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Abstract
Spatial variation in regional flows within the heart, skeletal muscle, and in other organs, and
temporal variations in local arteriolar velocities and flows is measurable even with low resolution
techniques. A problem in the assessment of the importance of such variations has been that the
observed variance increases with increasing spatial or temporal resolution in the measurements.
This resolution-dependent variance is now shown to be described by the fractal dimension, D. For
example, the relative dispersion (RD=SD/mean) of the spatial distribution of flows for a given
spatial resolution, is given by:

where m is the mass of the pieces of tissue in grams, and the reference level of dispersion,
RD(mref), is taken arbitrarily to be the RD found using pieces of mass mref, which is chosen to be
1 g. Thus, the variation in regional flow within an organ can be described with two parameters,
RD(mref) and the slope of the logarithmic relationship defined by the spatial fractal dimension Ds.
In the heart, this relation has been found to hold over a wide range of piece sizes, the fractal Ds
being about 1.2 and the correlation coefficient 0.99. A Ds of 1.2 suggests moderately strong
correlation between local flows; a Ds=1.0 indicates uniform flow and a Ds= 1.5 indicates complete
randomness.

Keywords
2-iododesmethylimipramine; microspheres; regional myocardial blood flow; flow heterogeneity;
heart; fractals; relative dispersion coefficient of variation; sheep; baboons; rabbits

It is now well established that regional myocardial blood flows show considerable spatial
heterogeneity. This has been thoroughly demonstrated by those laboratories in which small
tissue pieces were used and the whole of the myocardium was sampled. Probability density
functions of regional flows were generated in this fashion by Yipintsoi et al1 in the dog, by
King et al2 in the baboon, and by Bassingthwaighte et al3 in the rabbit. Using pieces that
were less than 1% of the ventricular mass, these investigators found local flows ranging
from a third of the mean flow to over twice the mean flow. The relative dispersions (RDs) of
the distributions (RD=SD/mean) were about 35% in these three species when observations
were made by dividing the hearts into 100–250 pieces.

This large variability appeared suspect and seemed possibly attributable to inherent variation
in the microsphere deposition technique, even though the results were very reproducible.3

The spheres were recognizably large compared with the vessels in which they were
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deposited, and causes of maldistribution with rheology and branching4 are numerous.
Microsphere tracer counting error exacerbates the problem. However, the studies of
Bassingthwaighte et al3 showed that in comparison to a molecular flow marker,
microspheres were not seriously in error, even though a small systematic bias was observed.

The variance observed by Marcus et al5 for regional flows in dog myocardium gave a
relative dispersion of 21%, smaller than we had found. They divided the left ventricular
myocardium into 96 pieces of about 1 g each; this focuses the question on sample size. In
this study, we show that use of large tissue pieces underestimates the degree of observable
heterogeneity and that this is not due to methodological error. An example of the
dependence of the estimate of dispersion on the size of the pieces is shown in Figure 1. The
finer the myocardium is cut, the broader the distributions of regional flows become. This is a
fundamental property of any density function over a spatial domain.

Fractal phenomena are those that show self similarity upon scaling. In some systems, the
observable degree of heterogeneity increases as resolution of the method increases. When
these increases are proportional, the relation can be fractal or at least is describable by a
fractal relation, if it holds true over a sizable range of observation unit sizes.6,7

In this study, we show that a simple fractal relation provides precise descriptions of the
heterogeneity of regional and myocardial blood flows over a wide range of piece sizes. The
simplicity of the relation allows the variances to be described by two parameters: the
variance at a particular piece size and the fractal dimension or noninteger power that relates
the size of the pieces to the dispersion.

Materials and Methods
Fractal Methodology

A system having a “fractal nature” is one with one or more characteristics that remain
constant when examined over a wide range of scales. A fractal boundary, for example,
would be one that appears as equally invaginated or “crumpled” regardless of the
magnification with which it is examined. A characteristic of such a boundary is that its
apparent length increases as shorter and shorter standards are used to measure it. The change
in apparent boundary length is related to the length of the measuring stick in a deterministic
way. See Peitgen and Saupe8 for a lucid explanation of fractals.

Mathematical fractals are generated by recursive expressions wherein each generation is
derived from the preceding in a specific way. The basic fractal expression is a summarizing
statement describing a recursion. In a single dimension, the idea is diagrammed as in Figure
2. The recursion may be deterministic, stochastic, or some combination of both (e.g.,
deterministic with scatter of a specified form). The (n+1)th value of the recursive feature is a
function of the nth value, so that even when this is a linear function the relation over two or
more generations must be nonlinear.

Many of these fractal ideas and quite useful descriptions were initiated by the work of
Mandelbrot,9,10 and more practical applications are being found day by day.7 For the
Mandelbrot set, now famed for the beautiful pictures that can be produced from it, the

recursion is purely deterministic and is simply , where Z and C are complex
numbers.

Branching networks can be seen to be fractal, as in Mandelbrot’s example of a recursion
similar to the bronchial tree of the lung.10 Branching arterial trees, bronchial trees, or
mathematical analogs to real trees may be fractal in more than one dimension and have
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modifying features such as requirements to be space-filling. For example, ratio of parent-to-
daughter branch lengths might differ from the ratio for branch diameters.

The branching network of the myocardial vascular system might be expected to have a
fractal nature. If this is so, the observed heterogeneity of regional myocardial blood flow
would be dependent on the size of the measuring stick, that is, on the number of pieces into
which the heart is divided. This fractal relation can use either the number of pieces or the
mass of the pieces. The logic is as follows: Given that a fractal relation exists between the
observed RD of regional flows and N, the number of pieces into which the heart has been
divided, the relation can be expressed by the equation:

(1)

where RD(N=1) is the intercept obtained by extrapolating to one piece, and D is the fractal
dimension, commonly a noninteger power. (The fractal relation has no meaning with respect
to dispersion when there is only one piece.) A more general approach is to relate the RD to
the mass of the individual pieces. Let a heart of total mass (M) be divided into Nm pieces
each of mass (m) grams (i.e., m=M/Nm). Then, from Equation 1:

(2)

Further, let Nref be the number of pieces with individual mass mref grams and with relative
dispersion RD(mref). Then

(2)

which can be rearranged to give

(3)

Substituting Equation 3 into Equation 2 gives

(4)

Since

Equation 4 can be rewritten as

(5)
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Thus, Equations 1 and 5 have the same fractal dimension. Equation 1 and Equation 5 define
explicitly the hypothesis that variation in local myocardial blood flows follows fractal rules.
If the equation can be well fitted to data, then we will be able to say that the fractal
hypothesis cannot be rejected. Equation 5 reduces to RD(m)=RD(m=1) · m1−D, but the
expression leaves out the implicit understanding that mref=1 g. It is convenient to use an mref
of 1 g, and the relative dispersion observed from the flows in 1-g pieces to be RD(mref). The
logarithmic form of Equation 5 is obtained by taking the logarithm of both sides:

(6)

or

(7)

Experimental Methodology
The data on deposition densities in the myocardium of baboons were obtained using
standard experimental approaches for microsphere measurements of flow as outlined by
Heymann et al11 using 15-μm diameter spheres. In 10 awake baboons, injections of four to
six differently labeled microspheres were made at different times in control states and during
mild exercise or heat stress; in another group of three animals, differently labeled
microspheres were injected simultaneously. The methodology is outlined in detail by King
et al.3

The methodology used in the anesthetized open-chested sheep and rabbit experiments was
similar except that, in addition to microspheres, the “molecular microsphere”
iododesmethylimipramine (IDMI) was also used. In five of 11 sheep and in all of the rabbits,
two differently labeled IDMIs and two differently labeled 15-μm microspheres were
injected simultaneously into the left atrium. In the other six sheep, only one IDMI and one
microsphere type were used. The hearts were stopped 1 minute later. The methods used in
rabbits are given in detail by Bassingthwaighte et al2 and for sheep by Bassingthwaighte et
al.12

For all of these animals, the hearts were sectioned in accord with a standard scheme similar
to that used for the baboons.3 Only the left ventricular data are used for the analysis which
follows. The ventricular myocardium was studied; it was divided into four rings from apex
to base, and each ring was divided into eight sectors (like sections of a pie), except that in
baboons, the apical ring was only divided into four sectors. Each sector was divided into a
series of slices from endocardium to epicardium (three slices in the rabbit and six in the
sheep and baboons). The total number of left ventricular pieces was usually 96 in the rabbit,
168 in the baboon, and 192 in the sheep.

Data Analysis
Calculation of the observed heterogeneity of regional blood flow—From the
amount of radioactivity in an LV piece, the relative deposition density (dj) could be
calculated as follows:

(8)
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where aj is the activity measured in the piece, mj is the mass of the piece, A is the total
activity in all the LV pieces of that heart, and M is the total LV mass. From the djs in all the
LV pieces of a heart, a probability density function was constructed. Since all the djs were in
the range 0.0 to 3.0, this range was divided into 30 intervals of width 0.1. The pieces were
then sorted into groups according to the interval into which dj for the piece fell. Since each
tracer gave a value for dj in the piece, the arithmetic average of all the measurements in the
piece was actually used as the sorting criterion. The probability density for a group was the
ratio of the sum of the masses of the pieces in the group to the total LV mass times the
interval width. Mathematically, this is expressed as

(9)

where the subscript j refers to the pieces and the subscript i refers to the groups.

This gives the probability density function in the form of a finite interval histogram. The
area of the histogram is unity and, given a large number of observations or very narrow class
widths, its mean is also unity. Because the mean of the djs in each group is not necessarily
equal to the midpoint of the interval, these relations are imperfect, but in practice the errors
are less than 1%. The RD of the density function is SD/d̄; since d̄ = 1, the RD is equal to the
standard deviation, SD. It is this relative dispersion of the probability density function that is
used as a measure of the heterogeneity of regional myocardial blood flow.

Calculation of the observed heterogeneity at different sample sizes—When a
heart has been cut into many small locatable pieces, these pieces can be regrouped to form
larger pieces composed of adjacent subpieces. The average activity of the aggregate larger
piece is the mass-weighted average of the activities of the component pieces. Thus, in
retrospect, the relative dispersion can be calculated from the individual pieces and then for
aggregates of pairs (sets of four, eight, etc., pieces), thereby putting the heart back together
again. An example of the results of this procedure is shown in Figure 1. For each grouping, a
single value of RD is obtained, but adjacent pieces can be apposed in several different ways,
so that for the same sizes of groups or masses of aggregated pieces, the RDs can be
calculated in an increasing number of different ways as more and more pieces are put
together. Table 1 lists the number of configurations of adjacent pieces to form a volume
element, voxel, of each size. The table applies to the sheep studies, so that the actual masses
vary from animal to animal. The number of configurations at each voxel size is less in
rabbits.

Using this approach, one gets both an average dispersion at each effective piece size and an
estimate of the variance of the dispersion. A complicating factor not written into our fractal
expressions is that there is also variation in the piece size at each of these levels, since the
aggregates were put together in a pattern fashion rather than in a fashion designed to achieve
a particular mass. (If this size variation were proportionately greater at larger aggregate
sizes, this would tend to underestimate the fractal slope Ds.)

Fractal Analysis
Linear least-squares regression lines were obtained for the logarithm of the relative
dispersion versus the logarithm of the average mass of the aggregate pieces, at each level of
division. Excluded from the regression were aggregates weighing more than 2 g. Because
the correlations were high, there is no important difference between the log-log regressions
and the optimized best fits of Equation 6 against the data using linear least squares, and the
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expedient process of using the linear least-squares fit of the logarithms was considered
acceptable in this circumstance, as discussed by Berkson.13

When the deposition of a radioactive tracer is used to measure the relative dispersion of
flows, the observed dispersion (RDobs) is the composite of at least two dispersive processes
which we will distinguish as spatial dispersion (RDs) and methodological dispersion (RDM).
It is the spatial dispersion alone that is of interest, since it might be based on a fractal
branching vascular network. If the variations due to the method and due to the spatial
heterogeneity are independent processes, the total variance is the sum of the variances of the
components. Since all the distributions are normalized to have a mean of unity, this relation
can be summarized in terms of the RDs:

(10)

Two to six observations of activity due to IDMI or microspheres were made in each piece or
aggregate. RDM for a given spatial resolution is calculated as the average of the percent
differences between two flow measurements. For example, for four observations in a piece
and 192 pieces, there are six estimates of RDM in each piece times 192 pieces, giving 1,152
estimates of RDM, and the average of this is used. RDM is composed of both counting error,
which increases as the total number of disintegrations per minute diminishes, with the
reciprocal of the number of microspheres deposited, and with weighing error. Thus, we
concluded that even though the methodological error appears to follow a fractal relation very
well, it is not likely to be inherently a fractal phenomenon. If RDM is nonfractal, that is, does
not follow Equation 5, then the combination of Equations 5 and 10 can still hold true for
both RDs and RDobs. (Equation 10 must always be true but Equation 5 cannot be true for
more than two out of RDs, RDM, and RDobs, as can be seen by substituting.) However, since
RDobs contains the methodological error, the logic used in judging RDM to be not
necessarily fractal should also apply to RDobs. Consequently, we consider the spatial
heterogeneity as characterized by RDs to have the best possibility of being fundamentally
fractal, and observed dispersions were corrected for methodological dispersion to give RDs
before fractal analysis was applied.

Results
Data were obtained from 10 baboons, 11 sheep, and six rabbits. The physiological data in
these animals are given in the publications referred to in “Materials and Methods.” The
baboons were awake, and the sheep were all in quite good physiological condition, as were
four of six of the rabbits. However, two rabbits had low blood pressures and high heart rates
at the time of the injection.

Assessment of Differences Between Microsphere and IDMI Results
The assessment of the two deposition markers for regional flow, IDMI (the “molecular
microsphere”) and 16-μm diameter microspheres is the subject of two previously reported
studies,3,12 but the results are mentioned here because they provide the background
methodology for the present study. The main result is that microspheres provide moderately
accurate estimates of regional flow in pieces down to 0.1 g but that the methodological
variation is two to four times that for the IDMI deposition technique. A secondary result is
that there are small systematic biases in the deposition of particulate spheres; the larger bias
is toward preferential or excessive deposition in regions of higher flow; there is also a
smaller bias toward excessive deposition in subendocardial versus subepicardial regions.
Both biases combine with the methodological variation in the sphere technique to produce
probability density functions for sphere deposition that are slightly broader than for the
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deposition of the molecular marker IDMI. This is reflected in higher RDs, the standard
deviations of the density functions for spheres, as is shown in Figure 3.

The data of Figure 3 are from one sheep left ventricle, cut into 186 pieces because fewer
were obtained at the apex. The relative dispersions obtained for the first piecing, with an
average piece mass of 0.16 g, are the largest. Grouping into larger masses gives
progressively less total variation as the group mass increases. RDs from microspheres are
consistently greater, as must be the case when both true regional flow variation and
methodological noise contribute to the measure. What can be said is that true flow variation
in samples of a given size can only be less than the values plotted. What can also be said is
that larger pieces show less apparent variation, which must be true whenever there is spatial
variation within the pieces. The objective is to estimate the true flow variation by accounting
for these factors.

Probability Density Functions of Regional Flows
Since the LV regional flows in each animal were calculated relative to the mean flow to the
entire left ventricle, the data from a group of animals could be pooled and a composite
histogram constructed. Figure 4 shows composite distributions for data from the left
ventricle in baboons, sheep, and rabbits. In the baboons and sheep, the distributions are
shown for seven sample sizes obtained by using the number of pieces described in Table 1.
Since the left ventricle of the rabbit was divided into 96 pieces, only six sample sizes are
shown. Using the composite of the animals in each species provides smoother curves and
illustrates that the phenomena is general. At the same time, because the shapes of the
distributions in the animals do differ in whether it is skewed to the left or to the right, the
composite distributions tend to be more spread than the individuals. Figure 4 emphasizes
that when the heart is divided finely, the spread of the distributions is broader, and that
cutting only a few large pieces per heart gives an underestimate of the underlying variation
in regional flows.

Separation of Methodological, Spatial, and Temporal Components of the Observed Flow
Heterogeneity

Data on five of the 11 sheep and all of the rabbits were obtained with two simultaneously
injected IDMIs labeled with 131I and 125I. This strategy allowed an evaluation of the
methodological error in the IDMI technique. Thus, the spatial dispersion in flows was
calculated using a revision of Equation 10:

(11)

In this analysis, no assumptions are made regarding the fractal nature of the observed or
methodological dispersions. At each piece mass, the observed and methodological
dispersions were computed, and the resulting spatial dispersion was calculated. Fractal
analysis was applied only to the spatial dispersion by fitting the values of RDs versus mass
m with the regression expression of Equation 6. The relations are plotted for a single sheep
in Figure 5 (right panel). The rabbit data were treated similarly since RDM was known for
both spheres and IDMI.

In the baboons, one of which is shown in the left panel of Figure 5, the calculation of RDs
was somewhat different because four to six temporally separated injections of different
microsphere rather than a simultaneous paired control were made. Thus, the dispersions
measured by the several measurements in a piece had components due to both the
microsphere method and temporal dispersion:
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(12)

The observed dispersions in the baboons were so corrected to yield RDs. Fractal relations
between spatial dispersion and piece mass were similar to these in sheep and rabbits (see
below and Table 2). We note the RDτ,M is a measure of reproducibility and fails to provide a
measure of the small systematic biases observed with the microsphere technique by Utley et
al,14 Yipintsoi et al,1 and demonstrated recently in our lab where we note a small bias
toward deposition of 15 μm microspheres in high flow regions compared to IDMI
deposition. That there is an observed bias does not mean RDM is over or underestimated, but
it would suggest that RDs might be overestimated slightly.

In addition to the 10 baboons discussed above, simultaneous injections of microspheres with
different radioactive labels were made in a separate group of three baboons. Using the data
from these three baboons to measure RDM, corrections were applied to RDτ,M to estimate
the temporal dispersion RDτ alone:

(13)

The results of the analysis of the temporal data from the 10 baboons are shown in Figure 6.
As for the purely spatial heterogeneity, the temporal component of the spatial variation
shows a fractal regression relationship over the small, 10-fold range available to test. Since
the temporal component is small compared with the spatial variation, that is, the RDτ(m=1)
of 6% is much less than the spatial RDs(m=1) of 11–21% in baboons, we conclude that the
spatial distributions must be relatively stable in their spread and also that individual regions
do not vary greatly in flow.

Fractal Relations for Spatial Dispersion of Regional LV Flow
The corrected RDss were plotted as a function of piece mass for the composite data from the
10 baboons, 11 sheep, and six rabbits. These results are shown in Figure 7. The thin lines
represent the log-log regressions for the individual animals, using pieces up to 2 g and
ignoring the coarsest groups of larger aggregate mass. For the baboons, each individual line
is a composite of four to six sets of microsphere observations, for a total of 1,224
observations of relative regional flow within the pieces of the smallest mass, with decreasing
numbers of observations in each of the aggregated pieces of larger mass in the same animal.
The composite regression, the thick line, performed on a total of 48,588 data points from the
baboons, has a fractal D of 1.202 (r=0.998) while the average value of Ds from the 10
animals was 1.21±0.04. The individual values for the slope and intercept are given in Table
2.

The RDss calculated from IDMI distributions determined in the sheep are shown in the
center panel of Figure 7. The average Ds for the individual animal is 1.17±0.07 (N=11) and
the composite Ds is 1.160 (r=0.997) with the total number of observations being 12,765. The
IDMI data for the rabbits (Figure 7, right panel), show approximately similar slopes. The
individual Dss average 1.25±0.07 (N=7), and the composite is 1.225 (r=0.985) on 4,404
observations. Data for the individual sheep and rabbits are given in Table 2. The fractal
slopes Ds for microsphere distributions in sheep and rabbits were essentially the same as for
the IDMI distributions.

An unexpected finding with interesting implications is the observation that hearts with larger
spatial variation at 1 g voxel size tend to have smaller fractal slopes, the fractal D, as in
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Figure 8. This might imply that in normal hearts there is a limit to the heterogeneity at the
microvascular unit level and that hearts with RDs closer to this limit must have lower rates
of increase in RD with diminishing voxel size.

Discussion
Two points are clarified by this study. First, observed variation in regional myocardial blood
flow increases as the resolution is increased, and second, a two parameter fractal relation is a
strikingly accurate descriptor of this change that satisfies the need for a summary of the data
over the 20-to 40-fold range of sample sizes in our data. The mere fact that two parameters,
the dispersion at a particular resolution RD(mref) and a noninteger slope (or fractal
dimension Ds), describe the observations over a wide range of observed element sizes is a
useful attribute that augments our set of descriptive statistical tools. The two-parameter
description is useful for describing the variances in intensities of a characteristic over a
domain that has no a priori definition of the unit size, and might augment standard statistical
approaches.

The accuracy of the fractal descriptor raises the question of whether there is a true fractal
phenomenon underlying the observations of regional flow. A purely deterministic branching
network with a constant set of rules (e.g., a constant ratio of parent-to-child branch lengths,
constant branch angles, and fixed ratios of diameter to length at each generation) will have
the same resistance to flow in all the branches of a given generation and will give uniform
flow per unit volume in the supplied regions. Such deterministic rules are unlikely to lead to
the situation that we observe in the myocardium: a remarkable nonuniformity of flow. On
the other hand, there is no reason that the set of rules need be purely deterministic. Equally
valid rules might be that each generation branches with a fixed mean angle plus or minus a
prescribed random variation with branch lengths and diameter ratios also fulfilling precisely
defined statistical rules. A set of stochastic rules of this type does not lead to uniformity as
the different branches of the same generation will now have different resistances, and
chance alone will lead to a wide range of flows in the terminal branches. The wider the
individual variances prescribed by the rules, the broader will be the heterogeneity of
observed regional flows.

The data of Suwa et al15 and Suwa and Takahashi16 show that the renal and mesenteric
arteriolar trees have rather consistent log-log relations in ratios of branch lengths, diameter
ratios, wall thickness to diameter ratios, radius-to-length ratios, and even intra-arterial
pressures over up to a 200-fold range of lengths. These types of data are not yet available for
the heart. It will be very worthwhile to undertake detailed studies of the geometry of the
myocardial microvasculature and its variability in the intact state. Given sufficient
information on the vascular geometry, a “fractal heart” model could be generated. This
would require development of a set of rules governing the branching, lengths, diameters, etc.
that adheres to the space-filling nature of the system of capillary-tissue units. The data
presented in this study can serve as a test of the adequacy of any such model. Other tests
would include the vascular resistances, volumes, pressures, and velocities, all of which are
observable.

As the spatial resolution for cardiac flow imaging has improved, flow heterogeneity in the
normal human myocardium has recently come under consideration. While the resolution of
thallium imaging is so low that local variation is not seen in normal hearts, with the higher
resolution positron emission tomography (PET)17 the level of variability described in our
animal studies can be recognized, but not accurately quantitated, in humans. Such
recognition of the normal variation is important in defining the limits of “normality” in more
precise terms than has been previously required. One wishes to avoid making diagnoses of
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regional underperfusion in what are actually normal people. This is especially important as it
now appears that early evidence of certain cardiomyopathies may lie in an observation of
flow heterogeneity.18 The approach used in these studies to obtain the data on dispersion
versus sample size could be applied to PET data. Starting with the highest resolution PET
image, adjacent voxels could be combined in an ordered manner to give a set of lower
resolution images that could be analyzed for flow heterogeneity. Thus, while the resolution
of PET does not approach that of tissue sectioning techniques, the use of the fractal
descriptor may allow extrapolation of the PET results down to the level of tissue sectioning
resolution if the fractal relation holds to that level. Experiments are needed at much higher
resolution to see how far one can go with this idea.

Another application of the knowledge on flow heterogeneity is in the analysis of data on
solute exchange. The multiple indicator technique provides a good example. When a set of
tracers are injected into the inflow of an organ and a set of outflow dilution curves is
obtained by sequential sampling from the outflow, the estimation of kinetic rate constants
for membrane permeation or chemical reaction are dependent on the estimates of
heterogeneity of flows or transit times through the organ. For example, if the relative
dispersion of regional flows is 40%, the myocardial capillary permeability-surface area
products for sugars are underestimated by over 50% when the capillary flows are considered
uniform instead of accounting for the flow heterogeneity.19 This is a situation where one
would like to use the fractal relationship to predict the degree of heterogeneity at the level of
the functional microvascular unit size. If the fractal relationship holds down to this unit size,
one would predict the heterogeneity by extrapolation and use it in the model analysis of the
observed dilution curves. Our linear fractal relationships predict that, if the unit size is of the
order of one cubic millimeter, the relative dispersion of flows would be more than 60%. This
would give a larger estimate of capillary PS than would be obtained by assuming uniform
flow, as much as 80% larger. There are two problems with simply taking the bull by the
horns and applying this “fractal fix.” The first is that the actual microvascular unit size is not
precisely known; the second is that there is no assurance that the fractal relationship holds
down to that level. Important new inferences on the unit size from the observations of
Shozawa et al20 suggest a volume of one fifth to one third of a cubic millimeter, smaller than
the half to one cubic millimeter that Bassingthwaighte et al21 conjectured. The extension of
the fractal relation down to the ultimate unit size is an unlikely event. Rather, one would
expect that the relative dispersion of flows would begin to plateau before this limit is
reached, because one expects that flows in nearby or adjacent regions to be more similar to
each other than are flows in regions distant from each other. This similarity is in keeping
with our results showing a fractal dimension of about 1.2 in these hearts, whereas a purely
random process would have a fractal dimension of 1.5. The association of flows in
neighboring regions demands further study with techniques providing data of very high
resolution.

Structures of a uniform grain size can show up as peaks in the fractal plot, as illustrated and
analyzed by Wright and Karlsson.6 They show that when there is variation in the grain sizes
the peaks are less distinct. In our plots, there is no evidence of peaks deviating from a fractal
line. This could conceivably mean that our sequence of steps between the piece masses used
was simply so coarse that a peak was missed. If that were so, one might have expected to
find a hint of a peak, a point above the fractal line, on at least one animal, but none was
seen. The likely explanation is that there is no fundamental grain size or functional unit size
above the size of the terminal vascular unit and which is much smaller than our crude
piecing can reveal.

This study provides no insight into whether or not the regional flows are related to local
metabolic needs. Certainly some variation in local metabolism is expected, as the fractions
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of connective tissue, myocytes, etc., must vary somewhat. The natural expectation is that
metabolism drives local flow. While flow and metabolism must be fairly closely related in a
functioning organ, it may also be that the branching of the vascular tree leads inevitably to
flow heterogeneity that influences the growth and development of the local capacity for
metabolism.

Fractal relations describe the degree of flow heterogeneity over a wide range of sample
volumes in the hearts of baboons, sheep, and rabbits. Further studies are needed to elaborate
the generality of these findings and to define the limits of applicability of the concept. The
relation is not yet based in a secure way on the nature of the vascular tree or its dynamic
behavior, although there are reasonable inferences that this may be so. How far this concept
extends toward the functional microvascular units where the exchange occurs is unknown,
but among the incentives to discover how far the idea can be carried is the need to account
for flow heterogeneity when making estimates of transport rates, membrane permeabilities,
and intracellular reaction rates in vivo, all of which are needed for both physiological studies
and for the interpretation of images obtained in clinical situations by positron and single
photon emission tomography.
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Appendix: Fractal Dispersions of Densities
This appendix provides numerical examples of aggregates of randomly varying values. The
purpose is to illustrate that the fractal dimension is lower for correlated than for random
phenomena.

Begin with observations in a spatial domain of the intensities of a property. Examples are
the number of stars or galaxies per unit volume in space, the number of cape buffalo per
hectare in the Serengeti, or the specific gravity of a milliliter of angel cake. Even though the
measurement is error free, there is variation in each concentration or density, just as there is
for regional blood flows in the heart. The coefficient of variation, the RD, is an index of the
variability or heterogeneity within the domain. If the variation is perfectly random, then any
one set of observations at a particular size of observed unit serves to characterize it
completely. The reason this can be claimed as a complete characterization is that no matter
how the samples are grouped, the standard deviation of a set of aggregates of random values
is predictable from the size of the aggregate, Magg, compared with any other aggregate size,

; thelarger the sizes of the aggregates, the smaller the variation amongst aggregates of
the particular size:

By aggregating nearest neighbors, the variance decreases. When the individual values of the
smallest elements are purely random Gaussian, and no ordering of the array has been
undertaken, then the fractal D is 1.5 and a doubling of the size of the aggregate reduces the

variance by 30% or the SD to :
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Even when the statistical basis is weak, by virtue of using only small numbers, this works
pretty well, as shown in Figure A.1, and the slope gives a fractal D of nearly 1.5. Note that
the observed SD at N=4, where the 256 values form aggregates of 64 values each, is less
than the expected value of 50/8 or 6.25%; the hearts show this same tendency.

There is no law that says that log RD versus log N for the pieces of the heart or for the
number of aggregates of nonrandom numbers should show self-similarity on recursion,
which is what a straight line indicates. However, the grouping of neighbors must give a
monotonically decreasing RD. To exemplify a couple of the possibilities of what would be
the result of using the same approach on nonrandom arrays of numbers, we created ordered
arrays out of random arrays. We have not yet devised a general approach to this and
therefore chose to test our procedures on highly coordinated arrays created by exact rank
ordering within groups. Rank ordering gives the highest degree of correlation between
nearest neighbors in a group, and will serve to illustrate that such ordering creates results
which are very different from the fractal relation.

Figure A.2 shows an example of the effects of rank ordering of densities or numbers from a
Gaussian distribution with mean 1.0 and standard deviation 0.30. Beginning with an array of
220 random Gaussian numbers, recursive twofold aggregating of neighbors gives successive
reductions of RD; the result is the straight line labeled D=1.5. This is the line predicted by
theory and illustrates the same phenomenon as in Figure A.1, except that now using large
numbers gives a closer approximation to the theory. The straight line is in accord with self-
similarity, that is, the reduction in apparent dispersion is the same with each doubling of
aggregate size. Randomizing phenomena such as diffusion fit this scheme.

Three other analyses were done by aggregating nearest neighbors after rank ordering subsets
of the 220 random numbers. The rank ordering was done by taking Ng points (with Ng=256;
1,024; or 16,384 points in a group) and putting the smallest value in the group first, the next
higher value next, and so on up to the highest value in the group last. Then a plot of the 220

points in order would appear as a sawtooth function with monotonic rises along each tooth
and some variability in the tooth shape and height. The sequences of 220 points if plotted as
value versus index now forms a rough sawtooth; Ng×N=220 so that, with Ng=256 there are
212 teeth, each a rough ramp; with Ng=210 there are 210 teeth and with Ng=214(=16,384)
there are 64 teeth. After this within-group rank ordering, the recursive nearest neighbor
aggregation gives quite a different shape of RD versus group size. Because of the rank
ordering, nearest neighbors in the array are closely similar, so there is very little reduction in
the overall dispersion, that is, RD is reduced very little initially by the successive pairings as
one progresses from the rightmost point on the graph (unpaired 220 observations) to
successively larger groups.

However, as the successive pairings, from right to left, increase the group size toward that of
the rank ordered groups (the teeth), the RD diminishes rapidly within a few successive
pairings. For Figure A.2, the successive pairings were done by starting with the first of 220

numbers, so that when the number in a group exactly matched the number in a rank-ordered
“tooth,” the RD matches the theoretical value for a random array. This is as it should be for
the content of the group of the size of the “tooth” or larger is exactly the same whether or
not it had been rank-ordered internally.

Bassingthwaighte et al. Page 13

Circ Res. Author manuscript; available in PMC 2012 May 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Consider flows in the heart to be truly random but ordered within small regions. This
approach is analogous to considering the heart to be composed of N independent regions
into which flow is delivered by an artery of size A, which in turn bifurcates into 220–N or 2N

separate but ordered microvascular units. When the heart is divided into samples or groups
of units smaller than that supplied by one artery of size A, then the apparent relative
dispersion is close to that of a whole population of 220 units. When the heart is divided
exactly along borders between the 2N groups supplied by arteries of size A or into larger
groups, the RD appears as if the system were random, which it is in this case at the larger
sample masses.

Next, consider the same situation as in Figure A.2, but make only a small change, namely
the point in the array where the sampling is started, the first cut made. Instead of starting
with the first of the 220 values, we started at a random point and cycled through the 220

values (going to the last, then to first and up to the one before the starting point). The result
is considerably different from that in Figure A.2, as shown by the curves in Figure A.3.
Firstly, as one pairs nearest neighbors successively into larger and larger aggregates of size
Ng, the diminution in RD, down from 0.3 is more rapid than in Figure A.2. This refers to the
slopes near the right top end of each curve. The second difference is in the apparent RD at
N=M, that is, where the number of groups equals the number of rank-ordered “teeth”; the

RD is about  or less than the pure random expectation. At smaller N, larger aggregates,
the RDs diminishing thereafter with a fractal slope D<1.5, about D=1.33. (The calculation
for D from any pair of points on the graph is Equation 7 of the text.)

Having a random starting point for the 220 points is like having an arbitrary starting point for
slicing up the heart and cutting it without any specified relation to the cognate beds of the
supplying arteries. For the random numbers, starting randomly within ordered groups,
giving a D of 1.33 means that the RD doubles in three slicings into halves (2→8 pieces)
whereas purely random unordered arrays double their apparent RD with two slicings (2→4
pieces). Perhaps we can extrapolate from this to suggest that if in the heart our slicing
patterns fail to match the cognate beds of individual arteries, there will be some reduction in
the apparent Ds compared with that obtainable with slicing at the peripheries of individual
regions.

The parts of Figures A.2 and A.3 which are probably most relevant to our experimental
observations are the regions with RDs greater than 10%. For each rank-ordered group size,
when increasing N, as soon as N exceeds 220/Ng, the lines of RD versus aggregate size show
curves quickly reaching the plateau at 30%. These are quite unlike our data. Rank-ordering
of the values within the group gives maximal local correlation; thus our local rank ordering
of random values is a poor analogue to the physiological situation. The data lie in the region
encompassed above by rank-ordering of large groups of random numbers (too near the
plateau, too curved, flatten too fast with increasing division) and the unsorted random values
(too low RDs for large samples and too steep a slope). We have no algorithm for the
intermediate situation that might match the data, but we can be confident that it is very
different from purely random flows and very different from groups with closely correlated
rank ordered flows. From the Dss observed in the heart we expect nearest neighbor
correlations of r=23–2D − 1 or about 0.5. We recognize that the random number string is a
one-dimensional representation whereas the myocardial flows are distributed three
dimensionally. Local correlation in three dimensions is to be expected, and it is probably
necessary to account for the distributions in much more detail in order to understand our
observations. The approach suggested by Voss22 considering the values at partially
correlated noise will certainly be useful. While we don’t know its basis in vascular anatomy,
rheology, and local regulation of regional flows, the fractal relations provide a fascinating
new descriptive approach to sorting out the problem.
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Figure 1.
The effect of sample size on the apparent dispersion of regional blood flow in the left
ventricle of a sheep heart. Data were obtained using the “molecular microsphere”
iododesmethylimipramine. The apparent relative dispersions (RD, the standard deviations
divided by the mean at each level of division) are plotted against the average masses of the
pieces for seven different sample sizes. Horizontal bars give the standard deviation of the
piece masses, which are not uniform. Vertical bars give the standard deviations of the
estimates of RD when estimates are obtained by forming aggregates of adjacent pieces in
three to eight different ways.
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Figure 2.
Fractals are stochastic or deterministic recursions, giving rise to features of systems which
are similar, relative to the scale of the recursion, at different scales.
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Figure 3.
Comparison of the observed relative dispersion (RDobs) to piece mass (m) for
iododesmethylimipramine (IDMI) and for microspheres. Data are from the left ventricle of a
sheep heart. Microspheres give a larger dispersion over the range of the data but the slopes
of the two lines are similar.

Bassingthwaighte et al. Page 17

Circ Res. Author manuscript; available in PMC 2012 May 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Composite probability density functions for regional flows at differing average piece mass
for three species. For each species, density functions are shown for several different piece
masses. The average piece mass for each distribution is given in the details for each panel.
The largest mass gives the narrowest distribution and the smallest gives the broadest. Left
panel: Microsphere distributions in 10 baboons. Four to six microsphere measurements were
made in each piece. Center panel: Iododesmethylimipramine distributions in 11 sheep. Right
panel: Iododesmethylimipramine distributions in six rabbits.
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Figure 5.
Fractal regression for spatial flow variation in left ventricular myocardium of a baboon (left)
and a sheep (right). Plotted are the relative dispersions of the observed density function
(RDobs), the methodological dispersion (RDM), and the spatial dispersion (RDs) at each
piece mass calculated using Equation 11 for sheep and Equation 12 for baboons. RDobs and
RDs are nearly superimposed in the sheep. Fractal analysis of the spatial dispersion on
pieces up to 4 g mass showed high correlations.
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Figure 6.
Temporal component (RDτ) of regional left ventricular myocardial flow variation, as a
function of piece mass, from composite data in 10 baboons. Observed methodological
dispersion (RDτ,M; ●) was measured by temporally separated injections in 10 baboons and
is composed of variation due to moment-by-moment fluctuations in flow plus errors in the
microsphere methodology. Microsphere method variation or dispersion (RDM; ◆) was
measured by simultaneous injections of four or six differently labeled tracer microspheres in
three baboons. Temporal dispersion (RDτ) calculated using Equation 13. Regression
analysis of the temporal dispersion gave a fractal D of 1.233 (r=0.996) for RDτ over piece
sizes ranging from 0.2 to 2 g.
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Figure 7.
Fractal regression lines for spatial dispersion (RDS) in baboons, sheep, and rabbits. For each
species, the calculated relative dispersions due to spatial heterogeneity of regional blood
flow are shown for each level of sampling. The regression lines for the individual animals
are shown by the thin lines. In each panel, the thick line is the regression obtained for all of
the data points of that group of animals. The slopes, intercepts, and correlation coefficients
of the regression equations for the individual animals are given in Table 2. Left panel:
Microsphere data from 10 baboons. The composite distribution has a fractal D of 1.202
(r=0.998). Middle panel: Iododesmethylimipramine (IDMI) data from 11 sheep. The line for
the composite data has fractal D of 1.160 (r=0.997). Right panel: IDMI data from six rabbits.
The composite has a fractal D of 1.225 (r=0.985).
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Figure 8.
Fractal dimension Ds for spatial variation versus RDs(m=l), the relative dispersion of left
ventricular myocardial flows at a voxel size of 1 g.

Bassingthwaighte et al. Page 22

Circ Res. Author manuscript; available in PMC 2012 May 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure A.1.
Two examples of the fractal behavior of the two sets of 256 Gaussian random numbers with
mean = 1.0 and SD=50% grouped together by 2s to form 128 aggregates, by 4s to form 64
aggregates, etc The theoretical fractal D is 1.5. Even with such poor statistics, especially for
the large aggregates where the number of aggregates (N) is small (32, 16, and 8), the
recursive grouping of nearest neighbors results in an observed log-log regression line with a
fractal D close to the theoretical value of 1.5.
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Figure A.2.
Relative dispersion as a function of number of nearest-neighbor aggregates for a randomly
ordered and three partially rank-ordered arrays of 220 random numbers with mean 1.0 and
SD=0.30. The “cuts” into the array to form the aggregates begin at the first number.
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Figure A.3.
Relative dispersion as a function of number of nearest-neighbor aggregates for a randomly
ordered and three partially rank-ordered, arrays of 220 random numbers with mean 1.0 and
SD=0.30. The “cuts” into the array to form the aggregates begin at a random number.
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Table 1

Scheme for Estimating Relative Dispersion at Different Voxel Sizes by Aggregating Pieces of Sheep LV

Number of observations Average weight of a piece Number of ways of calculating relative dispersion

192 0.2 1

96 0.4 3

64 0.6 3

32 1.2 6

16 2.4 8

8 4.8 8

4 9.6 8
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Table 2

Fractal Analysis of Individual Animals

Animal no.

Fractal Analysis

Ds RDs (mref = 1 g) r

Baboon

01 1.16 17.9 −0.998

02 1.20 15.4 −0.993

03 1.23 15.7 −0.982

05 1.20 15.2 −0.997

06 1.14 21.8 −0.995

07 1.23 14.6 −0.999

08 1.29 11.6 −0.998

09 1.19 11.4 −0.991

10 1.23 11.8 −1.000

11 1.24 13.5 −0.996

Sheep

230186 1.13 24.3 −0.999

010586 1.13 16.3 −0.982

220586 1.24 10.2 −0.995

290586 1.30 12.1 −0.998

050686 1.22 9.3 −0.991

190686-1 1.10 43.0 −0.998

190686-2 1.07 33.7 −0.970

080886-1 1.19 21.6 −0.989

080886-2 1.19 14.7 −0.993

300487 1.18 32.5 −0.990

060587 1.14 20.8 −0.972

Rabbit

181185 1.22 24.0 −0.960

121285 1.18 25.6 −0.957

191285a 1.20 21.1 −0.919

090186 1.37 7.2 −0.986

160186a 1.26 7.8 −0.977

160186b 1.25 7.0 −0.995

Ds, spatial dimension; RDs, spatial relative dispersion; mref, reference level of dispersion.

Circ Res. Author manuscript; available in PMC 2012 May 29.


