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Abstract
In this study, we perform statistical analysis on two methods used to estimate the total ultrasound
attenuation along the propagation path from the surface of the transducer to a region of interest at
a particular depth; namely, the spectral-fit method and the multiple-filter method. We derive
mathematical equations for the bias and variance in the attenuation estimates as a function of
region of interest (ROI) size, imaging system bandwidth, and number of independent Gaussian
filters (for the multiple filter method). We use numerical simulations to validate the mathematical
equations and compare the two algorithms. The results show that the variance in the total
attenuation coefficient estimates obtained with the two methods are comparable, and that the
estimates are unbiased. For the multiple filter method, the optimal number of Gaussian filters is
two.

I. INTRODUCTION
Knowing the total ultrasonic attenuation along the propagation path from the transducer
surface to the ROI in the sample is essential in many medical ultrasound applications. In the
area of ultrasonic tissue characterization, accurate estimates of the scatterer size and the
backscatter coefficient can only be obtained if the total attenuation is known [1–3]. In
ultrasound therapy applications, the total attenuation is used to calculate the intensity of
ultrasound that reaches the region of interest (ROI) and hence quantify the amount of
heating that is produced [4, 5]. In ultrasonic imaging, time gain compensation can be done
more accurately if the total attenuation is known, and therefore eliminate shadowing and
enhancement regions in the image [6]. In acoustic radiation force imaging, the total
attenuation is used to quantify the amount of radiation force applied to the ROI [7, 8].
Therefore many areas of clinical medical ultrasound would benefit from an accurate
estimate of the total attenuation along the propagation path.

Traditionally, the total attenuation was estimated by measuring changes in the backscatter
intensity with depth [9, 10]. However, this method is inaccurate because the attenuation, the
backscatter, and the diffraction effects modify the power spectrum of the backscattered radio
frequency (RF) signals. Some investigators estimated the local attenuation coefficients and
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the thicknesses of the overlying tissues along the propagation path and then performed a
weighted sum of these estimates to calculate the total attenuation [11]. Others assigned an
attenuation coefficient value to each overlying tissue based on existing values that were
measured ex-vivo [12]. These methods, however, are prone to error accumulation with
propagation depth due to the inaccuracies in the thickness measurements (sound speed
changes), the inaccuracies of the assigned attenuation coefficients which were measured ex-
vivo (low blood perfusion), and the variability of the attenuation coefficients due to inter-
patient variability. Furthermore, they require the identification of the different overlying
tissues, a process that may require manual intervention.

Recently, two methods for estimating the total attenuation have been developed; namely, the
spectral-fit method and the multiple-filter method [13–16]. Both methods use a planar
reflector to compensate for the effects of diffraction, the transducer transfer function, and the
transmit-pulse transfer function. The first approach, named the spectral-fit algorithm,
assumes a Gaussian Form Factor and estimates the total attenuation and the scatterer size
simultaneously [16]. The second approach, named the multiple-filter algorithm estimates the
total attenuation by processing the spectra that result from multiplying the backscatter power
spectrum by Gaussian filters [13–15]. In a recent paper by Labyed et al [17], the multiple
filter method was modified by employing a tissue-mimicking phantom (TMP) instead of a
planar reflector to compensate for the transfer function of the transducer and the diffraction
effects that result from focusing. Using a tissue-mimicking reference phantom makes the
algorithm practical for use in clinical settings where beam-formed echoes are obtained from
array sources.

The objective of this study is to test and compare the accuracies of the spectral-fit method
and the multiple-filter method. We perform statistical analysis and derive mathematical
equations for the expected value and the variance of the attenuation estimates as a function
of transducer bandwidth, ROI size (the region where backscattered echoes are acquired to
retrieve estimates of the attenuation), and number of independent Gaussian filters (for the
multiple-filter method). We then use numerical simulation to validate the derived equations
and compare the two algorithms.”

II. Overview of the spectral-fit method and the multiple-filter method
A. Spectral-fit method

To estimate the total ultrasonic attenuation from the surface of the transducer to an ROI in a
sample material, the same transducer and power settings are used to obtain backscattered
signals from the sample, and from a reference TMP. The TMP has a known attenuation
coefficient, and a propagation sound speed that closely matches the sound speed in soft
tissue. The RF echo lines are windowed in order to obtain multiple adjacent time-gated
windows corresponding to the ROI. The Fourier Transform is applied to every window, and
the power spectra of the windows are averaged. The same procedure is performed on the
region of the reference phantom that has the same depth compared to the ROI of the sample.
In standard pulse-echo imaging, the power spectrum of a windowed region in a statistically
homogeneous tissue is given by [1]

(1)

The subscript s denotes the sample. The letter d denotes the distance from the surface of the
transducer to the depth corresponding to the center of the time-gated window. The transfer
function of the imaging system is given by H(f, d). The frequency-dependent scattering
properties of the ROI are given by Fs(f). The attenuation along the propagation path is
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assumed linearly dependent on frequency and the attenuation coefficient slope is αs.
Equation (1) assumes that the windows used to gate the echoes are small compared to the
depth of focus of the transducer so that the variations of the field within each gated region
could be ignored [18]. Similarly, the power spectrum of the backscattered signal from the
reference phantom is

(2)

The subscript r denotes the reference phantom. Dividing the power spectrum of the sample
by the power spectrum of the reference phantom yields

(3)

where

(4)

Insana showed that under the born approximation (weak scattering), the scattering terms can
be written as [19, 20]

(5)

(6)

where Fγs(f, aeff_s) and Fγs(f, aeff_r) are the form factors of the sample and the reference,
respectively. The Form Factor is the ratio of the backscatter coefficient for a test material
having scatterers with finite size to that of a similar material consisting of point scatterers
[19]. aeff_s and aeff_r are the effective scatterer sizes of sub-resolution scatterers within the
sample and the reference, respectively. If the form factors of both the sample and the
reference are approximated by Gaussian Form Factors, we obtain

(7)

where B is proportional to the correlation length. Equation (3) becomes

(8)

where ΔB = Bs − Br. By taking the natural algorithm of Eq. (8), we obtain

(9)

Equation (9) is linear with respect to the unknown Δα. Therefore, Δα can be estimated
using least linear squares [21]
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(10)

where

(11)

The discrete frequencies of the power spectrum are denoted by fi. L is the total number of
frequencies in the usable frequency range. The usable frequency range is defined as the
range of frequencies for which the power spectrum is above the noise floor. L depends on
the size of the time gated window and the usable frequency range. Note that zero padding
the gated signal to increase L doesn’t provide any additional information about the spectrum
and therefore provides no improvement in the estimate of the attenuation coefficient. Once
Δα is known, the slope of the total attenuation coefficient in the unknown sample can be
determined using Eq. (4).

B. Multiple-filter method
The multiple-filter algorithm also assumes that the Form Factor is Gaussian. If we multiply

Eq. (8) by a Gaussian Filter with a center frequency fc and a variance , we obtain [15]

(12)

where

(13)

and

(14)

Equation (12) shows that the resulting spectrum is also Gaussian with a center frequency f̃c
and a variance . The frequency f ̃c is a function of the scattering properties, the attenuation,
and the center frequency of the Gaussian filter. By using multiple Gaussian filters with
different center frequencies, Δα can be estimated by finding the intercept of the line that fits
the new center frequencies f̃c with respect to the center frequencies of the Gaussian filters.
Once Δα is known, the slope of the total attenuation coefficient in the unknown sample can
be determined using Eq. (4).
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III. Statistical analysis of the total attenuation estimation algorithms
Due to the random nature of the backscattered signals, the magnitude squared of the Fourier
Transform of a time-gated window (periodogram) is a random process. Therefore, the
estimate of the attenuation coefficient is a random variable. Statistical analysis on each
algorithm will quantify the bias and variance of the attenuation estimate as a function of
bandwidth and ROI size. One can then infer which algorithm is superior to the other.

A. Statistical analysis of the power spectrum
Neglecting windowing effects, the variance and the expected value of the power spectrum
are given by [22]:

(15)

and

(16)

where var stands for variance, E[ ] stands for expected value, S(f) is the power spectrum that
is calculated from the measurements, and S(f) is the expected value of the power spectrum.
If N is the number of time samples in the gated window and T is the time interval between
two adjacent time samples, the values of the power spectrum separated by 1/NT Hz are
uncorrelated [23]

(17)

where f1 = m/NT and f2 = n/NT, such that m ≠ n. Applying the above results to the power
spectra obtained from the gated region of the sample and the gated region of the reference
phantom, we obtain

(18)

If Ns independent spectra are averaged to obtain an estimate of the power spectrum of the
sample Ss(f) and Nr independent spectra are averaged to obtain an estimate of the power
spectrum of the reference Sr(f), Eq. (18) becomes [24]

(19)

In both the spectral-fit algorithm and the multiple-filter algorithm, we divide the estimated
power spectrum of the sample by the estimated power spectrum of the reference to eliminate
the characteristics of the imaging system. Since this operation involves the ratio of two
random variables, it is necessary to quantify the variance of this ratio. It can be shown that if
we have a functional dependence such that x = f(u, v,…) and E[x] ≈ f(E[u], E[v],…), we
have [21]

(20)
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where u and v are uncorrelated random variables with mean ū and v̄, respectively. The

variances of u and v are , respectively. Given Eq. (3) and the results of (19) and
(20) we have

(21)

and

(22)

Equations (21) and (22) are essential to calculating the bias and the variance of the
attenuation estimates obtained with the spectral-fit method and the multiple-filter method.

B. Statistical analysis of the spectral-fit method
To obtain an expression for the bias and the variance in the total attenuation coefficient
estimate that is obtained using the spectral fit method, we start with Eq. (9) and rewrite it as:

(23)

where a = −ΔB, b = −4dΔα, and fi are the individual frequency components of the
spectrum.

We apply the result of Eq. (20) to obtain the expected value and the variance of Sln(f)

(24)

Equation (24) shows that variance of Sln (fi) depends only on the number of averaged
independent power spectra of the sample and the reference. This result is important because
the variance in Sln (fi) is independent of the expected power spectra of the sample and
reference. Equation (23) is linear in the coefficients a, b, and c. Therefore, we use least
linear squares to calculate b̂, the estimated value of the coefficient b. According to
Bevington, b̂ can be written as [21]:

(25)

where Δ is given by (11), L is the number of frequency components of the usable frequency
range. The variance of b̂ can be expressed as [21]:
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(26)

Based on Eq. (26), the variance in Δα = b̂/4d is a function of the number of averaged
independent power spectra in the sample and the reference, and the number of frequency
components in the usable frequency range. The number of frequency components in the
usable frequency range is a function of the imaging system bandwidth and the size of the
time-gated window (ROI length in the axial direction). In previous work, Bigelow has also
shown that the variance in the total attenuation coefficient estimates is highly dependent on
the bandwidth and the number averaged spectra [15].

Given a reference TMP with a constant attenuation coefficient and an ultrasound system
with a fixed bandwidth, the only parameter that affects the variance of the estimate dαs is
the ROI size. The lateral dimension of the ROI depends on the number of averaged
periodograms of the sample and the reference, and the axial dimension of the ROI depends
on the size of the time gated window.

C. Statistical analysis of the multiple-filter algorithm
We derive expressions for the expected value and the variance of the total attenuation
coefficient estimate obtained using the multiple-filter method. First, we use Eq. (21) to
obtain the expected value and the variance of SGauss(f)

(27)

If we take the natural logarithm of equation (27), we obtain

(28)

Using Eq. (20), we obtain

(29)

If we add  to SGauss−ln(fi) in Eq. (28), we obtain:

(30)
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where . At each frequency component,  is a constant,
therefore the expected value and the variance of Snew (fi) are given by:

(31)

We can calculate a, the estimate of the coefficient a, by performing least linear squares on
Eq. (30). According to Bevington [21], the expected value and the variance of the estimate a
are given by:

(32)

where M is the number of frequency components in the spectrum SGauss(fi). Let L be the
total number frequencies of the spectrum S(f) and let K be the number of non-overlapping
Gaussian filters that are multiplied by the spectrum S(f). We have:

(33)

Using , Eq. (13) can be written as:

(34)

where j is the index of the Gaussian filter, i.e. j varies from 1 to K Gaussian filters. If the
Gaussian filters do not overlap, the random variables a(m) and a(n), such that m ≠ n, are
independent. Fig. 1 shows a plot of 3 independent Gaussian filters for a usable frequency
range from 5 MHz to 11 MHz.

Therefore, we can find an estimate for γ = 4dΔα by performing least linear squares on Eq.
(34). The expected value and the variance of the estimate γ is given by [21]:

(35)

where

(36)

Using Eq. (32), we can write var(γ) as
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(37)

As in the spectral fit method, the estimate of Δα= γ/4d is unbiased. The variance in Δα is a
function of the number of averaged power spectra in the sample and the reference, the size
of the time gated window, the number of frequency components in the usable frequency
range and the number of Gaussian filters.

IV. Validation of the statistical analysis using numerical simulations
A. Simulation Procedure

Computer simulations with a sampling frequency of 100 MHz were used to obtain two
different data sets of RF backscattered signals using a Gaussian focused beam (5 cm focal
length, 0.62 mm beam width, 7.5 MHz center frequency, and 50% -3dB bandwidth on
transmit). These simulation parameters are chosen because they approximate the properties
of a single-element focused transducer that we use for tissue characterization experiments on
phantoms and ex-vivo tissue. One data set was used as a sample while the other was used as
a reference. The sample and the reference had attenuation coefficients of 0.7 dB/cm-MHz
and 0.5 dB-cm-MHz, respectively. The sample scatterers were identical and uniformly
distributed and had a Gaussian Form Factor with a 20 µm effective radius. The reference had
uniformly distributed and identical spherical shell scatterers with 10 µm radii. The spatial
pulse length is 0.2 mm (0.25 µs, 1λ). Both the sample and the reference had a scatterer
density of 100 mm−3, corresponding to approximately 10 scatterers per resolution cell,
which is adequate for fully developed speckle [25]. The sample numerical data simulates
scattering from homogeneous tissues where local inhomogeneities in compressibility and
density result in ultrasound scattering. Similarly, the reference numerical data simulates
scattering from a tissue-mimicking phantom in which glass micro-spheres scatter incoming
ultrasound signals.

In the simulations, 3000 independent echo lines were generated for the sample and the
reference. Each RF echo line was gated with a rectangular window centered at the focus.
The power spectrum of each time gated window is approximated by taking the Fourier
Transform of the RF data and squaring the magnitude of the result. In order to operate above
the noise floor, the usable frequency range was selected to be the frequencies that are above
the noise floor.

B. Validation of the spectral-fit statistical analysis
The variance in dαs, the estimate of the attenuation coefficient in the sample multiplied by
the distance from the transducer surface to the center of the ROI, is equal to the variance in
dΔα which is given by (26). As discussed before, given a tissue mimicking phantom with a
constant attenuation coefficient and an ultrasound system with a fixed bandwidth, the only
parameter that affects the variance of the estimate dαs is the ROI size, i.e. the number of
averaged periodograms in the sample and the reference, and the size of the time gated
window. To validate Eq. (26), we varied the ROI width from 10 to 100 independent echo
lines in steps of 10 echo lines i.e. Ns= Nr = 10:10:100, and varied the ROI length from 1 to
20 pulse lengths in steps of 1 pulse length. We obtained 30 estimates for each combination.
At each combination of ROI length and ROI width, we used the usable frequency range to
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calculate the theoretical variance of the estimate dαs using Eq. (26). The theoretical standard
deviation (dB/MHz) is obtained by taking the square root of the result. At each combination
of ROI length and ROI width, we compared the standard deviation of the 30 estimates of
dαs to the theoretical standard deviation. Fig. 2 (a), (b), (c), and (d) shows plots of the
simulation-derived and theoretical standard deviations of the estimate dαs with respect to the
number of independent echoes per ROI with an ROI length of 5, 10, 15, and 20 pulse
lengths, respectively. Based on this figure, the theoretical standard deviation in the estimate
dαs is very similar to the simulation-derived standard deviation. The slight difference
between the simulation-derived and the theoretical standard deviations in Fig. 2 (a) is due to
the windowing effects which are more apparent at small time gated windows.

C. Validation of the multiple-filter statistical analysis
To test the validity of Eq. (37), we varied the ROI width from 10 to 100 independent echo
lines i.e. Ns = Nr= 10:10:100, the ROI length from 1 to 20 pulse lengths, and the number of
Gaussian filters from 2 to 10 filters, and we obtained 30 estimates of dαs for each
combination. At each combination of ROI length, ROI width, and number of Gaussian
filters, we used the measured usable frequency range to calculate the theoretical variance of
the estimate dαs using Eq. (37). The theoretical standard deviation (dB/MHz) is obtained by
taking the square root of the result. At each combination of ROI length and ROI width, and
number of Gaussian filters, we compared the standard deviation of the 30 estimates of dαs to
the theoretical standard deviation. Fig. 3 (a), (b), (c), and (d) shows plots of the simulation-
derived and theoretical standard deviation of the estimate dαs with respect to the number of
independent echoes per ROI for an ROI length of 5, 10, 15, and 20 pulse lengths,
respectively and with 2 Gaussian filters. Fig. 4 (a), (b), (c), and (d) shows plots of the
simulation-derived and theoretical standard deviation of the estimate dαs with respect to the
number of independent of echoes per ROI with an ROI length of 5, 10, 15, and 20 pulse
lengths, respectively and with 4 Gaussian filters. Based on these figures, the theoretical
standard deviation in the estimate dαs is very similar to the simulation-derived standard
deviation. As mentioned before, the slight difference between the simulation-derived and the
theoretical standard deviation in plots (a) is due to the windowing effects which are more
apparent at small time-gated windows.

By comparing Fig. 3 and Fig. 4, we observe that for a specific ROI length and ROI width,
the variance in the estimate of dαs is smaller when the number of Gaussian filters is two
compared to when the number of Gaussian filters is four. To test the dependence of the
multiple filter algorithm on the number of Gaussian filters, we fixed the ROI length to 15
pulse lengths, the ROI width to 60 independent echo lines, and we plotted the simulation-
derived and theoretical standard deviations of the estimate dαs with respect to the number of
Gaussian filters as shown in Fig. 5. Based on this figure, we observe that standard deviation
in the estimate dαs increases with increasing number of Gaussian filters. Therefore, the
optimal number of Gaussian filters for the multiple-filter algorithm is equal to 2 when the
filters are independent.

V. COMPARISON OF THE SPECTRAL FIT METHOD AND THE MULTIPLE
FILTER METHOD

The derived expressions for the variance in the attenuation coefficient estimates (ACEs) that
are obtained using the spectral fit method (see Eq. (26)) and the multiple filter method (see
Eq. (37)) are not easily interpreted. Therefore, in order to compare these two equations, we
used the simulation data that was described above and we varied the axial ROI size from 5
pulse lengths to 20 pulse lengths, and the lateral ROI size from 10 to 100 independent echo
lines. For each ROI, the corresponding parameters (the number of averaged spectra and the
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number of usable frequency components) were used in (26) and (37) to obtain the theoretical
variance in the ACEs. Fig. 6 shows plots of the theoretical standard deviation of the
estimates dαs versus the number of independent echoes per ROI for an axial ROI size of 5
pulse lengths, 10 pulse lengths, 15 pulse lengths, and 20 pulse lengths, respectively. Based
on Fig. 6, the STDs in the ACEs that are obtained using the spectral fit method are
comparable to the STDs in the ACEs that are obtained using the multiple filter method. Fig.
6 also shows that for both attenuation estimation algorithms, the variance in the ACEs has a
larger dependence on the lateral ROI size than the axial ROI size. For example, if the axial
ROI size is doubled there is less than a 10% decrease in the STD of the ACEs, however; if
the lateral ROI size is doubled the STD in the ACEs decreases by nearly 40%.

VI. Discussion and Conclusion
In this paper, we performed statistical analysis on the spectral-fit method and the multiple-
filter method for estimating the total attenuation along the propagation path. We found that
both estimators are unbiased and that the variance in the total attenuation coefficient
estimates depends on the number of frequency components in the usable frequency range
(transducer bandwidth and axial ROI size), the number of independent echoes per ROI
(Lateral ROI size), and the number of independent Gaussian filters in the multiple filter
method. The number of frequency components in the usable frequency range is a function of
the transducer bandwidth, and the size of the time gated window (ROI length in the axial
direction). Note that for given ROI size and usable frequency range, both methods yield
similar computation time for obtaining an estimate of the attenuation coefficient.

One important assumption in the two algorithms is that the region of interest must be
homogeneous. Tissue inhomogeneities resulting from regions of mixed tissues or specular
reflectors will reduce the accuracy of the algorithms. In a recent paper [26], we have shown
that the error in the attenuation coefficient estimates increases with increasing variance in
the scatterer number density and the scatterer size within the ROI. Currently, none of the
algorithms for estimating ultrasound attenuation along the propagation path consider tissue
inhomogeneities. Nevertheless, this problem is of significant importance and is the subject
of an ongoing study. Another important aspect that hasn’t been addressed before is the effect
of tissue motion on the accuracy of the algorithms. However, we know that tissue motion
leads to a decorrelation of the ultrasound echoes resulting in an increase in the number of
independent echoes per ROI. Therefore, tissue motion will likely improve the performance
of the algorithms.

We have shown that for the multiple filter method, the optimal number of Gaussian filters is
2 when the filters are independent. Furthermore, the spectral fit method and the multiple
filter method with 2 independent Gaussian filters yield comparable results in terms of the
bias and the standard deviation of the total attenuation coefficient estimates. In the
derivation of the variance in the ACEs using the multiple filter method, we assumed that the
Gaussian filters are independent. However, using overlapping Gaussian filters may give
better results than using only two independent Gaussian filters. Due to the correlation in the
spectra that results from using overlapping Gaussian filters, it is difficult to obtain an
expression for the variance in the ACEs. This variance however, can be explored using
computer simulations.

In previous studies of the multiple filter method [13, 15], Bigelow used four overlapping
Gaussian filters. Three of the four Gaussian filters had center frequencies that formed 4
equally spaced intervals within the usable frequency range. The fourth Gaussian filter
spanned the entire usable frequency range and had a center frequency that corresponded to
the middle of the usable frequency range. We used computer simulations to compare the
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spectral fit method, the multiple filter method with 2 independent Gaussian filters, and the
multiple filter with 4 overlapping Gaussian filters which was used in Bigelow’s previous
studies. Using the simulation data that was described above, we varied the lateral ROI size
from 10 to 100 independent echo lines, the axial ROI size from 1 to 20 pulse lengths, and we
obtained 30 estimates of dαs using each method. At each combination of ROI length and
ROI width, we compared the bias, the standard deviation, and the mean square error (MSE)
in the 30 estimates of dαs that are obtained using each method.

Fig. 7 (a), (b), and (c) shows plots of the bias, STD, and MSE, respectively, of the estimates
dαs versus the number of independent echoes per ROI for and ROI length of 10 pulse
lengths. Similarly, Fig. 8 (a), (b), and (c) shows plots of the bias, STD, and MSE,
respectively, of the estimates dαs versus the number of pulse lengths per ROI and an ROI
that contains 50 independent echo lines. Based on these 2 figures, the MSE is comparable
for both the spectral fit method and the multiple filter method with 2 independent Gaussian
filters, with the spectral fit method having a slightly smaller STD and a slightly larger bias
compared to the 2 independent filter method. These two figures also show that in the
multiple filter method, using 3 overlapping Gaussian filters and a fourth filter that spans the
entire usable frequency yields a smaller variance in the attenuations estimates compared to
using only 2 independent Gaussian filters. This result demonstrates that using 2 overlapping
Gaussian filters and a third filter that spans the entire usable frequency range may give better
results than using 3 overlapping Gaussian filters and a fourth Gaussian filter that spans the
entire frequency range. A careful study must be done to find the optimal amount of overlap
between the two Gaussian filters, and to find the optimal location of their center frequencies
within the usable frequency range. The study could be done by modifying (35) to include the
covariance between the random variables a(1) and a(2) (see (32)) which result from the first
and the second Gaussian filters, respectively. The study may be complicated by the fact that
the amount of overlap between the two Gaussian filters must be translated into a covariance
between the random variables a(1) and a(2). However, computer simulations may be used to
explore these issues.
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• Ultrasound attenuation along the propagation path

• Spectral-fit algorithm

• Multiple-filter algorithm
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Fig. 1.
Plot of 3 independent Gaussian filters.

Labyed and Bigelow Page 15

Ultrasonics. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Plots of the simulation-derived and theoretical standard deviations of the estimate dαs,
which was obtained using the spectral fit method with an ROI length of (a) 5 pulse lengths
(b) 10 pulse lengths (c) 15 pulse lengths (d) 20 pulse lengths, with respect to the number of
independent of echoes per ROI.
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Fig. 3.
Plots of the simulation-derived and theoretical standard deviations of the estimate dαs,
which was obtained using the multiple filter method with 2 Gaussian filters and an ROI
length of (a) 5 pulse lengths (b) 10 pulse lengths (c) 15 pulse lengths (d) 20 pulse lengths,
with respect to the number of independent of echoes per ROI.
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Fig. 4.
Plots of the simulation-derived and theoretical standard deviation of the estimate dαs, which
was obtained using the multiple filter method with 4 Gaussian filters and an ROI length of
(a) 5 pulse lengths (b) 10 pulse lengths (c) 15 pulse lengths (d) 20 pulse lengths, with respect
to the number of independent of echoes per ROI.
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Fig. 5.
Plots of the simulation-derived and theoretical standard deviation of the estimate dαs, which
was obtained using the multiple filter method with an ROI length 10 pulse lengths and an
ROI width of 60 independent echo lines, with respect to the number of Gaussian filters.
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Fig. 6.
Plots of the theoretical standard deviation of the estimate dαs,which was obtained using
spectral fit method and the multiple filter method with 2 Gaussian filters with an ROI length
of (a) 5 pulse lengths (b) 10 pulse lengths (c) 15 pulse lengths (d) 20 pulse lengths, with
respect to the number of independent of echoes per ROI.
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Fig. 7.
Plots of the (a) bias (b) STD, and (c) MSE of the estimate dαs, which was obtained using the
multiple filter method with 3 independent Gaussian filters, the multiple filter method with 3
Gaussian filters, the multiple filter method with two independent filters, and the spectral fit
method, with respect to the number of independent of echoes per ROI for an ROI length of
10 pulse lengths.

Labyed and Bigelow Page 21

Ultrasonics. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Plots of the (a) bias (b) STD, and (c) MSE of the estimate dαs, which was obtained using the
multiple filter method with 3 Gaussian filters, the multiple filter method with two
independent filters, and the spectral fit method, with respect to the number of pulse lengths
per ROI for an ROI that contains 50 independent echo lines.
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