trans-network
connectivity matrix including all ROIs in the five disease-related atrophy maps (Figure 5)
and re-calculated the three graph metrics. Nodes within the trans-network connectivity graph
having shorter functional paths to the disease-associated epicenters were associated with
greater atrophy in patients with that disease (Figure 6, row 2 and Table S2; p < 0.05 family-
wise-error corrected for multiple comparisons) across all five diseases: AD (r = −0.27, p =
8.1e−46), bvFTD (r = −0.65, p < 1e−300), SD (r = −0.54, p = 1.5e−198), PNFA (r = −0.52, p =
3.5e−183), and CBS (r = −0.54, p = 2.1e−197), an effect that remained significant after
controlling for the Euclidean distance from each node to its functionally nearest epicenter.
Total flow (AD (r = −0.08, p = 1.8e−5), bvFTD (r = 0.29, p = 6.7e−51), SD (r = −0.30, p =
7.2e−57), PNFA (r = 0.26, p = 1.2e−41), CBS (r = 0.33, p = 4.6e−67)) and clustering
coefficient (AD (r = −0.0, p = 0.06), bvFTD (r = 0.21, p = 7.8e−28), SD (r = −0.38, p =
5.2e−91), PNFA (r = 0.19, p = 1.1e−22), CBS (r = 0.21, p = 1.7e−26)), in contrast, exerted a
weaker and inconsistent influence on atrophy severity across the five diseases (Figure 6,
rows 1 & 3, Table S2). Following the same approach taken for the intra-network analyses, a
stepwise linear regression performed at the trans-network level revealed that the shortest
functional path to the epicenters stood out as the single strongest graph metric predictor
across all five syndromes (Table S3). Similar results were obtained when including
Euclidean distance from each node to its functionally nearest epicenter in the model, except
that in AD this distance explained a substantial proportion of atrophy variance, reducing the
contribution from the shortest path to the epicenters. The strong relationship between
functional proximity to the epicenters and atrophy severity emerged from these trans-
network analyses even though most nodes contributing to each analysis came from “off-
target” networks that made no contribution to epicenter identification. Nonetheless, to
eliminate the possibility that node selection bias contributed to the observed relationships,
we repeated the trans-network correlation and stepwise regression analyses after removing
all ROIs within each target network, thereby examining only how the connectivity of “off-
target” network nodes predicts vulnerability. These additional control analyses showed that
a node’s shortest functional path to the target network epicenters remained the most robust
and consistent predictor of that node’s atrophy in the target disease (Table S4 and S5).
Overall, these findings suggest that although both the nodal stress and transneuronal spread
models are consistent with the intra-network analysis, incorporating off-target networks
provided stronger support for the transneuronal spread hypothesis. Furthermore, the trans-
network graph metrics converge with previous studies investigating the relationships
between the five neurodegenerative syndromes. For example, consistent with our previous
findings that bvFTD and AD feature divergent intrinsic connectivity changes (Zhou et al.,
2010), the nodes within the AD and bvFTD patterns featured the most dissimilar healthy
connectional profiles and disease-associated atrophy severities (Figure 6). Regions within
the bvFTD pattern showed the lowest atrophy in AD and had among the longest paths to the
AD-related epicenters and vice versa.
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Discussion
The present results provide new insights regarding how the brain’s functional architecture
shapes vulnerability to neurodegenerative disease. We found that each of five
neurodegenerative patterns contains focal network epicenters whose healthy brain
connectivity profiles strongly resemble the parent atrophy pattern. Although previous studies
have demonstrated the similarity between single seed-based healthy ICNs and disease-
related atrophy (Buckner et al., 2005; Seeley et al., 2009), the present study used a
comprehensive, high dimensional network mapping strategy to seek out those regions with
connectivity maps most closely aligned with five patterns of disease-associated
vulnerability. We then used graph theoretical approaches to seek disease-general principles
governing connectivity-vulnerability interactions, testing predictions made by four proposed
models of network-based neurodegeneration. We found that, within each targeted network, a
node’s vulnerability was best predicted by greater total connectional flow through that node
and by a shorter functional path to the disease-related epicenters. Extending this analysis
across all regions contained in any of the five networks revealed that intrinsic functional
proximity to the epicenters represents the most potent predictor of disease-related atrophy.
Therefore, although both the nodal stress and transneuronal spread model predictions
received support from analyses of the individual target networks, incorporating the off-target
networks provided strongest support for the notion that neurodegenerative diseases spread
from region to region along connectional lines to adopt a network-based spatial pattern.

Exploring the target networks: epicenters and early disease spread
The most mysterious aspect of neurodegenerative disease regards how each disease selects
its initial target or targets. Early selective vulnerability, though not the focus of this study,
creates a starting point from which disease then spreads. Regions showing greatest atrophy
at later stages may or may not represent the sites of initial injury, and even longitudinal
imaging studies that follow patients from health to disease may overlook incipient
microscopic pathology within small neuronal populations (Braak et al., 2011). Despite these
important caveats, our findings converge with our previous work to suggest that the regions
most atrophied in each syndrome represent disease-specific network “epicenters”, whose
connectivity in health serves as a template for the spatial patterning of disease. These
epicenters bear close relationships to the early clinical deficits that define each parent
syndrome. In AD, the angular gyrus may serve as the key heteromodal association hub
through which information flows from posterior unimodal and polymodal association
cortices to modules specialized for the memory, visuospatial, language, and praxis functions
lost in patients with AD. Because atrophy in AD is more closely related to tau
neurofibrillary than amyloid plaque pathology (Scheinin et al., 2009; Whitwell et al., 2008),
we suspect that our connectivity-vulnerability findings in AD largely reflect tau pathology
within posterior elements of the large-scale network known as the default mode network
(Greicius et al., 2003; Greicius et al., 2004). Nonetheless, the hub-like nature of the angular
gyrus may produce activity-dependent “wear and tear” or increases in amyloid production
that heighten its early vulnerability to amyloid deposition (Buckner et al., 2009) and incite
or compound the neurodegenerative process. Interestingly, numerous frontal regions exhibit
striking resistance to AD-related neurodegeneration despite having high fibrillar amyloid-
beta deposition (Jack et al., 2008) and, as shown here, short functional paths to the angular
gyrus in some instances. This disconnect may reflect the complexity of underlying AD
pathology which, in contrast to all other diseases studied here, features two co-occurring
major molecular pathologies (amyloid-beta and tau). In bvFTD, the identified epicenters in
the right frontoinsula and pregenual anterior cingulate cortex are known for their co-
activation during salience processing (Seeley et al., 2007), and both regions harbor a unique
class of large, bipolar projection neurons targeted in early-stage bvFTD (Kim et al., 2011;
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Seeley et al., 2006). The anterior temporal epicenters identified within the SD pattern feature
prominent connections to upstream cortices that may converge on the epicenters to foster
multimodal semantic integration (Patterson et al., 2007). In PNFA, our epicenter search
identified the inferior frontal gyrus (Broca’s area), as well as striatal and thalamic sites that
receive robust operculofrontal inputs (Alexander et al., 1986). The CBS epicenters occupy
the rolandic and perirolandic cortices involved in skeletomotor planning, control, and
execution functions compromised early in the course of typical CBS regardless of the
underlying pathology (Lee et al., 2011).

How does disease spread throughout the network once one of its key epicenters is
compromised? The present data suggest that at least two major factors influence spread
within the target network. First, across all five diseases, network nodes subject to greater
intra-network total information flow were found to undergo greater atrophy. This
observation raises the possibility that activity-dependent mechanisms, such as oxidative
stress, local extracellular milieu fluctuations, or glia-dependent phenomena, influence
regional neurodegeneration severity. Furthermore, nodes with shorter connectional paths to
an epicenter showed greater vulnerability, suggesting that transneuronal spread represents
one of the key factors driving early target network degeneration. In this regard, epicenter
infiltration by disease may provide privileged but graded access across the network that
determines where the disease will arrive next. Although trophic factor insufficiency or a
shared gene or protein expression profile may help to determine sites of initial vulnerability,
the present findings are difficult to reconcile with predictions made by these models
regarding the graded vulnerability seen within the target networks.

Disease progression into off-target networks: transneuronal spread
Regions exquisitely vulnerable to one neurodegenerative disease are often spared in another.
On the other hand, once disease has spread throughout its target network, the process often
extends into “neighboring” networks, defined as those with stronger functional relationships
to the primary target network (Seeley et al., 2008). We reasoned that these observations
might be best explained within a connectivity-based framework. Combining data across all
five disease-vulnerable networks into a single connectome (covering 68% of the total
cerebral gray matter volume), we found greater atrophy among off-target network regions
with shorter functional paths to the target network’s focal epicenters. Combining the intra-
network and trans-network findings, these data provide strongest support for the
transneuronal spread model, which predicts that the strength of any node’s functional
connectivity to an epicenter will determine that node’s ultimate vulnerability to a
neurodegeneration once the disease has taken hold. In contrast to the intra-network analysis,
we found no consistent evidence for the nodal stress model’s predictions at the trans-
network level, perhaps because across a broader brain network space a node’s centrality
need not determine its susceptibility to every disease process. As seen at the intra-network
level, at the trans-network level we found no consistent evidence supporting predictions
derived from the trophic failure or shared vulnerability models.

Limitations and future directions
Several important limitations of this study should be noted. The AD group used to define the
anatomical pattern studied here included patients with early age-of-onset AD, which features
a more distributed cortical pattern when compared to the hippocampal-predominant pattern
seen in late age-of-onset patients (Kim et al., 2005). This factor could account, at least in
part, for the identification of the angular gyrus as the lone epicenter within the AD pattern.
The present analyses used regional functional connectivity approaches in a healthy older
control group to predict neurodegeneration severity in patients. Although the human
connectome evolves with aging (Zuo et al., 2010), we chose healthy older subjects to
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capture the connectome upon which neurodegeneration is most often superimposed.
Although we cannot exclude preclinical neurodegeneration in our control sample, each
subject was screened with a battery of neuropsychological tests and found to perform within
normal limits for age. The ideal approach for predicting neurodegeneration from
connectivity data would be to follow individuals from health to disease, exploring
connectivity-vulnerability interactions within single subjects. Although this approach may
prove challenging for the FTD syndromes studied here, future longitudinal analyses of this
type should become feasible for AD through large, ongoing, collaborative longitudinal
studies.

Although we used the same five group-level atrophy maps to identify the epicenter
“candidate pool” for each disease and to assess connectivity-vulnerability relationships,
several key design elements prevented circularity. First, atrophy severity served as the major
outcome variable but was not involved in epicenter identification. Second, the healthy
network matrices used for calculating graph metrics were epicenter-independent, composed
of every region within each binary atrophy map. Third, the trans-network graphs and
analyses (Figures 5-6) spanned regions from all five binary atrophy maps. Therefore, most
regions used in these analyses were not involved in the identification of any given epicenter,
and even limiting the trans-network analyses to off-target network regions produced little
change in the major findings.

Our correlation-based intrinsic functional connectivity approaches only measure symmetric
(undirected) connections between regions with temporally synchronous BOLD fluctuations.
These methods cannot differentiate direct from indirect links or infer causality (direction of
information flow). These limitations apply to all current intrinsic functional network
analyses in humans because the true graph (determined at the microscopic level by the
presence of axonal connections between regions) cannot be determined with existing
methods. We attempted to mitigate these concerns by thresholding the graphs at a stringent
statistical threshold, leaving only strong edges for calculation of graph metrics, but this
approach does not preclude our edges from representing indirect connections within or
outside the network. Despite these limitations, the functional information contained in the
graphs derived here provides novel and relevant information about how information flows
among regions in each network.

Potential implications for cellular-molecular biology of neurodegeneration
Understanding the cellular and molecular basis for network-based disease spread represents
an important priority for neurodegenerative disease research. Human intrinsic connectivity
data cannot directly inform cellular pathogenesis models, just as simple laboratory models
must make assumptions regarding their relevance to human disease. This study sought to
bridge these research streams by translating mechanistic network-based neurodegeneration
models into simple but rational predictions regarding the relationships between network
connectivity and vulnerability. Complementary studies using structural connectivity data
could further explore connectivity-vulnerability interactions. The present findings suggest
that, overall, a transneuronal spread model best accounts for the network-based vulnerability
observed in previous human neuropathological and imaging studies. Several mechanisms of
transneuronal spread have been proposed, including axonal transport of undetected viruses
or toxins (Hawkes et al., 2007; Saper et al., 1987). Providing a more parsimonious account,
growing evidence suggests that prion-like mechanisms may promote the spread of toxic,
misfolded, non-prion protein species between interconnected neurons (Baker et al., 1993,
1994; Brundin et al., 2010; Calhoun et al., 1998; Clavaguera et al., 2009; Frost and
Diamond, 2010; Frost et al., 2009; Hansen et al., 2011; Jucker and Walker, 2011; Lee et al.,
2010b; Li et al., 2008; Ridley et al., 2006; Walker et al., 2006). This notion, that many or all
non-infectious neurodegenerative diseases may propagate along networked axons via

Zhou et al. Page 8

Neuron. Author manuscript; available in PMC 2013 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



templated conformational change, has been put forth since the introduction of the prion
concept (Prusiner, 1984). Although our data cannot address molecular mechanisms directly
or exclude contributions from failed trophism, nodal stress, or shared vulnerability, the
present human findings complement the recent tide of cell-based and rodent disease model
data to suggest that prion-like transneuronal spreading mechanisms merit further aggressive
investigation.

Experimental Procedures
Subjects

Patients with neurodegenerative syndromes who defined the five disease-vulnerable ROI
sets were those studied previously as described (Seeley et al., 2009). Clinical diagnostic
criteria and clinicopathological correlation data are detailed in the Supplemental
Experimental Procedures. In addition, we studied 16 healthy controls (8 females, all right-
handed, mean age 65.4 (s.d. 3.2) years, psychoactive medication-free, not included in our
previous work (Seeley et al., 2009)) evaluated at the UCSF Memory and Aging Center. All
subjects provided informed consent and the procedures were approved by the UCSF
Committee on Human Research. Healthy subjects were recruited from the local community
through advertisements and underwent a comprehensive neuropsychological assessment and
a neurological exam within 180 days of scanning. All controls met the criteria of having a
Clinical Dementia Rating scale total score of 0, an Mini-mental state examination score of
28 or higher, no significant history of neurological disease or structural lesions on MRI, and
a consensus diagnosis of cognitively normal.

Image acquisition
All subjects underwent an eight-minute task-free or “resting-state” functional magnetic
resonance (fMRI) scan after being instructed to remain awake with their eyes closed.
Functional and structural images were acquired on a 3 Tesla Siemens MRI scanner at the
Neuroscience Imaging Center, University of California, San Francisco. Functional MRI
scanning was performed using a standard 12-channel head coil. Thirty-six interleaved axial
slices (3 mm-thick with a gap of 0.6 mm) were imaged parallel to the plane connecting the
anterior and posterior commissures using a T2*-weighted echo planar sequence [repetition
time (TR): 2000 ms; echo time (TE): 27 ms; flip angle (FA): 80°; field of view: 230 × 230
mm2; matrix size: 92 × 92; in-plane voxel size: 2.5 × 2.5 mm]. For coregistration purposes, a
volumetric magnetization prepared rapid gradient echo (MPRAGE) MRI sequence was used
to obtain a T1-weighted image of the entire brain in sagittal slices in the same session
(repetition time, 2300 ms; echo time, 2.98 ms; inversion time, 900 ms; flip angle, 9). The
structural images were reconstructed as a 160 × 240 × 256 matrix with 1 mm3 spatial
resolution.

Image preprocessing
After discarding the first sixteen seconds to allow for magnetic field stabilization, functional
images were realigned and unwarped, slice-time corrected, coregistered to the structural T1-
weighted image, normalized, and smoothed with a 4 mm full-width at half-maximum
Gaussian kernel using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/), resulting in images with a
voxel size of 2 mm3. Coregistration was performed between each subject’s mean T2* image
and that subject’s T1-weighted image, and normalization was carried out by calculating the
warping parameters between the subject’s T1-weighted image and the Montreal
Neurological Institute T1-weighted image template and applying those parameters to all
functional images in the sequence.
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Seed-based ICN derivation
Previously we delineated the atrophy patterns associated with five neurodegenerative
disease syndromes by comparing patients to controls using voxel-based morphometry
(VBM) (Seeley et al., 2009). Here, we examined the healthy functional intrinsic connectivity
architecture for all ROIs that could be situated within the five previously published atrophy
patterns. To this end, we binarized the five atrophy maps and created five sets of 4 mm-
radius spherical ROIs for each map (Figure 2, step 1). Preprocessed task-free fMRI data
from 16 healthy subjects were then used for ROI-based intrinsic connectivity network (ICN)
analyses, seeding all ROIs in each of the five atrophy patterns, resulting in one intrinsic
connectivity map for each ROI. The ROI-based ICN analyses followed previous methods
(Seeley et al., 2009). That is, the average time series from each ROI within the disease-
associated pattern was used as a covariate of interest in a whole-brain regression analysis,
and the global signal was entered as a nuisance variable. The voxel-wise z-scores in the
resulting subject-level ICN maps described the correlation between each voxel’s
spontaneous BOLD signal timeseries and the average timeseries of all voxels within the seed
ROI. ICN maps were derived from each ROI in each individual and entered into second-
level, random-effects analyses to derive group-level ICN maps for each ROI.

Identification of disease-associated network epicenters
We defined epicenters as regions whose pattern of seed-based intrinsic connectivity in
health best fit the disease-related binary atrophy pattern from which the region was taken
(Figure 2, step 2). At the level of the individual healthy subjects, we assigned one goodness-
of-fit (GOF) score to each ROI based on the similarity between its healthy ICN map and the
target binarized atrophy map. The GOF score was calculated by multiplying (i) the average
z-score difference between voxels falling within the atrophy map and voxels falling outside
the map; and (ii) the difference in the percentage of positive z-score voxels inside and
outside the atrophy map (Zhou et al., 2010). In this way, atrophy severity values were
omitted from the GOF calculation. For each atrophy pattern, a one-sample t-test on the
corresponding GOF maps from the sixteen healthy subjects was used to identify those ROIs
(epicenters) with significant GOF scores, stringently thresholded at p < 0.05, family-wise-
error corrected for multiple comparisons (Figure 3 and Figure S1) to isolate only the few
regions whose connectivity most closely resembled the disease-associated atrophy map. The
threshold for the SD GOF map was set to p < 0.0001 (uncorrected) to adjust for signal loss
within temporal pole and orbitofrontal regions that make up the SD pattern.

Group-level intra- and trans-network connectivity matrix derivation
To study the healthy intrinsic functional connectome related to each set of disease-
vulnerable regions, we derived group-level intra- and trans-network connectivity matrices
(Figure 2, step 3). Here, the intra-network matrices represent all ROIs within each target
network (defined using the binarized atrophy maps), whereas the trans-network matrix
represents all ROIs across the five target networks. These matrices were derived as follows.
We first extracted the subject-level intra-network matrices from the seed-based ICN maps of
each ROI set, using ROIs as nodes and mean connectivity z-scores between ROI pairs as the
weights of the undirected edges (Watts and Strogatz, 1998). Edge weight for every node pair
(e.g. nodes A and B) was defined at the subject level as the higher of two connectivity scores
(A to B and B to A) for the A-B pair, where A to B connectivity was derived by (1)
calculating the mean time-series across all voxels in node A, (2) determining the z-scores for
the connectivity of the node A time-series to each voxel within node B, and (3) averaging
the resulting z-scores to create a single score. The B to A connectivity score was derived in
like manner by reversing A and B in the procedure described above. This procedure made
use of the extensive seed-based voxel-wise connectivity data generated for epicenter
identification while producing nearly identical node pair connectivity results, in pilot
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analyses, to those derived by calculating the correlation between the mean time series from
nodes A and B. We then generated the group-level intra-network adjacency matrix
containing significant connections by performing a one-sample t-test on the group of intra-
network matrices, stringently thresholded at p < 0.01, false-discovery-rate (FDR) corrected
for multiple comparisons to avoid potentially spurious links introduced by low temporal
resolution and hemodynamic blurring in the fMRI signal. The same process was performed
for each of the five ROI sets, resulting in five thresholded intra-network healthy functional
intrinsic connectivity matrices (Figure 3). A lower statistical threshold of p < 0.05, false
discovery rate-corrected for multiple comparisons, was used for the SD pattern to adjust for
the fMRI signal loss characteristic of the temporal pole and orbitofrontal regions contained
in this network, following previous approaches (Devlin et al., 2000; Seeley et al., 2009). A
single healthy trans-network connectivity matrix, including all ROIs across the five atrophy
patterns as one network, was constructed in like manner. In the group-level ICN matrices,
the pairwise ROI connectivity t-scores resulting from one-sample t-test were used as edge
weights.

Graph theoretical analyses
To study how intrinsic network architecture in health relates to disease-associated
vulnerability, we examined three graph theoretical metrics for every network node (Figure 2,
step 4) in both the intra-network (Figure 3, 4) and trans-network (Figure 5, 6) group-level
healthy ICN adjacency matrices, including: (i) total flow – the sum of the magnitudes of the
weighted connections passing through each node; (ii) shortest intrinsic functional path to the
epicenters – the minimum path length to any of the identified epicenters for the atrophy
pattern of interest; and (iii) clustering coefficient -- the ratio of the number of edges between
a node’s neighbors to the total possible number of edges between the node’s neighbors
(Watts and Strogatz, 1998). Graph theoretical measures were calculated using in-house
MATLAB programs based on the publicly available Matlab BGL graph library developed
by David Gleich (https://github.com/dgleich/matlab-bgl). Corresponding mathematical
notation has been provided (Rubinov and Sporns, 2010). For atrophy patterns featuring
multiple epicenters, we chose each ROI’s shortest among the shortest paths to each epicenter
in the matrix. For intra-network analyses, graph metrics were based solely on ROIs within
each target network pattern, whereas for trans-network analyses we considered ROIs in all
five networks together. We limited our analyses to these three metrics because the four
prevailing models of network-based neurodegeneration could be used to generate
distinguising predictions regarding the relationship between these metrics and disease-
associated atrophy severity (Figure 1).

Correlation between healthy network graph metrics and disease-associated atrophy
To test predictions about the relationship between the three graph metrics and disease-
associated atrophy severity, we performed five separate intra-network correlation analyses
between disease-associated atrophy and the three nodal graph metrics across all ROIs within
each of the five disease patterns (Figure 2, step 5; Figure 4). Here, atrophy severity was
defined using a previous comparison of patients to age-matched controls (Seeley et al.,
2009) and averaging the voxel-wise t-scores from this comparison across each 4 mm-radius
spherical ROI used as a node in the present graph theoretical computations. Five similar
trans-network correlation analyses (all on the same combined node set) were performed to
assess whether the same principles applied to off-target networks (Figure 6). For the intra-
and trans-network correlation analyses, statistical significance was set to p < 0.05, family-
wise-error corrected for multiple comparisons across three graph metrics, five atrophy
patterns, and three node sets (all, cortical only, and sub-cortical only, see Table S2 and
Figure 4) for a total of 45 statistical tests. In assessing the relationship between the shortest
functional path to the epicenters and atrophy, we used partial correlation to further control
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for the Euclidean distance between each node and its functionally nearest epicenter. One
step further, to take into account the influence of all network-based metrics, we performed
stepwise linear regression analyses in which atrophy served as the dependent measure, the
three graph metrics served as independent predictors, and cortical versus subcortical (binary
membership) and Euclidean distance between each node and its functionally nearest
epicenter served as nuisance variables (Table S3). Finally, we repeated the trans-network
correlation and stepwise regression analyses for all ROIs within the four off-target networks
only, i.e., removing the ROIs in the target network which contributed to epicenter
identification (Table S4 and S5).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Predictions made by network-based degeneration models: effects of healthy intrinsic
connectivity graph metrics on atrophy severity in disease
A simplified healthy connectivity graph is shown (far left) for illustration purposes only;
circles represent nodes (brain regions), lines represent edges (a connection between two
nodes), and edge lengths represent the connectivity strength between nodes, with shorter
edges representing stronger connections. The orange node represents an epicenter. Three
nodes, labeled as ‘A’, ‘B’, and ‘C’, feature contrasting graph theoretical properties to
illustrate predictions made by the network-based vulnerability models (far right). Listed in
the center column are the relationships predicted by each model. For example, the
transneuronal spread model predicts that nodes with shorter (↓) paths to the epicenter in
health will be associated with greater (↑) atrophy severity in disease. Justification for each
model’s prediction set is provided in the main text.
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Figure 2. Study design schematic
Atrophy maps from five neurodegenerative syndromes were delineated in a previous study
(Seeley et al., 2009) and binarized to create five sets of 4 mm-radius spherical ROIs
representing an epicenter “candidate pool” for each syndrome. Based on these pools, five
steps were involved to infer the relationship between healthy intrinsic functional
connectivity and atrophy severity in disease: (1) the intrinsic functional connectivity of each
ROI was derived with task-free fMRI data from healthy controls, resulting in one whole-
brain ICN map for each ROI; (2) regions whose ICNs in health featured significant
goodness-of-fit (GOF) to the binarized parent atrophy map were identified as “epicenters” at
the group-level; (3) group-level weighted, thresholded healthy ICN matrices were
constructed, describing connectivity between all ROI pairs within the binarized atrophy
template; (4) three graph theoretical metrics were calculated from the group-level ICN
matrices, including shortest functional path to the epicenters (SPE), total flow (TF), and
clustering coefficient (CC); (5) correlation and stepwise regression analyses were employed
to examine the relationship between the three graph theoretical metrics in health and atrophy
t-scores in disease. This process was carried out for each of five syndromic atrophy patterns;
for illustration, the steps used for the bvFTD-related analyses are shown here.
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Figure 3. Healthy intrinsic connectivity matrices and network epicenters for each of five
neurodegenerative syndrome atrophy patterns
Regions whose healthy ICN showed significant goodness-of-fit (GOF) to each of the five
atrophy maps were identified as epicenters, shown here superimposed on the MNI template
brain (see Supplemental Table 1). The red-orange color bar represents the t-scores
associated with the group-level significance of the epicenter GOF scores. Matrices
representing the group-level node pair-wise connectivity strengths were organized from left
to right (and top to bottom) in the order of frontal (F), temporal (T), parietal (P), occipital
(O), paralimbic (Pl), limbic (L), and subcortical (S) regions. The blue-red color bar
represents the intrinsic connectivity between each node pair, defined as the t-score from the
thresholded group-level one-sample t-test (see Experimental Procedures). Subthreshold node
pair connectivity strengths were colored dark blue and omitted from the matrices.

Zhou et al. Page 17

Neuron. Author manuscript; available in PMC 2013 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Intra-network graph theoretical connectivity measures in health predict atrophy
severity in disease
Regions with high total connectional flow (Row 1) and shorter functional paths to the
epicenters (Row 2) showed significantly greater disease vulnerability (p < 0.05 family-wise-
error corrected for multiple comparisons in AD, bvFTD, SD, PNFA, and CBS), whereas
inconsistent weaker or non-significant relationships were observed between clustering
coefficient and atrophy (Row 3). Cortical regions = blue circles; subcortical regions =
orange circles.
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Figure 5. Healthy intrinsic connectivity matrix representing all ROI pairwise interactions across
the five neurodegenerative syndrome atrophy patterns
Matrices representing the group-level node pair-wise connectivity strengths were organized
from left to right (and top to bottom) in the order of AD, bvFTD, SD, PNFA, and CBS
regions. Ordering of regions within each disease pattern follows the scheme used in Figure
3. The blue-red color bar represents the intrinsic connectivity strength between each node
pair, defined as the t-score from the thresholded group-level one-sample t-test (see
Experimental Procedures).
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Figure 6. Trans-network graph theoretical connectivity measures in health predict atrophy
severity in disease
Row 2: ROIs showing greater disease-related atrophy were those featuring shorter functional
paths, in the healthy brain, to the disease-associated epicenters (p < 0.05 family-wise-error
corrected for multiple comparisons for AD, bvFTD, SD, PNFA, and CBS). Row 1 and 3:
Inconsistent weaker or non-significant relationships were observed between total flow or
clustering coefficient and disease-related atrophy.
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