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Introduction

The existence and potential function of nonproductive transcrip-
tion and of unconventional transcripts is a hot topic of current 
transcription research.1 Cryptic transcripts are defined as those 
that are difficult to detect given their small amount and lack of 
correspondence with predicted canonical genes. Since functional 
genomics techniques have been developed, a plethora of differ-
ent kinds of cryptic transcripts has been detected in all studied 
eukaryotes, including yeast. The absolute level of yeast cryptic 
transcription is not known, but estimations for the total amount 
of antisense transcription go from a rather low, and even contro-
versial, 0.62%2 to up to 9.2%.3 Apparently, the more in-depth 
the cryptic transcription analysis, the larger the proportion of 
affected genes. A recent high-throughput sequencing (HTS) 
study found that 60.5% of genes have antisense overlapping tran-
scripts3 but another HTS analysis only detected 310 genes (5.6%) 
having antisense transcription.4

It has been hypothesized that cryptic transcripts play an impor-
tant role in shaping the stress response in yeast, which brings 
about differences between mRNA amount and RNA polymerase 
occupancy profiles.5 That study address the potential function 
of cryptic transcription by comparing the physical presence of 
RNAP II in genes (“occupancy,” measured by ChIP-chip) and the 
mature mRNA amount. However, as ChIP cannot discriminate 
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between active and inactive forms of RNAP II, other methods, 
such as genomic run-on (GRO),6 that allow the measurement 
of the elongation activity should be taken also into account.7,8 
Especially because the gene-specific differences between mRNA 
level and RNAP II occupancy could also be due to the gene-spe-
cific differences in the relative proportion of active (non-arrested) 
molecules.8 This scenario becomes even more complex when the 
kinetics of transcription is considered. Part of the discrepancies 
between changes in mRNA amounts and RNAP II occupancy5 
(putative transcription rate or TR) could be explained by the 
kinetic delay that exists between the change in transcription and 
the corresponding adjustment in mRNA level.9 Moreover, several 
groups working in yeast and in mammalian cells reported varia-
tions in the stability of many mRNAs during the stress response 
by using different techniques.4,10-16 This modulation of mRNA 
half-lives—and not only their initial stability value5—should 
be considered. Nevertheless, the specific contribution of cryptic 
transcripts, on the one hand, and of mRNA stability regulation, 
on the other hand, to shaping the stress response has not been 
systematically evaluated.

Results and Discussion

In order to test whether cryptic transcription is important in 
shaping the stress response in yeast, we performed a comparative 
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The other cryptic transcripts data sets used long-SAGE HTS 
to find sense and antisense CUTs,18 or employed HTS, but only 
studied antisense SUTs.2

To test if cryptic transcription accounts for the discrepancies 
between RNAP II occupancy and mRNA level, we compared 
the experimentally determined mRNA levels throughout the 
heat stress response time course (reviewed in refs. 10 and 12 for 
a detailed description of the stress response analysis protocol) to 
the theoretical mRNA level value expected if mRNA stability did 
not change during the heat stress response (calculated using the 
kinetic equation described in refs. 9 and 10) and the TR experi-
mental data determined by GRO.12 The plot for each gene was 
then analyzed and the Pearson’s correlation coefficient (r) was 
calculated. An r value of 1 means that both experimental and 
theoretical mRNA levels are identical and, thus, there is no other 
influence on mRNA level but that of TR changes. Lower r val-
ues imply that the TR is not the only determinant of mRNA 
level and that other effects, such as the changes in either mRNA 
stability or in cryptic transcription, also play a role during the 
stress response. We used two kinds of representations: First, in 
figure 1 we display the density functions estimated using a ker-
nel density estimator.19 The same plot contains the estimated 
density functions for two different groups of genes (those with 
and those without cryptic transcripts). For all cryptic transcripts 
data sets,2,17,18 no significant difference is seen between genes with 
or without cryptic transcripts when using a t test (i.e., between 
the mean of the correlations). In the case of the Neil et al.18 data 
set, only a residual significance is observed using a Kolmogorov-
Smirnov test (K-S).

Another way to analyze the data are by plotting the correla-
tion coefficient against the richness in cryptic transcripts (repre-
sented as a 100-genes sliding window). This reveals (fig. s1A) 
that the mere existence of cryptic transcripts from the Xu et al. 

analysis of data recently obtained by our group during response 
to heat stress experiments.12 While we used several different 
cryptic transcription data sets,2,17,18 previous studies in reference 
5, are restricted to just one of them.17 This last data set contains 
a genome-wide distribution of stable unannotated transcripts 
(SUT) from wild-type cells and of cryptic unstable transcripts 
(CUT) present only in nuclear exosome-deficient cells (rrp6 ). 

Figure 1. cryptic transcription does not correlate with the differences 
between the transcription rate and mrNA profiles in heat stress re-
sponse. We display the kernel density estimators for the r Pearson cor-
relations between the theoretical and experimental mrNA levels in the 
heat stress response. The estimated densities correspond to genes with 
cryptic transcripts (dotted line) and to genes without cryptic transcripts 
(solid line), as determined by Xu et al.17 (A), Neil et al.18 (B) and Yassour et 
al.2 (c) Note that the same bandwidth has been used for both densities. 
We have tested the normality hypothesis using the Shapiro-Wilk test 
and the normal null hypothesis is rejected for all data sets. however, 
because we have large groups of genes to be compared the means can 
be compared using al two-sample t test (t, the Welch correction was 
used). Additionally, the null hypothesis of a common distribution for 
both groups will be tested using the two-sample Kolmogorov-Smirnov 
test (K-S). All the statistical tests can be found in reference 19. The p val-
ues for the K-S test and t tests are indicated in each panel. Statistically 
significant values are underlined. Theoretical mrNA (rAt) levels were 
calculated using the equation described in reference 12 and assuming 
a constant degradation constant (kD) equal to the steady-state value 
observed before stress (time 0). From that equation, the theoretical 
mrNA values at different times were calculated from an initial mrNA 
amount and the experimental Tr values.12 experimental mrNA (rAe) 
levels were those determined in reference 12. r Pearson correlations 
were calculated for individual gene values of the predicted theoretical 
mrNA levels plotted vs. the experimental mrNA data. See reference 10 
and 12 for further details of the data sets used.
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Figure 2. Different correlation patterns in comparisons between cryptic transcription data sets and change ratios after heat stress. We show a repre-
sentation of the average ratio change (in log2 scale) of each time point after stress in relation to the zero time (x axis) against the density (y axis) of the 
distribution function for genes with cryptic transcripts (dotted line) and for genes without cryptic transcripts (solid line), as determined by Xu et al.17 
(A), Neil et al.18 (B) and Yassour et al.2 (D). The data set of Neil et al.18 is split into sense (c1) and antisense (c2). As in Figure 1, the distributions and the 
means of correlation coefficients were tested by using the K-S and t tests, respectively. The p values for the K-S and t tests are indicated in each part. 
Statistically significant values are underlined.

data set17 in a gene has very little effect (a very low slope, 0.0005) 
on the discrepancy between the mRNA level and the TR at 
which it is synthesized (r value). Moreover, when using the other 
two cryptic transcripts data sets,2,18 we found an even lesser effect 
of cryptic transcription on the discrepancy between theoretical 

and experimental mRNA levels, with a flat or slightly negative 
slope (fig. s1b and c). Even when considering CUTs and SUTs 
separately,17 or sense and antisense separately,18 we obtained no 
significant tendency (not shown). Similar results were also found 
when we used the gene expression data from a different study 
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set of Yassour et al.2 which corresponds exclusively to antisense 
cryptic transcription, the tendency is the opposite, with upreg-
ulated genes being enriched in cryptic transcription (figs. 2d  
and s2d). This matches the results described by the authors, 
who found an over-representation of the stress-induced genes 
among their data set.2 Why such different results? As described 
above, all three cryptic transcription data sets differ consider-
ably and, in fact, the overlapping among them is quite small and 
mostly non significant (fig. 3). This can be due to the fact that 
each method uses a different protocol, which can be biased or 
affected by particular technical artifacts, therefore detecting 
different types of cryptic transcripts.2,17,18 Hence, the molecular 
mechanisms underlying the appearance of the different cryptic 
RNA types and their functions can be quite different. Thus, it is 
not surprising that they all provide different results in our analy-
ses. In any case, our study suggests that genes responding to stress 
tend to be enriched in sense and antisense cryptic transcription by 
either decreasing or increasing their TR, respectively. This result 
does not necessarily mean, however, that cryptic transcription is 
the cause of the particular mRNA level stress response profile of 
those genes. In fact, we found that those genes with more marked 
changes in their RNA level during the stress response are not 
those with a lower correlation in theoretical and experimental 
mRNA profiles; there is even a weak tendency to a better correla-
tion in mRNA profiles (r Pearson calculated as in fig. 1) with 
the absolute ratio of change during heat stress (fig. 4A). When 
analyzing the r coefficient for the mRNA profiles of those genes 
with both strong responses to stress and the presence of cryptic 
transcription (fig. 4b), it is evident that they are not especially 
biased toward a low r Pearson coefficient (as defined in fig. 1). In 
fact, as figure 4b illustrates, those RP genes with a strong pres-
ence of sense cryptic transcripts (to the left end of the x axis in 
Graph S2C1) show a higher average r (0.896) than the total gene 
population (0.45). This is also true (average r = 0.793) for those 
genes induced by heat shock with a strong presence of antisense 
transcripts (to the right end in Graph D from fig. s2). Finally, 
when the general profile is analyzed (dotted curve in fig. 4b), it 
is clear that most genes have a fairly good r coefficient. All these 
results lead to the conclusion that a change in the TR is the main 
cause of a change in mRNA level during the stress response, and 
that this is even clearer for those genes with any kind of cryptic 
transcription.

In summary, we consider that understanding the functional 
role of cryptic transcription is becoming a very interesting 
research focal point. However, we also consider that changes in 
the TR are the main cause of changes in mRNA levels during 
stress responses.4,12,20 As we have shown, most of the discrepancy 
between RNAP occupancy (or TR) and mRNA levels during 
transcriptional responses can be explained by modulation in 
mRNA stabilities.4,6,10-16 Although the effect can be more marked 
for particular genes with a large proportion of cryptic transcripts, 
this cannot account for most of the discrepancies detected 
between mRNA changes and RNAP II changes. Therefore, it is 
more experimentally supported to argue that most discrepancies 
are due to both the delay required by kinetic laws and the changes 
occurring in mRNA stability.10-14,20-22

of oxidative stress response (not shown).10 Since we previously 
experimentally demonstrated that mRNA stabilities vary accord-
ing to predictions during stress responses,10-12 here we argue that 
changes in the mRNA half-life are the main cause of the discrep-
ancies between mRNA level and the TR.

Other authors have postulated that genes involved in stress 
responses are enriched in long antisense transcripts and have 
found that there is a negative correlation in their expression 
relative to the expression of regular genes.2 We analyzed the 
differences between genes with or without overlapping cryptic 
transcripts in relation to their mRNA level change during the 
stress response (fig. 2). In most cases, a significant difference 
between the two gene classes was observed. Only the cryptic tran-
scripts data set from Xu et al.17 shows no significant difference. 
For this data set, we also performed a sliding window analysis of 
the effect of the presence of any kind of cryptic transcription and 
the strength of the gene response during heat stress.12 figure s2 
illustrates that there is no clear tendency (upper graph) when 
using the data set of Xu et al.17 unlike the very clear effect noted 
for the data set of Neil et al.18 Downregulated genes tend to be 
enriched in cryptic transcription, which is mainly due to sense 
cryptic transcription with a poor antisense cryptic transcription 
effect (figs. 2c1 and s2c1). The genes in that part of the graph 
are enriched in the translation-related categories [e.g., ribosomal 
proteins genes (RP)—p value < 10-49]. This result may corre-
spond to an abundance of truncated transcripts in the RP genes 
provoked by a large proportion of blocked RNAPs seen in their 5' 
part, as we previously showed in reference 7. However, in the data 

Figure 3. Different cryptic transcription data sets do not significantly 
overlap. The lists of genes with cryptic transcripts from Xu et al.,17 Neil 
et al.18 and Yassour et al.2 mostly contain different genes. We used the 
original data sets but selected only those genes having overlapping 
cryptic transcripts that were also present in our previous heat stress-
response study.12 All the overlappings are not statistically significant 
when using a hypergeometric test, except for the overlap of Neil et al. 
and that of Yassour et al.2 which are significantly larger than expected 
with a p value of 7 x 10-4.
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it affects the regulation of the gene expression, the main driving 
force of canonical (sense) expression is not its associated antisense 
expression.

note

Supplemental material can be found at:
www.landesbioscience.com/journals/trans/article/19416
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note Added in proof

In a recent paper, Xu et al.23 made an exhaustive study analysis 
of antisensetranscription in yeast and concluded that, although 

Figure 4. Analyses of up- and downregulated genes after heat stress show a main dependence on the transcription rate change. (A) There is a slight 
positive dependence of the ratio of change (in log2 with absolute values, either up or downregulated) after stress in relation to the r correlation coef-
ficient, calculated as in Figure 1. (B) histogram of the correlation coefficients for the whole set of genes (dotted line) and for two particular groups 
[96 ribosomal protein (rP) genes (black bars) showing a considerable downregulation and a large proportion of sense cryptic transcription (shown in 
Fig. S2), and 1,051 upregulated genes (>1.2 on the log2 scale, see Fig. S2; gray bars)]. Note that the scale for the rP genes is magnified ten times.
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